• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用

杨朝磊, 邹滔, 祝新友, 杨尚松, 蒋昊原, 袁伟恒, 彭伟刚, 柳玉龙, 马一奇

杨朝磊, 邹滔, 祝新友, 杨尚松, 蒋昊原, 袁伟恒, 彭伟刚, 柳玉龙, 马一奇. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用[J]. 中国地质, 2021, 48(1): 247-263. DOI: 10.12029/gc20210117
引用本文: 杨朝磊, 邹滔, 祝新友, 杨尚松, 蒋昊原, 袁伟恒, 彭伟刚, 柳玉龙, 马一奇. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用[J]. 中国地质, 2021, 48(1): 247-263. DOI: 10.12029/gc20210117
YANG Chaolei, ZOU Tao, ZHU Xinyou, YANG Shangsong, JIANG Haoyuan, YUAN Weiheng, PENG Weigang, LIU Yulong, MA Yiqi. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. GEOLOGY IN CHINA, 2021, 48(1): 247-263. DOI: 10.12029/gc20210117
Citation: YANG Chaolei, ZOU Tao, ZHU Xinyou, YANG Shangsong, JIANG Haoyuan, YUAN Weiheng, PENG Weigang, LIU Yulong, MA Yiqi. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. GEOLOGY IN CHINA, 2021, 48(1): 247-263. DOI: 10.12029/gc20210117

内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用

基金项目: 

国家重点研发计划“深地资源勘查开采”重点专项项目 2017YFC0601305

国家重点研发计划“深地资源勘查开采”重点专项项目 2017YFC0602403

国家自然科学基金项目 41602098

中国地质调查局项目 DD20190815

详细信息
    作者简介:

    杨朝磊, 男, 1991年生, 硕士, 助理工程师, 主要从事矿床地球化学研究工作; E-mail:yangchaolei@cugb.edu.cn

    通讯作者:

    邹滔, 男, 1983年生, 博士, 高级工程师, 长期从事矿床地球化学研究工作; E-mail:272582646@qq.com

  • 中图分类号: P597;P588.12+1

Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning

Funds: 

National Key Research and Development Program of China"Deep Resource Exploration and Mining" 2017YFC0601305

National Key Research and Development Program of China"Deep Resource Exploration and Mining" 2017YFC0602403

Natural Nature Science Fund 41602098

the project of China Geological Survey DD20190815

More Information
    Author Bio:

    YANG Chaolei, male, born in 1991, master, assistant engineer, engaged in the study of ore deposit geochemistry; E-mail:yangchaolei@cugb.edu.cn

    Corresponding author:

    ZOU Tao, male, born in 1983, doctor, senior engineer, engaged in the study of ore deposit geochemistry; E-mail:272582646@qq.com

  • 摘要:

    莫古吐花岗岩体位于大兴安岭南段黄岗梁-甘珠尔庙锡多金属成矿带西南端,其岩性主要以黑云母钾长花岗岩为主。文章通过LA-ICP-MS锆石U-Pb定年及岩石地球化学研究分析,探讨莫古吐花岗岩的成因类型、岩浆源区及成岩构造背景。锆石U-Pb年代学研究表明,莫古吐岩体形成于148.8~152.7 Ma,属晚侏罗世岩浆产物。岩石学及地球化学特征显示,莫古吐花岗岩属于碱性-弱过铝质系列,具有富SiO2(73.64%~80.86%),富K2O(2.6%~6.0%),贫Al2O3(10.57%~13.88%)的特点,富集Rb、U、Th等大离子亲石元素,亏损P、Ti、Ba、Sr等元素,稀土配分型式呈燕式分布,δEu值为0.10~0.27,负Eu异常明显,锆石饱和温度较高,为795~911℃,属于高演化A型花岗岩。结合年代学、地球化学数据及前人研究成果,认为莫古吐花岗岩体的岩浆源区较浅,成岩物质主要以壳源物质为主,岩体形成于地壳伸展-减薄的构造环境中,与蒙古-鄂霍茨克洋构造体制的关系更为密切。

    Abstract:

    The Mogutu granite pluton is emplaced in the southwest Huanggangliang to Ganzhuermiao tin-polymetal metallogenic belt in Southern Da Hinggan Mountains, which is mainly composed of biotite moyite. The genetic type, magmatic source region and diagenetic tectonic setting of the Mogutugranite were studied by U-Pb dating of zircon in LA-ICP-MS and petrogeochemical analysis. Zircon LA-ICP-MS dating of the biotite moyite yields a concordant age of 148.8-152.7Ma, which means that the Mogutu granite pluton was formed in Late Jurassic. The Mogutu granites is characterized by weak peraluminous and alkaline, high content of SiO2 (73.64%-80.86%), K2O(2.6%-6.0%), but low content of Al2O3 (10.57%-13.88%), depletion in P、Ti、Ba、Sr, and enrichment Rb、U、Th. The chondrite-normalized patterns of REE are in seagull forms, with strong negative Eu anomalies, with 0.10 to 0.27 of δEu, and higher zircon saturation temperatures(795-911℃), which indicates that the Mogutu pluton is similar to A-type granite. Therefore, the Moguto granites shows highly fractionated A -type granite affinity. Based on the previous research results, it is inferred that the depth of magma source of Mogutu granite pluton is shallow, the magmatic substance was derived from the crust, and the granite pluton was emplaced in the tectonic setting of crustal extension and thinning more likely related to the closure of the Mongol-Okhotsk tectonic belt.

  • 锗(Ge)是一种典型的稀散元素,其地壳丰度为1.5×10-6,主要富集在煤和铅锌矿床中。统计结果显示,闪锌矿是铅锌矿床中Ge的主要载体矿物,但不同类型铅锌矿床闪锌矿中Ge的含量存在差异。除热液脉型和浅成热液型铅锌矿床闪锌矿中Ge的含量较高(可达2500×10-6)外,其他主要类型(如喷流沉积型,SEDEX;火山块状硫化物型,VMS;密西西比河谷型,MVT,等)铅锌矿床闪锌矿中Ge的平均含量通常 < 300×10-6。本次发现贵州贵定竹林沟锌矿床闪锌矿中Ge的显著超常富集现象,现报道如下。

    在细致深入的矿床学和矿物学研究基础上,利用激光剥蚀等离子质谱仪(LA-ICP-MS)对竹林沟锌矿床主要金属矿物闪锌矿进行原位微量元素组成分析。统计闪锌矿中Ge等元素的富集特征,结合相关分析和以往研究成果,揭示竹林沟锌矿床中Ge的超常富集机制。

    竹林沟锌矿床闪锌矿中Ge的含量为592×10-6~1100×10-6(平均764×10-6表 1),锌矿石中Ge的平均品位97.9×10-6。闪锌矿LA-ICP-MS微区原位Ge含量分析资料显示,扬子板块及其周缘地区MVT铅锌矿床,如牛角塘、会泽、毛坪、富乐等,其闪锌矿中Ge的含量均 < 652×10-6,即便富乐矿床闪锌矿中Ge的含量最高,但其平均含量也仅为191×10-6,明显比竹林沟锌矿床闪锌矿中Ge的含量(特别是Ge的平均含量)低。

    表  1  竹林沟锌矿床闪锌矿部分元素含量(10-6)
    Table  1.  The part elemental contents of sphalerite from the Zhulingou Zn deposit(10-6)
    下载: 导出CSV 
    | 显示表格

    与世界上主要类型铅锌矿床闪锌矿LA-ICP-MS微区原位Ge含量分析资料相比,竹林沟矿床闪锌矿中Ge的含量比SEDEX(Ge含量通常 < 50×10-6)、VMS(Ge含量多数 < 100×10-6)和MVT(Ge含量n×10-6~n×102×10-6,Ge平均含量 < 300×10-6)等闪锌矿中Ge的含量高出一个数量级。竹林沟矿床闪锌矿中Ge的含量与法国Noailhac-Saint Salvy热液脉型Zn-Ge-Ag-Pb-Cd矿床(Ge平均含量750×10-6)和玻利维亚Porco浅成热液型Ag-Zn-Pb-Sn-Ge矿床(n×102×10-6~2500×10-6)等少数类型铅锌矿床闪锌矿中Ge的含量(特别是Ge的平均含量)相当。

    可见,竹林沟锌矿床闪锌矿中Ge的含量比目前已知扬子板块及其周缘地区MVT矿床闪锌矿中Ge的含量(特别是Ge的平均含量)都高,且明显高出全球主要类型(除岩浆热液型和热液脉型外)铅锌矿床闪锌矿中Ge的含量(特别是Ge的平均含量)一个数量级,具有显著超常富集特征(接近Ge地壳丰度的1000倍)。

    初步分析显示,竹林沟锌矿床闪锌矿中Zn与Ga和Cd之间具有正相关关系;相反,Fe与Ga和Cd之间均具有负相关关系,这表明该矿床闪锌矿中Ga和Cd很可能不是直接替代Zn而是替代Fe,与笔者前期认识基本一致。然而,不难发现该矿床闪锌矿中Zn与Ge之间呈一定的负相关关系,但Fe和Ge之间则呈一定的正相关关系,进一步地Zn与Fe之间具有显著的负相关关系,且Zn与Fe+Ge之间负相关性更显著(图 1)。目前,闪锌矿中主要有六种Ge替代Zn的方式:(1)2Cu++Cu2++Ge4+↔4Zn2+;(2)Ge2+↔Zn2+;(3)2Ag++Ge4+↔3Zn2+;(4)2Cu++Ge4+↔3Zn2+;(5)□(晶体空位)+Ge4+↔2Zn2+;(6)nCu+Ge↔(n+1)Zn。可见,这六种替代方式均不能解释竹林沟锌矿床闪锌矿Zn和Fe+Ge之间的强烈负相关关系。因此,笔者推测该矿床中Ge很可能是与Fe一起共同替代Zn进入闪锌矿晶格(Fe+Ge↔2Zn),是一种新的Ge替代方式。

    图  1  竹林沟锌矿床闪锌矿Zn-(Fe+Ge)相关图解
    Figure  1.  Relationship diagram of sphalerite Zn-(Fe+Ge)in the Zhulingou Zn deposit

    竹林沟锌矿床闪锌矿中显著超常富集锗,锗的富集程度接近1000倍,且锗与铁一起共同替代锌进入闪锌矿晶格,是一种新的锗替代方式。初步估算竹林沟锌矿床锗金属储量超过400 t,而竹林沟锌矿床外围还有半边街等锌矿床,初步预测研究区锗资源量可能达到超大型规模(>1000 t),一个新的国家级乃至世界级锗资源基地曙光已现。

    感谢科技部、国家自然科学基金委、云南省科技厅和云南大学对本项目的支持。

    致谢: 野外地质工作得到北京矿产地质研究院蒋斌斌、管育春等工程师的大力支持和帮助;测试工作得到合肥工业大学矿床成因与勘查技术研究中心矿物微区分析实验室汪方跃老师的热情帮助;审稿专家给论文提出了许多建设性的意见,特此感谢!
  • 图  1   中国东北区域构造单元划分(a,据Wu et al., 2011)、莫古吐地区区域地质图(b,据项目组内部资料修编)

    1—满克头鄂博组晶屑凝灰岩、凝灰质角砾岩;2—新民组粉砂岩、细砂岩、砂砾岩;3—林西组粉砂岩、板岩;4—哲斯组变质粉砂岩、钙质砂岩、大理岩、硅质岩、粉砂质板岩;5—大石寨组安山岩、细碧岩;6—辉长岩;7—流纹斑岩;8—闪长岩;9—花岗斑岩;10—黑云母二长花岗岩;11—黑云母花岗岩;12—黑云母钾长花岗岩;13—整合接触;14—断裂及编号(F1—蒙古—鄂霍茨克断裂;F2—德尔布干断裂;F3—贺根山断裂;F4—西拉木伦断裂;F5—康保—赤峰断裂;F6—嫩江八里罕断裂;F7—佳木斯—伊通断裂);15—金属矿床;16—采样位置;17—研究区

    Figure  1.   Tectonic subdivisions of northeastern China(a, after Wu et al., 2011); Regional geological map of the Mogutu area (b, after internal materials)

    1- Crystal tuff and tuffaceous breccia of the Manketouerbo Formation; 2- Siltstone, fine sandstone and glutenite of the Xinmin Formation; 3- Siltstone and slate of the Linxi Formation; 4- Metamorphic siltstone, calcareous sandstone, marble, siliceous and silty slate of the Zhesi Formation; 5- Andesite and spilite of the Dashizhai Formation; 6- Gabbro; 7- Rhyolite porphyry; 8- Diorite; 9- Granite porphyry; 10- Biotite adamellite; 11- Biotite- granite; 12- Biotite moyite; 13- Conformity; 14- Fracture and No. (F1- Mongolia Okhotsk fracture; F2- Deerbugan fracture; F3- Hegenshan fracture; F4 − Xilamulun fracture; F5- Kangbao- Chifeng fracture; F6- Nengjiang- Balihan fracture; F7-Jiamusi—Yitong fracture); 15-Ore deposit; 16-Sampling position; 17-Researched area

    图  2   莫古吐花岗岩野外照片

    a—浅肉红色黑云母钾长花岗岩;b—灰白色黑云母钾长花岗岩;c—烟灰色石英;d—团块状黑云母;e—伟晶结构;f—晶洞构造;g—萤石;h—电气石

    Figure  2.   Photographs of Mogutu granite

    a-Yellowish pink biotite moyite; b-Gray biotite moyite; c-Smoky quartz; d-Biotite briquettes; e-Pegmatitic texture; f-Miarolitic strecture; g-Fluorite; h-Tourmaline

    图  3   莫古吐花岗岩显微镜下照片

    a—浅肉红色黑云母钾长花岗岩正交偏光镜下照片(+);b—灰白色黑云母钾长花岗岩正交偏光镜下照片(+);c—正长石的卡氏双晶(+);d—微斜长石交代溶蚀斜长石及斜长石发育卡钠复合双晶(+);e—绢云母呈斜长石假象发育(+);f—黑云母绿泥石化,并析出磁铁矿(−);Qz—石英;Bi—黑云母;Pl—斜长石;Kf—钾长石;Pth—条纹长石;Mt—磁铁矿;Ser—绢云母化;(+)—正交偏光;(−)—单偏光

    Figure  3.   Microphotographs of Mogutu granite

    a- Yellowish pink biotite moyite; b- Gray biotite moyite; c- Carlsbad twin law of orthoclase; d- Plagioclase was absorbed by the microcline and carlsbadal bite compound twin of plagioclase; e- Sericite appears to develop in the illusion of plagioclase; f- Magnetite precipitation of biotite mainly results from epidotization; Qz-Quartz; Bi-Bitite; Pl-Plagioclase; Kf-K-feldspar; Pth-Perthite; Mt-Magnetite; Ser-Sericitization; (−)-Plane polarization; (+)-Orthogonal polarization

    图  4   莫古吐花岗岩体锆石阴极发光图(CL)图像及测试位置

    Figure  4.   Cathodoluminescence images of representative zircons and measuring positions of the Mogutu granite pluton

    图  5   莫古吐花岗岩体锆石U−Pb谐和图

    Figure  5.   Zircon U-Pb age and its concordia diagram of the Mogutu granite body

    图  6   莫古吐花岗岩TAS分类图解(据Middlemost, 1994

    Figure  6.   TAS diagram of the Mogutu granite(after Middlemost, 1994)

    图  7   莫古吐花岗岩SiO2−AR岩石系列判别图(据Rickwood, 1989)和A/CNK−ANK图解(据Maniar and Piccoli, 1989

    Figure  7.   SiO2−AR discriminant diagram (after Rickwood, 1989) and A/CNK−ANK Diagram (after Maniar and Piccoli, 1989) of the granite

    图  8   莫古吐花岗岩稀土元素球粒陨石分布型式图(a)及微量元素原始地幔标准化蜘蛛图(b)

    (标准化数据据文献Sun and Mcdonough, 1989)

    Figure  8.   Chondrite-normalized REE pattern(a) and primitive mantle-normalized spider diagram(b)of the Mogutu granite

    (chondrite and primitive mantle normalized values after reference Sun and Mcdonough, 1989)

    图  9   莫古吐花岗岩Rb−Sr−Ba图解(据Müller and Groves, 2001

    Figure  9.   Rb−Sr−Ba triangular diagram of the Mogutu granite (after Müller and Groves, 2001)

    图  10   104×Ga/Al−(Na2O+K2O)图解(a)与104×Ga/Al−Zr图解(b)(底图据Joseph et al., 1987)

    Figure  10.   104×Ga/Al−(Na2O+K2O) diagram(a) and 104×Ga/Al−Zr diagram of the Mogutu granite(b)(after Joseph et al., 1987)

    图  11   莫古吐花岗岩δEu−La/Yb图解(底图据文献Joseph et al., 1987)

    Figure  11.   δEu−La/Yb diagram of the Mogutu granite (after reference Joseph et al., 1987)

    图  12   莫古吐花岗岩Nb−Ce−Y构造环境判别图解(底图据文献Pearce et al., 1984

    A1—非造山花岗岩;A2—造山后花岗岩

    Figure  12.   Nb−Ce−Y discrimination diagram of tectonic setting of the Mogutu granite(after reference Pearce et al., 1984)

    A1-anorogenic granite; A2-post-orogenic granite

    表  1   莫古吐花岗岩LA−ICP−MS锆石U−Pb分析数据

    Table  1   LA−ICP−MS zircon U−Pb age of the Mogutu granite

    下载: 导出CSV

    表  2   莫古吐花岗岩体主量元素(%)和微量元素(10−6)组成

    Table  2   Major element (%) and trace element (10−6) composition of the Mogutu granite

    下载: 导出CSV
  • Cai Jianhui, Yan Guohan, Xu Baoliang, Wang Guanyu, Mu Baolei, Zhao Yongchao. 2006. The late Mesozoic alkaline intrusive rocks at the east foot of the Taihang-Da Hinggan Mountains:Lithogeochemical characteristics and their implication[J]. Acta Geoscientice Sinica, 27(5):447-459(in Chinese with English abstract).

    Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8(2):173-174.

    Chen Zhiguang, Zhang Lianchang, Wu Huaying, Wang Bo, Zeng Qindong. 2008. Geochemistry study and tectonic background of A style host granite in Nianzigou molybdenum doposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia[J]. Acta Petrologica Sinica, 24(4):257-267(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804027.htm

    Cheng Xiyin, Zhu Xinyou, Liu Zi. 2017. Magmatic evolution and tin polymetallic mineralization of Yanshenian highly fractionated granite in Chifeng, Inner Mongolia[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36:142-142(in Chinese with English abstract).

    Dill H G. 2015. Pegmatites and aplites:Their genetic and applied ore geology[J]. Ore Geol. Rev., 69:417-561. doi: 10.1016/j.oregeorev.2015.02.022

    Eby G N. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26(1):115-134. http://www.sciencedirect.com/science/article/pii/002449379090043Z

    Eby G N. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 20(7):641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Fan W M, Guo F, Wang Y J, Lin G. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 121(1):115-135. http://ci.nii.ac.jp/naid/80016058827

    Gao Fei, Liu Yongjiang, Wen Quanbo, Li Weimin, Feng Zhiqiang, Fan Wenliang, Tan Chao. 2018. Zircon U-Pb ages and its geological implication of Mesozoic granites in Tuquan-Keerqin Youyizhongqi region[J]. Journal of Jinlin University(Earth Science Edition), 48(3):769-783(in Chinese with English abstract). http://www.researchgate.net/publication/329307248_Zircon_U-Pb_Ages_and_Its_Geological_Implication_of_Mesozoic_Granites_in_Tuquan-Keerqin_Youyizhongqi_Region

    Gao Yuan, Zheng Changqing, Yao Wengui, Wang Hao, Li Juan, Shi Lu, Cui Fanghua, Gao Feng, Zhang Xingxing. 2013. Geochemistry and zircon U-Pb geochronology of the Luotuobozi pluton in the Haduohe area in the Northern Daxing'anling[J]. Acta Geologica Sinica, 87(9):1293-1310(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201309008

    Gu Yuchao, Chen Renyi, Jia Bin, Yu Chantao, Ju Nan. 2017. Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Mongolia and its tectonic implications[J]. Geology in China, 44(1):101-117(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201701009.htm

    Guo F, Li H X, Fan W M, Li J Y, Zhao L, Huang M W, Xu W L. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:Petrologic and geochemical evidence from the Tumen mafic intrusive complex[J]. Lithos, 224-225:46-60. doi: 10.1016/j.lithos.2015.02.014

    Harris N B W, Inger S. 1992. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy & Petrology, 110(1):46-56. doi: 10.1007/BF00310881

    Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439. doi: 10.1046/j.1525-1314.2000.00266.x

    Huang Shiqi, Dong Shuwen, Zhang Fuqin, Miao Laicheng, Zhu Mingshuai. 2014. Tectonic deformation and dynamic characteristics of the middle-part of the Mongolia-Okhotsk Collisional Belt, Mongolia[J].Acta Geoscientica Sinica, 35(4):415-424(in Chinese with English abstract). http://www.cqvip.com/QK/98325A/201404/662004045.html

    Jai Xiaohui, Wang Qiang, Tang Gongjian. 2009. A-type granites:Research progress and implication[J]. Geotectonica et Metallogenia, 33(3):465-480(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200903020.htm

    Jiang Sihong, Nie Fengjun, Liu Yifei, Yun Fei. 2010. Sulfur and lead isotopic compositionas of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia[J]. Mineral and Deposits, 29(1):101-112(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=33117129

    Joseph B. Whalen, Kenneth L. 1987. Currie, Bruce W. Chappell. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 95(4):407-419. http://www.tandfonline.com/servlet/linkout?suffix=CIT0102&dbid=16&doi=10.1080%2F00206814.2017.1377121&key=10.1007%2FBF00402202

    King P L, Chappell B W, Allen C M, White A J R. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Journal of the Geological Society of Australia, 48(4):501-514. doi: 10.1046/j.1440-0952.2001.00881.x

    King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    Li Jintie, Mo Shenguo, He Zhengjun, Sun Guihua, Chen Wen. 2004. The timing of crustal sinistral strike-slip movement in the northern Great Khing'an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic[J]. Earth Science Frontiers, 11(3):157-168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200403022.htm

    Li Pengchuan, Liu Zhengdong, Li Shichao, Xu Zhongyuan, Li Gang, Guan Qingbin.2016.Geochronology, geochemistry, zircon Hf isotopic characteristics and tectonic setting of Hudugeshaorong Pluton in Balinyouqi, Inner Mongolia[J]. Earth Science, 41(12):1995-2007(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201612003.htm

    Lin Qiang, Ge Wenchun, Wu Fuyuan, Sun Deyou, Cao Lin. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3):403-412(in Chinese with English abstract). http://www.researchgate.net/publication/279699322_Geochemistry_of_Mesozoic_granites_in_Da_Hinggan_Ling_rangs

    Liu Chanshi, Chen Xiaoming, Chen Peiron, Wang Rucheng, Hu Huan. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites[J]. Geological Journal of China Universities, 9(4):573-591(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253567896.html

    Liu Jianming, Zhang Rui, Zhang Qinzhou. 2004. The Regional Metallogeny of Da Hinggan Ling, China[J]. Earth Science Frontires, 11(1):269-277(in Chinese with English abstract). http://www.researchgate.net/publication/302500005_The_regional_metallogeny_of_Da_Hinggan_Ling_China

    Liu Zhi, Lü Xinbiao, Mei Wei. 2012. Discussion on metallogenic material source of Huanggang Sn-Fe Deposit——Evidence from O -S-Pb isotopic compositions[J]. Mineral Deposits, (S1):583-584(in Chinese with English abstract).

    Liu Zhi, Lü Xinbiao, Mei Wei. 2013. The isotopic composition of S-Pb-O of Huanggang Sn-Fe Deposit, Inner Mongolia:Implications for the ore-forming material source[J]. Journal of Mineralogy and Petrology, 33(3):30-37(in Chinese with English abstract). http://www.researchgate.net/publication/283380720_Sulfur-lead-oxygen_isotope_compositions_of_the_huanggang_skarn_Fe-Sn_deposit_Inner_Mongolia_Implications_for_the_sources_of_ore-forming_materials

    Loiselle M C and Wones DR. 1979. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am. Abstr., 11:468. http://ci.nii.ac.jp/naid/10019593683

    Long Zhou, Lai Lin, Zhang Xuebin, Zhangmingyang, Zhou Changhong. 2017. Zircon U-Pb ages, geochemical characteristics and tectonic significance of the A-type granites in Sunite Youqi, Inner Mongolia[J]. Geology and Exploration, 53(6):1115-1128(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201706007.htm

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Mao Jingwen, Zhou Zhenhua, Wu Guang, Jiang Sihong, Liu Chenglin, Li Houmin, Ouyang Hegen, Liu Jun.2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4):715-729(in Chinese with English abstract). http://www.researchgate.net/publication/285350451_Metallogenic_regularity_and_minerogenetic_series_of_ore_deposits_in_Inner_Mongolia_and_adjacent_areas

    Mao Jingweng, Xie Guiqing, Zhang Zuoheng, Li Xiaofeng, Wang Yitian, Zhangchangqing, Li Yongfeng. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1):169-188(in Chinese with English abstract). http://www.researchgate.net/publication/282053876_Mesozoic_large-scale_metallogenic_pulses_in_North_China_and_Corresponding_geodynamic_setting

    Mao Jingweng, Zhang Zuoheng, Yu Jinjie, Wang Yitian, Niu Baogui. 2003. Geodynamic settings of large-scale metallogenic pulses in Mesozoic in North China and its adjacent areas:Enlightenment from mineralization age about metal deposits[J]. Science in China, 33(4):289-299(in Chinese with English abstract).

    Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 369(3/4):155-174. http://www.sciencedirect.com/science/article/pii/S0040195103001951

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 37(3/4):215-224. http://www.sciencedirect.com/science/article/pii/0012825294900299

    Müller D, Groves D I. 2001. Potassic igneous rocks and associated gold-copper mineralization[J]. Mineral Resource Reviews, 56(2/3):265-266.

    Ouyang H G, Mao J W, Santosh M, Zhou J, Zhou Z Z, Wu Y, Hou L. 2013. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions:Perspectives from spatio-temporal distribution patterns of ore deposits[J]. Journal of Asian Earth Sciences, 78(12):222-236. http://www.sciencedirect.com/science/article/pii/S1367912013003593

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 25(4):956-983. doi: 10.1093/petrology/25.4.956

    Peng Qingsong, Zhang Zhiqiang, Zhu Xinyou, Huang Xingkai, Xuqiao. 2017. U-Pb age of zircon mineral in Huaganzigou pluton and its geological significance in central and southern part of the Da Hinggan Mountains[J]. Mineral Exploration, 8(6):927-936(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201706003.htm

    Ren Yaowu. 1995. Analysis of regional ore-controlling factors of tin-copper polymetallic ore deposit in the southeast margin of Da Hinggan Ling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 14(1):33-34(in Chinese with English abstract).

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5

    Shao J A, Liu F T, Chen H. 2000. Seismic tomography of the northest Pacific and its geodynamic implications[J]. Progress in Natural Science, 11(1):46-49.

    Shao Ji'an, Liu Futian, Chen Hui, Han Qingjun. 2001. Relationship between Mesozoic Magmatism and Subduction in Da Hinggan-Yanshan Area[J]. Acta Geologica Sinica, 75(1):56-63(in Chinese with English abstract). http://www.cqvip.com/QK/86253X/20011/1001445410.html

    Shao Ji'an, Mu Baolei, Zhu Huizhong, Zhang Lüqiao. 2010. Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mts[J]. Acta Petrologica Sinica, 26(3):649-656(in Chinese with English abstract). http://www.oalib.com/paper/1472509

    Shao Ji'an, Zhang Lüqiao, Mu Baolei. 2015. Magmatism in the Mesozoic extending orogenic process of Da Hinggan MTS[J]. Earth Science Frontiers, 6(4):339-346(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10008463139

    She Hongquan, Li Jinwen, Xiang Anping, Guan Jidong, Yang Xuncheng, Zhang Dequan, Tan Gang, Zhang Bin. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganlin and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2):217-240(in Chinese with English abstract).

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tapani Rämö O, Mclemore V T, Hamilton M A, Kosunen P J, Heizler M, Haapala I. 2003. Intermittent 1630-1220 Ma magmatism in central Mazatzal province:New geochronologic piercing points and some tectonic implications[J]. Geology, 31(4):335-338. doi: 10.1130/0091-7613(2003)031<0335:IMMICM>2.0.CO;2

    Wang Chunnv, Wang Quanming, Yu Xiaofei, Han Zhenzhe. 2016. Metallognetic characteristics of tin and ore-serach prospect in the southern part of Da Hinggan Mountains[J]. Geology and Exploration, 52(2):220-227(in Chinese with English abstract).

    Wang F, Zhou X H, Zhang L C, Ying J F, Zhang Y T, Wu F Y, Zhu R X. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth & Planetary Science Letters, 251(1):179-198.

    Wang Jingbin, Wang Yuwang, Wang Lijuan. 2005. Tin-polymetallic metallogenic series in the southern part of Da Hinggan mountains China[J]. Geology and Prospecting, 41(6):15-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200506002.htm

    Wang Lijuan, Hidehiko Shimazaki, Wang Jingbin, Wang Yuwang. 2001. Ore-forming fluid and Mineralization of Huanggang Sn-Fe Deposit, Inner Mongolia[J]. Science in China:Earth Science, 31(7):553-562(in Chinese with English abstract). http://www.researchgate.net/publication/285832551_Ore-forming_fluid_and_mineralization_of_Huangguangliang_skarn_Fe-Sn_deposit

    Wang T, Zheng Y D, Zhang J J, Zeng L S, Donskaya T, Guo Lei, Li J B. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J]. Tectonics, 30(6).

    Wang Yanbin, Han Juan, Li Jianbo, OuYang Zhixia, Tong Ying, Hou Kejun. 2010. Age, petrogenesis and geological significance of the deformed granitoids in the Louzidian metamorphic core complex, southern Chifeng, Inner Mongolia:Evidence from zircon U-Pb dates and Hf isotopes[J]. Acta Petrologica et Mineralogica, 29(6):763-778(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW201006013.htm

    Wang Yang. 2009. Geochemistry of the Baicha A-type granite in Beijing Municipality:Petrogenetic and tectonic implications[J]. Acta Petrologica Sinica, 25(1):13-24(in Chinese with English abstract).

    Waston E B, Harrison T M. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

    Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    Wu F Y, Sun D Y, Li H, Jahn B M, Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1/2):143-173.

    Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://www.researchgate.net/publication/279707410_Discussion_on_the_petrogenesis_of_granites

    Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites:Recognition and research[J]. Science China:Earth Sciences, 47(7):745-765(in Chinese with English abstract).

    Xu Baoliang, Yan Guohan, Zhang Chen, Li Zhitong, He Zhongfu. 1989. Petrological subdivision and source material of A-type granites[J]. Earth Science Frontiers, 5(3):113-124(in Chinese with English abstract).

    Xu Wenliang, Wang Feng, Bei Fuping, Meng En, Tang Jie, Xu Meijun, Wang wei. 2012. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock assocaitions[J]. Acta Petrological Sinica, 29(2):339-353(in Chinese with English abstract).

    Yang Qidi, Guo Lei, Wang Tao, Zeng Tao, Zhang Lei, Tong Ying, Shi Xingjun, Zhang Jianjun. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two-stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7):1961-1981(in Chinese with English abstract). http://www.researchgate.net/publication/291495722_Geochronology_origin_sources_and_tectonic_settings_of_Late_Mesozoic_two-stage_granites_in_the_Ganzhuermiao_region_central_and_southern_Da_Hinggan_Range_NE_China

    Ying J F, Zhou X H, Zhang L C, Wang F. 2010. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 39(6):786-793. doi: 10.1016/j.jseaes.2010.04.035

    Zeng Q D, Liu J M, Qin K Z, Fan H G, Chu S X, Wang Y B, Zhou L L. 2013. Types, characteristics, and time-space distribution of molybdenum deposits in China[J]. International Geology Review, 55(11):1311-1358. doi: 10.1080/00206814.2013.774195

    Zeng Q D, Sun Y, Chu S X, Duan X X, Liu J M. 2015. Geochemistry and geochronology of the Dongshanwan porphyry Mo-W deposit, Northeast China:Implications for the Late Jurassic tectonic setting[J]. Journal of Asian Earth Sciences, 97:472-485. doi: 10.1016/j.jseaes.2014.07.027

    Zeng Q, Liu J, Zhang Z. 2010. Re-Os geochronology of porphyry molybdenum deposit in south segment of Da Hinggan Mountains, Northeast China[J]. Journal of Earth Science, 21(4):392-401. doi: 10.1007/s12583-010-0102-4

    Zhang J H, Gao S, Ge W C, Wu F Y, Yang J H, Wilde S A, Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 276(3):144-165.

    Zhang Qi, Jin Weijun, Li Chengdong, Wang Yuanlong. 2009. Yanshanian large-scale magmatism and lithosphere thinning in Eastern China:Relation to large igneous Province[J]. Earth Science Frontiers, 16(2):21-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200902003.htm

    Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 31(4):621-626(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm

    Zhang Qi, Wang Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). http://www.oalib.com/paper/1473353

    Zhang Qi, Wang Yuanlong, Jin Weijun, Jia Xiuqin, Li Chengdong. 2008. Criteria for the recognition of pre-, syn- and post-orogenic granitic rocks[J]. Geological Bulletin of China, 27(1):1-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm

    Zhang Qi. 2013. Is the Mesozoic magmatism in eastern China related to the westward subduction of the Pacific plate?[J]. Acta Petrologica et Mineralogica, 32(1):113-128(in Chinese with English abstract). http://www.researchgate.net/publication/285504847_Is_the_Mesozoic_magmatism_in_Eastern_China_related_to_the_Westward_subduction_of_the_Pacific_Plate

    Zhang Qi. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for "A-type granite:What is essence?"[J]. Acta Petrologica et Mineralogica, 32(2):267-274(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201302014.htm

    Zhang Xuebing. 2017. Pb-Zn Polymetallic Deposits Metallogenic Series and Prospecting Direction of the West Slope of Southern Great Xing'an Range[D]. Changchun: Jilin University, (in Chinese with English abstract).

    Zhu Xinyou, Zhang Zhimei, Fu Xu, Li Baiyang, Wang Yanli, Jiao Shoutao, Sun Yalin. 2016. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia[J]. Geology in China, 43(1):188-208(in Chinese with English abstract). http://www.researchgate.net/publication/311433623_Geological_and_geochemical_characteristics_of_the_Weilasito_Sn-Zn_deposit_Inner_Mongolia

    蔡剑辉, 阎国翰, 许保良, 王关玉, 牟保磊, 赵永超. 2006.太行山-大兴安岭东麓晚中生代碱性侵入岩岩石地球化学特征及其意义[J].地球学报, 27(5):447-459. doi: 10.3321/j.issn:1006-3021.2006.05.007
    陈志广, 张连昌, 吴华英, 万博, 曾庆栋. 2008.内蒙古西拉木伦成矿带碾子沟钼矿A型花岗岩地球化学和构造背景[J].岩石学报, 24(4):257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804027.htm
    程细音, 祝新友, 刘孜. 2017.内蒙古赤峰燕山晚期高演化花岗岩岩浆演化与锡多金属成矿[J].矿物岩石地球化学通报, 36:142-142. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201704001120.htm
    高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 2018.内蒙古突泉-科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版), 48(3):769-783. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201803012.htm
    高源, 郑常青, 姚文贵, 王浩, 李娟, 施璐, 崔芳华, 高峰, 张行行. 2013.大兴安岭北段哈多河地区骆驼脖子岩体地球化学和锆石U-Pb年代学[J].地质学报, 87(9):1293-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309008.htm
    顾玉超, 陈仁义, 贾斌, 宋万兵, 余昌涛, 鞠楠. 2017.内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J].中国地质, 44(1):101-117. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170108&flag=1
    黄始琪, 董树文, 张福勤, 苗来成, 朱明帅. 2014.蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J].地球学报, 35(4):415-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404004.htm
    贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 33(3):465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017
    江思宏, 聂凤军, 刘翼飞, 云飞. 2010.内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究[J].矿床地质, 29(1):101-112. doi: 10.3969/j.issn.0258-7106.2010.01.010
    李锦轶, 莫申国, 和政军, 孙桂华, 陈文. 2004.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 11(3):157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017
    李鹏川, 刘正宏, 李世超, 徐仲元, 李刚, 关庆彬. 2016.内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf同位素特征及构造背景[J].地球科学, 41(12):1995-2007. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612003.htm
    林强, 葛文春, 吴福元, 孙德有, 曹林. 2004.大兴安岭中生代花岗岩类的地球化学[J].岩石学报, 20(3):403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403004.htm
    刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J].高校地质学报, 9(4):573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011
    刘建明, 张锐, 张庆洲. 2004.大兴安岭地区的区域成矿特征[J].地学前缘, 11(1):269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024
    刘智, 吕新彪, 梅微. 2012.内蒙黄岗铁锡矿床物质来源探讨——来自O-Pb-S同位素的证据[J].矿床地质, (S1):583-584. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1295.htm
    刘智, 吕新彪, 梅微. 2013.内蒙古黄岗矽卡岩型铁锡矿床S-Pb-O同位素组成及对成矿物质来源的指示[J].矿物岩石, 33(3):30-37. doi: 10.3969/j.issn.1001-6872.2013.03.006
    龙舟, 来林, 张学斌, 张明洋, 周长红. 2017.内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J].地质与勘探, 53(6):1115-1128. doi: 10.3969/j.issn.0495-5331.2017.06.007
    毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005.中国北方中生代大规模成矿作用的期次及其地球动力学背[J].岩石学报, 21(1):169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
    毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 2003.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学:地球科学, 33(4):289-299. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304000.htm
    毛景文, 周振华, 武广, 江思宏, 刘成林, 李厚民, 欧阳荷根, 刘军. 2013.内蒙古及邻区矿床成矿规律与成矿系列[J].矿床地质, 32(4):715-729. doi: 10.3969/j.issn.0258-7106.2013.04.006
    彭青松, 张志强, 祝新友, 黄行凯, 徐巧. 2017.大兴安岭中南段桦杆子沟岩体锆石U-Pb年龄及其地质意义[J].矿产勘查, 8(6):927-936. doi: 10.3969/j.issn.1674-7801.2017.06.003
    任耀武. 1995.大兴安岭东南缘锡铜多金属矿床区域控矿因素分析[J].矿物岩石地球化学通报, 14(1):33-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH501.011.htm
    邵济安, 刘福田, 陈辉, 韩庆军. 2001.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 75(1):56-63. doi: 10.3321/j.issn:0001-5717.2001.01.006
    邵济安, 牟保磊, 朱慧忠, 张履桥. 2010.大兴安岭中南段中生代成矿物质的深部来源与背景[J].岩石学报, 26(3):649-656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003001.htm
    邵济安, 张履桥, 牟保磊. 2015.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 6(4):339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904025.htm
    佘宏全, 李进文, 向安平, 关继东, 杨勋城, 张德全, 谭刚, 张斌. 2012.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 28(2):217-240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202019.htm
    汪洋. 2009.北京白查A型花岗岩的地球化学特征及其成因与构造指示意义[J].岩石学报, 25(1):13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901003.htm
    王春女, 王全明, 于晓飞, 韩振哲. 2016.大兴安岭南段锡矿成矿特征及找矿前景[J].地质与勘探, 52(2):220-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201602003.htm
    王京彬, 王玉往, 王莉娟. 2005.大兴安岭南段锡多金属成矿系列[J].地质与勘探, 41(6):15-20. doi: 10.3969/j.issn.0495-5331.2005.06.003
    王莉娟, 岛崎英彦, 王京彬, 王玉往. 2001.黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用[J].中国科学:地球科学, 31(7):553-562. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200107003.htm
    王彦斌, 韩娟, 李建波, 欧阳志侠, 童英, 候可军. 2010.内蒙赤峰楼子店拆离断层带下盘变形花岗质岩石的时代、成因及其地质意义——锆石U-Pb年龄和Hf同位素证据[J].岩石矿物学杂志, 29(6):763-778. doi: 10.3969/j.issn.1000-6524.2010.06.013
    吴福元, 李献华, 杨进辉, 郑永飞. 2007.花岗岩成因研究的若干问题[J].岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017.高分异花岗岩的识别与研究[J].中国科学:地球科学, 47(7):745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm
    许保良, 阎国翰, 张臣, 李之彤, 何中甫. 1998. A型花岗岩的岩石学亚类及其物质来源[J].地学前缘, 5(3):113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011
    许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2012.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 29(2):339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
    杨奇荻, 郭磊, 王涛, 曾涛, 张磊, 童英, 史兴俊, 张建军. 2014.大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J].岩石学报, 30(7):1961-1981. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407011.htm
    张旗, 金惟俊, 李承东, 王元龙. 2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J].地学前缘, 16(2):21-51. doi: 10.3321/j.issn:1005-2321.2009.02.002
    张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J].岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
    张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 22(9):2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm
    张旗, 王元龙, 金惟俊, 贾秀勤, 李承东. 2008.造山前、造山和造山后花岗岩的识别[J].地质通报, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001
    张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑[J].岩石矿物学杂志, 32(2):267-274. doi: 10.3969/j.issn.1000-6524.2013.02.014
    张旗. 2013.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J].岩石矿物学杂志, 32(1):113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010
    张雪冰. 2017.大兴安岭南段西坡铅锌多金属矿床成矿系列与找矿方向[D].吉林大学.
    祝新友, 张志辉, 付旭, 李柏阳, 王艳丽, 焦守涛, 孙雅琳. 2016.内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J].中国地质, 43(1):188-208. doi: 10.3969/j.issn.1000-3657.2016.01.014
  • 期刊类型引用(7)

    1. 程涌,周家喜,孙国涛,黄智龙. 贵州半边街锗锌矿床锗的富集特征及其地质意义. 岩石学报. 2024(01): 43-59 . 百度学术
    2. 何叶,周高明,钟华,程涌,岳正鹏,刘和松,周家喜. 云南毛坪铅锌矿床新发现Ⅵ号矿带硫化物稀散元素富集特征及其地质意义. 岩石学报. 2023(10): 2985-3001 . 百度学术
    3. 黄亮,周家喜,孙载波,熊波,龙天祥,王晓林,吴嘉林. 滇西漕涧地区发现流纹岩型铌矿化. 矿物岩石地球化学通报. 2022(01): 185-187 . 百度学术
    4. 杨昌华,周家喜,罗开,姜永果,李晓红,杨丰铭,陶永林. 云南省兰坪-思茅盆地发现钴超常富集矿化点. 大地构造与成矿学. 2022(06): 1167-1169 . 百度学术
    5. 杨德智,周家喜,孔志岗,吴越,黄智龙,金中国. 闪锌矿矿物结构对Ge超常富集的制约:以贵州竹林沟Ge-Zn矿床为例. 大地构造与成矿学. 2022(06): 1120-1136 . 百度学术
    6. 罗开,周家喜,徐畅,贺康建,王永彬,孙国涛. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义. 岩石学报. 2021(09): 2761-2777 . 百度学术
    7. 周家喜,杨德智,余杰,周祖虎,罗开,徐阳东. 贵州黄丝背斜地区实现大型共(伴)生锗矿床找矿突破. 矿物学报. 2020(06): 772 . 百度学术

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-07-20
  • 修回日期:  2019-05-15
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-02-24

目录

/

返回文章
返回
x 关闭 永久关闭