• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

煤系气研究进展与待解决的重要科学问题

毕彩芹, 胡志方, 汤达祯, 陶树, 张家强, 唐淑玲, 黄华州, 唐跃, 袁远, 徐银波, 单衍胜, 迟焕鹏, 刘伟, 朱韩友, 王福国, 周阳

毕彩芹, 胡志方, 汤达祯, 陶树, 张家强, 唐淑玲, 黄华州, 唐跃, 袁远, 徐银波, 单衍胜, 迟焕鹏, 刘伟, 朱韩友, 王福国, 周阳. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质, 2021, 48(2): 402-423. DOI: 10.12029/gc20210205
引用本文: 毕彩芹, 胡志方, 汤达祯, 陶树, 张家强, 唐淑玲, 黄华州, 唐跃, 袁远, 徐银波, 单衍胜, 迟焕鹏, 刘伟, 朱韩友, 王福国, 周阳. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质, 2021, 48(2): 402-423. DOI: 10.12029/gc20210205
BI Caiqin, HU Zhifang, TANG Dazhen, TAO Shu, ZHANG Jiaqiang, TANG Shuling, HUANG Huazhou, TANG Yue, YUAN Yuan, XU Yinbo, SHAN Yansheng, CHI Huanpeng, LIU Wei, ZHU Hanyou, WANG Fuguo, ZHOU Yang. Research progress of coal measure gas and some important scientific problems[J]. GEOLOGY IN CHINA, 2021, 48(2): 402-423. DOI: 10.12029/gc20210205
Citation: BI Caiqin, HU Zhifang, TANG Dazhen, TAO Shu, ZHANG Jiaqiang, TANG Shuling, HUANG Huazhou, TANG Yue, YUAN Yuan, XU Yinbo, SHAN Yansheng, CHI Huanpeng, LIU Wei, ZHU Hanyou, WANG Fuguo, ZHOU Yang. Research progress of coal measure gas and some important scientific problems[J]. GEOLOGY IN CHINA, 2021, 48(2): 402-423. DOI: 10.12029/gc20210205

煤系气研究进展与待解决的重要科学问题

基金项目: 中国地质调查局地质调查项目“鸡西等含煤盆地煤系气地质调查(2019-2021)”(DD20190101)、“黔西川南及东北三江地区煤层气基础地质调查(2016-2018)”(DD20160186)资助
详细信息
    作者简介:

    毕彩芹, 女, 1972年生, 硕士, 正高级工程师, 现主要从事煤层气等非常规油气地质调查与评价工作; E-mail: bicaiqin@mail.cgs.gov.cn

    通讯作者:

    胡志方, 男, 1966年生, 博士, 正高级工程师, 主要从事油气地质、非常规油气地质与工程技术研究工作; E-mail: huzhifang@mail.cgs.gov.cn

  • 中图分类号: P618.3

Research progress of coal measure gas and some important scientific problems

Funds: Supported by China Geological Survey Project(No.DD20190101, No.DD20160186)
More Information
    Author Bio:

    BI Caiqin, female, born in 1972, Master's degree, professor-level senior engineer, engaged in geological investigation, evaluation and research of unconventional oil & gas and petroleum geology, E-mail: bicaiqin@mail.cgs.gov.cn

    Corresponding author:

    HU Zhifang, male, born in 1966, doctor, professor-level senior engineer, engaged in petroleum geology, unconventional oil & gas geology and engineering technology research; E-mail: huzhifang@mail.cgs.gov.cn

  • 摘要:

    煤系气是非常规天然气领域的重要组成部分,也是近年来非常规天然气领域研究的热点。总结煤系气研究进展,明确亟待解决的重要科学问题,对于完善煤系气地质理论、推动煤系气勘探开发具有重要意义。当前煤系气研究进展主要表现在以下5个方面:①基于煤系地层沉积特点,总结了煤系气共生成藏的6个基本地质特征;②初步划分了煤系气共生组合方式,分析了煤系气4大成藏要素及其配置关系的控气作用;③分析了煤系含气系统叠置性地质成因,提出了叠置煤系气系统的识别与评价方法及控制叠置含气系统合采兼容性的地质要素;④总结了煤系“三气”共探合采理论研究、技术方法、产层贡献识别技术及合采产层优化组合与“甜点”评价;⑤在煤系气资源评价与有利区预测方面进行了有效的探索性研究。在对研究现状总结的基础上,提出了煤系气领域亟待解决的重要科学问题:①煤系气储层精细描述及可改造性评价;②煤系气资源评价方法及有利区优选;③煤系气开发甜点区(段)评价技术;④叠置煤系气系统合采兼容性评价。这些问题的解决,将有利于推动煤系气地质理论发展和煤系气资源的高效开发利用。

    Abstract:

    Coal measure gas is an important part of unconventional natural gas field, and it is also a hot spot of unconventional natural gas research in recent years. Summing up the research progress of coal measure gas and clarifying the important scientific problems to be solved are of great significance for perfecting the geological theory of coal measure gas and promoting the exploration and development of coal measure gas. The current research progress of coal measure gas can be mainly concluded in the following five aspects: a. summary of six basic geological characteristics of paragenic reservoir of coal measure gas based on the sedimentary characteristics of coal measure gas; b. preliminary classification of paragenesis and assemblage mode of coal measure gas, and analysis of four major controlling factors of coal measure gas and their allocation relationship; c. analysis of the genesis of the superimposition of coal measure gas, and raise of identification and evaluation method of the superimposed coal measure gas system and the geological elements controlling the compatibility of the superimposed gas bearing system; d. summary of the theoretical research, technical methods, recognition technology of production contribution, optimal combination of production layers and "desserts" evaluation of co-exploration and co-production in coal measure gas; and e. some exploratory researches in evaluation of coal measure gas resource and prediction of its prospects. Based on the summary of the present research, four important scientific problems to be solved urgently in the study of coal measure gas are put forward as follows: a. the fine reservoir description and reservoir removability evaluation of coal measure gas; b. evaluation of coal measure gas resources and optimization of its prospects; c. the evaluation technology of development sweet areas (sector) of coal measure gas; and d. co-production compatibility evaluation of superimposed coal measure gas system. The solution of these problems will contribute to the efficient development of coal measure gas resources and the development of its geological theory.

  • 扬子地块西缘地区新元古代构造-岩浆活动较强烈,形成大量以中酸性火成岩为主的侵入岩浆岩群。这些构造-岩浆岩体的形成时代主要集中在740~830 Ma,主要侵位于中新元古界扬子型变质基底岩系中,并多被南华系或震旦系及少量被中生代地层不整合覆盖。由于其形成构造环境对研究扬子地块大地构造格局和形成演化以及Rodinia超大陆的恢复重建具有重要意义而受到广泛关注;大量对新元古代岩浆岩成因及热源研究认为,扬子板块周缘经历了早期大洋板片俯冲作用930~1160 Ma和晚期大规模陆缘裂解635~830 Ma(李献华等,2001凌文黎等,2006李献华等,2008裴先治等,2009刘树文等,2009夏林圻等,2016刘军平等,2017)。深入了解这些新元古代岩浆岩的成因和形成的构造环境对研究扬子地块大地构造格架和形成演化及其在Rodinia超大陆的聚合-裂解演化中的作用具有重要的科学意义(李献华等,2008)。

    目前学术界对这些岩浆岩的成因和形成的构造背景存在3种不同的认识(李献华等,2008张沛等,2008谢士稳等,2009):一种观点认为与地幔柱有关,这些岩浆岩是与Rodinia超大陆裂解有关的地幔柱活动引发岩石圈地幔和下地壳熔融的产物;另一种观点认为与岛弧有关,早期(830~820 Ma)岩浆岩为弧-陆碰撞造山带拉张垮塌熔融产物,而晚期740~780 Ma为Rodinia超大陆裂解过程中裂谷岩浆活动产物;第三种观点介于上述两种观点之间,认为扬子地块周缘新元古代岩浆活动是早期弧-陆碰撞、晚期伸展垮塌和大陆裂谷再造产物(颜丹平等,2002凌文黎等,2006),认为扬子和华夏地块的造山运动持续到约820 Ma,大规模的820~830 Ma花岗岩形成于造山带垮塌阶段,而随后的岩浆活动形成于岩石圈伸展—裂谷阶段(Zheng et al., 2006;Wu et al., 2006)。

    王梦玺等(2006)对扬子北缘随枣盆地中周庵超镁铁质岩体(637±4) Ma进行了锆石Hf-O同位素分析,认为Rodinia超大陆在扬子板块北缘的最终裂解时限为约635 Ma,扬子北缘俯冲-伸展的转换时间可能在635~740 Ma的观点(颜丹平等,2002;王梦玺等,2006)。本文对扬子地块西缘云南安宁地区出露的石虎山花岗岩进行了锆石U-Pb年代学、岩石地球化学和Hf同位素分析,并探讨其侵位时代、岩石成因、物质来源和构造背景,为Rodinia超大陆裂解时限提供新证据,为扬子地块西缘新元古代的构造-岩浆活动提供新的约束。

    研究区位于滇中安宁地区,属扬子陆块区之上扬子古陆块的康滇基底断隆带,地层区划隶属华南地层大区扬子地层区康滇地层分区之昆明地层小区(图 1)。研究区出露地层有中元古界昆阳群黑山头组、中元古界昆阳群大龙口组、中元古界昆阳群美党组、新元古界灯影组、三叠系舍资组及侏罗系禄丰群(图 1)。中元古界昆阳群为一套浅变质的陆源碎屑-碳酸盐岩及少量火山岩,新元古界灯影组为一套含磷矿层的碳酸盐岩建造,三叠系舍资组为一套湖泊砂岩-粉砂岩组合,侏罗系禄丰群为一套潮湿-干旱气候环境的红色碎屑岩建造;区内早期断裂为北西-南东向,晚期断裂为北北东向及近南北向,岩浆活动主要以石虎山花岗岩为主,少量晚期辉长-辉绿岩脉发育。

    图  1  研究区大地构造位置(a)及样品采集位置图(b)
    Figure  1.  Geotectonic location in study area(a)and sampling location diagram(b)

    本次研究的样品采自易门—罗茨断裂以东,地点在安宁市八街镇德滋村(图 1),地理坐标为:102° 20′02″E,24°35′15″N。在八街镇德滋村地区,石虎山花岗岩岩体呈岩株状产出,出露面积约5 km2,岩性以碱长花岗岩为主,少量粗中粒似斑状黑云二长花岗岩,岩石结构上由细粒向粗粒含斑演化,变化的有序性和单向性明显,且在空间上紧密共生,形成时间、成分及结构变化上表现出清楚的亲缘和演化关系,说明它们是同一岩浆热事件的产物。野外两者为渐变过渡接触,整个岩体由中心至边部矿物颗粒由中粗粒变为中细粒;岩体侵入于昆阳群大龙口组碳酸盐岩及美党组碎屑岩中,围岩普遍角岩化,南、南东面被三叠系舍资组(T3s)角度不整合覆盖(图 1);岩石受后期构造影响仅发生碎裂岩化。因黑云二长花岗岩风化较强并未采集相应地化样品,仅为薄片样;本次采集较新鲜的碱长花岗岩(D0120)为主要的研究对象,岩石主要由钾长石(65%~70%)、钠长石(2%~3%)和石英(30%~35%)组成,少量黑云母(0~2%)。钾长石呈半自形—他形粒状,条纹发育,部分颗粒可见裂纹,粒径一般为0.56~1.4 mm,均匀分布。石英呈他形粒状,干净透亮,具波状消光,粒径一般为0.4~1.4 mm,与钾长石镶嵌分布。岩石受构造作用,裂隙发育,裂隙内充填绢-白云母、铁质物,穿插分布。此外,岩石中还可见磁铁矿、锆石、钠闪石,零星分布;本次对岩石后期的碎裂岩化、波状消光及充填的铁质物进行了相关处理,对本文获得的岩石地球化学数据准确性并无影响。样品镜下特征见图 2

    图  2  碱长花岗岩野外(a、b)及典型结构显微(c,正交偏光;d,单偏光)照片
    Kfs—钾长石;Qtz—石英;Ms—白云母
    Figure  2.  Outcrop photos(a, b)and micrographs showing typical textures(c, crossed nicols; d, plainlight)of the alkali-feldspar granite
    Kfs-K-Feldspar; Qtz-Quartz; Ms-Muscovite

    粗中粒似斑状黑云二长花岗岩:肉红色,风化后呈浅灰-灰白色,粗中粒似斑状花岗结构,块状构造,岩石由钾长石(20% ~40%)、斜长石(20% ~35%)、石英(20%~40%)组成,含少量黑云母(5%~15%)、白云母(≤1);副矿物为锆石、磷灰石、金红石。似斑晶主要为微斜微纹长石(10%~15%),粒径一般在7~15 mm,最大可达3.5 cm, 分布稀疏不均,半自形板状;基质以中粒(d >2~4.5 mm)花岗结构为主。斜长石多为更长石(An20±),自形、半自形板柱状;钾长石的自形程度相对较差,多为他形、半自形板状。中粒钾长石常有细粒半自形斜长石等包晶,包晶多具净边结构。黑云母Ng褐黑,Np黄白。蚀变特征:多数片状黑云母已绿泥石化,长石具轻微黏土化、绢云母化。

    样品D0121新鲜色为浅灰-浅肉红色,岩性为碱长花岗岩,块状构造;锆石分选在南京宏创地矿完成,将样品先经手工粉碎,后按常规重力及电磁法浮选出锆石颗粒,最后在实体镜下挑选出纯正锆石约250余粒。锆石多为无色透明,个别呈浅黄色,粒状、短柱状、碎粒状,金刚光泽,透明,表面多具磨蚀特征,锆石长度一般为70~150 µm,少数达180 µm。

    选择晶型较好,无裂隙的锆石颗粒黏贴在环氧树脂表面制成锆石样品靶,打磨样品靶,使锆石的中心部位暴露出来,然后进行抛光。对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,最后根据反射光、透射光及锆石CL图像选择代表性的锆石颗粒和区域进行U-Pb测年。

    U-Pb同位素定年在湖北省地质实验室测试中心岩石矿物研究室利用LA-ICP-MS分析完成。测试仪器采用的是由美国Coherent Inc公司生产的GeoLasPro全自动版193 nm ArF准分子激光剥蚀系统(LA)和美国Agilent公司生产的7700X型电感耦合等离子质谱仪(ICP-MS)联用构成的激光剥蚀电感耦合等离子体质谱分析系统(LA-ICP-MS)。另外激光剥蚀系统配置了由澳大利亚国立大学开发研制的匀化器,由10根长度不同的细PV管组成,激光剥蚀产生的细小粉末样品通过匀化器装置后,因通过长短不同的管道所需的时间略有不同而使样品脉冲信号得到平滑,从而能有效降低激光脉冲剥蚀样品而产生的信号波动(Hoskin et al., 2003)。锆石微量元素含量利用NIST610作为外标,Si作为内标进行定量计算。锆石U-Pb定年分析采用锆石标准年龄物质91500作为外标进行同位素分馏校正,每分析6~8个样品点分析2次91500。样品测试时,背景信号采集10 s,样品剥蚀40 s,管路吹扫10 s,信号采集时间总共为60 s。样品的同位素比值和元素含量采用ICPMSDataCal 9.0进行处理分析,加权平均年龄的计算及锆石年龄谐和图的绘制采用Isoplot3.0(Ludwing,2003)来完成。采用年龄为206Pb/238U年龄,其加权平均值的误差为2σ206Pb/238U(和207Pb/206Pb)平均年龄误差为95%置信度。

    锆石Hf同位素分析在武汉上谱分析科技有限责任公司完成。锆石原位Hf同位素测定由激光剥蚀多接收器电感耦合等离子体质谱仪完成,激光进样系统为NWR213nm固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus),激光剥蚀的斑束直径一般为55 μm,能量密度为7~8 J/cm2,频率为10 Hz,176Lu和176Yb对176Hf的同质异位素干扰通过监测175Lu和172Yb信号强度,采用175Lu/176Lu=0.02655和176Yb /172Yb=0.5886进行校正,以标准锆石91500、GJ-1与样品锆石交叉分析对仪器漂移进行外部监控。分析结果所获得标准样品91500和GJ-1的176Hf/177Hf值分别为0.282283 ± 0.000041(n=4,2σ)和0.282019±0.000029(n4,2σ),在误差范围内与参考值吻合(吴福元,2007)。计算εHf(t)时,球粒陨石的176Hf/177Hf值为0.282772,176Lu/ 177Hf值为0.0332,单阶段Hf模式年龄(TDM1)计算时,亏损地幔的值采用176Hf/177Hf=0.28325,176Lu/177Hf=0.0384,两阶段Hf模式年龄(TDM2)计算时,平均地壳的176Lu/177Hf值为0.015(吴福元,2007谢士稳,2009)。

    选择11件岩石样品分别进行主量元素和微量元素分析(表 1)。样品磨碎至200目后,在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室进行主量和微量元素分析测试。主量元素使用X-射线荧光光谱仪(XRF-1500)法测试。用0.6 g样品和6 g四硼酸锂制成的玻璃片在ShimadzuXRF-1500上测定氧化物的质量分数值,精度优于2%~3%。微量元素及稀土元素利用酸溶法制备样品,使用ICP-MS(ElementⅡ)测试,分析精度(按照GSR-1和GSR-2国家标准):当元素质量分数值大于10×10-6时,精度优于5%,当质量分数值小于10×10-6时,精度优于10%。

    表  1  石虎山岩体碱长花岗岩的主量元素(%)和微量元素(10-6)分析结果
    Table  1.  Major (%) and trace element (10-6) compositions of the Shihushan granite
    下载: 导出CSV 
    | 显示表格

    石虎山岩体主体岩性为碱长花岗岩,岩石主量元素含量见表 1

    碱长花岗岩样品SiO2含量70.22%~75.09%,平均73.58%,高于中国花岗岩平均含量71.63%(黎彤等,1998);Al2O3含量为12.36% ~14.45%,平均13.41%;MgO=0.20%~0.68%,平均0.41%,Mg#=21~49,平均36;K2O=5.35%~7.32%,平均6.29%;铝饱和指数A/CNK=1.04~1.57,平均1.24,大于1.1,属强过铝花岗岩;K2O/Na2O=1.64~7.81,平均3.45,具有富钾特征;全碱含量alk=7.76% ~9.02%,平均8.54%;在ANOR-Q'分类图解(图 3)中11件样品点落入碱长花岗岩区域,岩体中黑云母二长花岗岩因风化强未采集样品分析,11件样品定名与镜下鉴定成果无差别;在A/CNK-A/NK图解(图 4a)中,样品点均落入过铝质区;在C.I.P.W.标准矿物组合中普遍存在刚玉分子;在SiO2-K2O图解中(图 4b),由于样品点SiO2含量偏高,样品点投到钾玄岩系列区域。总体上,石虎山岩体主体岩性显示出相对富钾的特征。

    图  3  石虎山花岗岩类Q′-ANOR图解(据Streckeisen and Le Maitre,1979)
    2—碱长花岗岩;3a—正长花岗岩;3b—二长花岗岩;4—花岗闪长岩;5-英云闪长岩;6'-石英碱长正长岩;7'-石英正长岩;8'-石英二长岩;9'-石英二长闪长岩、石英二长辉长岩;10'—石英闪长岩、石英辉长岩、石英斜长岩;6—碱长正长岩;7—正长岩;8—二长岩;9—二长闪长岩、二长辉长岩;10—闪长岩、辉长岩、斜长岩
    Figure  3.  Q′-ANOR diagram of the Shihushan granite(after Streckeisen and Le Maitre, 1979)
    2-Alkali-feldspar granite; 3a-Syen granite; 3b-Monzonitic granite; 4-Granodiorite; 5-Yingyun diorite; 6'-Quartz alkali long syenite 7'-Quartz syenite; 8'-Quartz monzonite; 9'-Quartz diorite Quartz two long gabbro; 10'-Quartz diorite, quartz gabbro, quartz plagioclase; 6-alkali syenite; 7-Syenite; 8-Monnicite; 9-Two long Diorite, Erchang gabbro; 10-Diorite, gabbro, plagioclase
    图  4  石虎山岩体A/CNK-A/NK及SiO2-K2O图解(据Rickwood,1989
    Figure  4.  A/CNK-A/NK(a)and SiO2-K2O(b)diagram of the Shihushan granite(after Rickwood, 1989)

    石虎山岩体样品稀土元素含量如表 1所示。

    石虎山岩体岩石样品稀土元素总量为148.8×10-6~387.3×10-6,含量较高且差异较大。配分曲线呈右倾的“L”型(图 5a)展布。LREE/HREE=0.85~6.17,平均4.08,富集轻稀土元素;(La/Yb)N=3.95~13.63,平均9.06;(La/Sm)N=2.32~4.97,平均3.55,(Gd/Yb)N=1.00~1.90,平均1.53,轻稀土元素分馏较重稀土元素略明显;δEu=0.32~0.65,平均0.50,具有明显的Eu负异常,说明岩浆在演化过程中发生了较明显的斜长石分离结晶作用,δCe=0.89~0.94,平均0.93,说明岩石受后期低温蚀变作用较弱。

    图  5  石虎山岩体稀土元素配分样式图及微量元素原始地幔标准化蜘蛛网图
    (原始地幔数据引自Sun and McDonough, 1989
    Figure  5.  Chondrite-normalized REE patterns(a)and normalized diagram for trace elements(b)of Shihushan granite
    (Chondrite values are from Sun and McDonough, 1989)

    石虎山岩体岩石样品微量元素含量如表 1所示。

    石虎山岩体岩石样品微量元素比值蛛网图(图 5b)表现为K、Rb、Th明显富集的大隆起形式,Ce、Sm选择性富集,Ba的负异常,说明斜长石作为熔融残留相或结晶分离相存在,Nb、Hf、Zr等元素明显亏损,与板内花岗岩、火山弧花岗岩均有一些相似之处,形成于拉张环境。样品曲线形态趋势相近,它们应该具有相似的源区。

    本次工作用于锆石U-Pb年龄测试的样品采位置见图 1,样品分析数据见表 2

    表  2  碱长花岗岩(D0120)锆石LA-ICP-MS U-Th-Pb同位素分析结果
    Table  2.  LA-ICP-MS zircon U-Pb age data of alkali-feldspar granite (D0120)
    下载: 导出CSV 
    | 显示表格

    样品锆石颗粒为无色透明或浅黄色,半自形-自形,形态有长柱状、短柱状、粒状和不规则状,粒径大小为110~180 μm,颗粒长宽比为1~4。在阴极发光图像上(图 6),锆石结构比较复杂,一类锆石具核-边结构,核、边部具有环带结构(点27、28、29、33等),为岩浆成因锆石特征;另一类锆石核部具扇形结构或椭圆状结构,没有环带结构、呈暗色区或少量环带(点8、10、17、20),为继承性锆石特征。选择33颗锆石进行定年分析。33个分析点获得4组相对集中年龄(图 7),其中A组打在锆石核部,有10颗锆石数据较为集中,无振荡环带,且获得了较为一致的206Pb/238U年龄(839 ± 17) Ma(MSWD=2.3,n10);该年龄代表了石虎山岩体早期继承性年龄或捕获围岩年龄,与区域上新元古界澄江组年龄相当。B组有10颗锆石,数据也较为集中,获得了较为一致的206Pb/238U年龄(767±15) Ma(MSWD=2.9,n10),与区域上新元古界牛头山组年龄相当。C组有6颗锆石数据较为集中,获得了206Pb/238U年龄(705.5±9.4) Ma(MSWD=0.44,n6),与区域上新元古界南坨组年龄相当;年龄均代表了石虎山岩体捕获围岩年龄。D组有7颗锆石数据集中,锆石微区Th/U比值0.4~1.0,具有典型的振荡环带,为岩浆成因,获得206Pb/238U年龄(616±20) Ma(MSWD=2.1,n7),该年龄代表了石虎山岩体岩浆结晶年龄,也代表了岩体侵位地表时间,与区域上新元古界观音崖组、陡山坨组时代相当;综合年龄分析结果、岩石地化及岩相学特征,616~839 Ma年代记录,与Rodinia超大陆裂解事件有关。

    图  6  石虎山岩体代表性锆石阴极发光(CL)图像
    Figure  6.  The CL images of zircons from Shihushan granite
    图  7  碱长花岗岩(样品D0120)锆石U-Pb年龄谐和线图
    Figure  7.  Concordia plot of the zircon U-Pb age data for alkali-feldspar granite(Sample D0120)

    对锆石进行了33组Hf同位素测试,点位与UPb定年点位相同,Hf同位素分析数据表明,不同年龄锆石具有不同的εHf(t)值和两阶段模式年龄TDM2值(表 3)。其中表面年龄约839 Ma的锆石εHf(t)为-1.07~-6.32,TDM2为介于1733~2074 Ma;约767 Ma锆石的εHf(t)值介于-2.71~-7.70,TDM2介于1851~2131 Ma;约705.5 Ma锆石的εHf(t)值介于-6.0~-7.51,TDM2介于1977~2104 Ma;约616 Ma锆石的εHf(t)值介于-6.78~-8.96,TDM2介于1991~2117 Ma;样品锆石εHf(t)值均小于0,在t-t(Ma)和t-(176Hf/177Hf)图上,所有样品点均落在上地壳演化线之上(图 8),二阶段模式年龄变化范围为1.73~2.31 Ga;表明成岩物质主要来源于古元古代古老下地壳物质的部分熔融。

    表  3  碱长花岗岩(D0120)Hf同位素组成
    Table  3.  Analytical data of zircon Hf isotope composition of alkali-feldspar granite (D0120)
    下载: 导出CSV 
    | 显示表格
    图  8  石虎山花岗岩Hf同位素t-t(Ma)和t-(176Hf/177Hf)图解
    Figure  8.  t-t(Ma)和t-(176Hf/177Hf)diagram of the Hf isotope of Shihushan granite

    近年来对过铝质花岗岩的研究中,普遍接受的观点是它们的源区虽具有多样性,但变质沉积岩(如泥质岩、砂屑岩或杂砂岩等)是主要的源区(Chappell et al., 1992Harris et al., 1992)。石虎山岩体花岗岩具有较高的SiO(2 70.22%~75.09%)含量及低的TiO2(0.09% ~0.28%)含量,A/CNK=1.04~1.57,A/NK=1.08~1.61,表现出过铝质的特征,在(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(图 9a)上,所有样品均位于A型花岗岩区域内,结合石虎山花岗岩其他主量元素和微量元素特征,认为石虎山岩体花岗岩为铝质A型花岗岩。花岗岩类岩石Rb/YNb/Y(图 9b)、Al2O3/TiO2-CaO/Na2O(图 10a)、Rb/Sr-Rb/Ba(图 10b)源区判别图解及Sr-Yb图解(图 11a),结合锆石Hf同位素特征,表明石虎山岩体花岗岩原始岩浆形成于古元古代古老下地壳贫黏土源区的页岩60%左右的部分熔融,残留相为麻粒岩,主要组成矿物斜长石+角闪石(张旗,2006),其物源可能为滇中地区新近发现的古元古界易门群(刘军平等, 2018, 2020a, b, c)。

    图  9  石虎山岩体花岗岩类岩石(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(a,据Whalen et al., 1987)及Nb/Y-Rb/Y图解(b,据Jahn et al., 1999)
    Figure  9.  (Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO diagram (a, after Whalen et al., 1987) and Nb/Y-Rb/Y of the Shihushan granite (b, after Jahn et al., 1999)
    图  10  石虎山岩体花岗岩类岩石Al2O3/TiO2-CaO/Na2O(a)及Rb/Sr-Rb/Ba(b)源区判别图解(据Sylvester,1998)
    Figure  10.  Al2O3/TiO2-CaO/Na2O(a)and Rb/Sr-Rb/Ba(b)of the Shihushan granite(after Sylvester, 1998)

    过铝质花岗岩可形成于多种构造环境,如陆-陆碰撞过程中早期挤压环境下的地壳加厚环境(Harris et al., 1986),也可形成于碰撞高峰期后的岩石圈伸展环境(Kalsbeek et al., 2001)。石虎山岩体样品微量元素比值蛛网图(图 5b)表现为K、Rb、Th明显富集的大隆起形式,Ce、Sm选择性富集,Nb、Hf、Zr等元素明显亏损,与板内花岗岩较为相似,形成于拉张环境。在(Y+Nb)-Rb图解(Pearce,1996)上,样品点均落入板内花岗岩区(WPG)(图 11b);其主量、微量元素特征显示为高K2O+Na2O,且K2O/Na2O=1.64~7.81,平均3.45,高含铁指数,强烈亏损Eu、Ba、P、Ti,类似于A型花岗岩的地球化学特征(Collins et al., 1982;Whalen et al., 1987),且在(Zr+ Nb+Ce+Y)-(K2O+Na2O)/CaO图解(图 9a)上,所有样品均位于A型花岗岩区域内;结合岩体主要岩性为碱长花岗岩,见钠长石,表明其形成环境为伸展环境。李献华等(2012)认为750~830 Ma是Rodinia超级地幔柱与超大陆裂解的时期,其中795~830 Ma和745~780 Ma分别是Rodinia超大陆开始张裂和最终裂解两个阶段(Li et al., 2003)。王梦玺等(2012)认为Rodinia超大陆在扬子板块北缘的最终裂解时限为约635 Ma。综上所述,石虎山花岗岩岩体形成于拉张伸展构造背景,与华南新元古代裂谷盆地发育时限高度一致,是与Rodinia超大陆裂谷化-裂解事件有关的新元古代中晚期全球性大陆裂谷事件群的组成单元(刘军平等,2019)。

    图  11  石虎山岩体岩石Yb-Sr(a,据Zhang Qi,2006)及(Y+Rb)-Rb(b,据Pearce,1996)图解
    Ⅰ—高Sr低Yb花岗岩;Ⅱ—低Sr低Yb花岗岩;Ⅲ—高Sr高Yb花岗岩;Ⅳ—低Sr高Yb花岗岩;Ⅴ—极低Sr高Yb花岗岩VAG—火山弧花岗岩;Syn-COLG —同碰撞花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩
    Figure  11.  Yb-Sr diagram of the(a, after Zhang Qi, 2006)and(Y+Rb)-Rb of the Shihushan granite(b, after Pearce, 1996)
    Ⅰ-granite with high Sr and low Yb; Ⅱ-granite with low Sr and low Yb; Ⅲ-granite with high Sr and high Yb; Ⅳ-granite with low Sr and high Yb; Ⅴ-granite with overly low Sr and high Yb; VAG-Volcanic arc granites; Syn-COLG-syn-collision granites; WPG-within plate granites; ORG-ocean ridge granites

    前寒武纪地质体的形成、增生与再造历史对超大陆的重建具有重要意义。大量对新元古代岩浆岩成因及热源研究认为,扬子板块周缘经历了早期大洋板片俯冲作用(930~1160 Ma)和晚期大规模陆缘裂解(700~830 Ma),然而,俯冲-伸展的转换时间和机制仍然存在争论。扬子地块周缘地区新元古代构造-岩浆活动非常强烈,形成大量以中酸性火成岩为主的侵入岩浆岩群。这些构造-岩浆岩体的形成时代主要集中在740~830 Ma,主要侵位于中新元古界扬子型变质基底岩系中,并多被南华系或震旦系不整合覆盖(李献华等,2008裴先治等,2009鄢圣武等,2017)。王梦玺等(2006)对扬子北缘随枣盆地中周庵超镁铁质岩体(637±4) Ma进行了锆石Hf-O同位素分析,认为Rodinia超大陆在扬子板块北缘的最终裂解时限应该是约635 Ma;扬子北缘俯冲-伸展的转换时间可能在635~740 Ma的观点;结合区域相关研究资料,认为扬子西缘存在一个自约800 Ma持续至725 Ma的幕式双峰式岩浆岩带,澄江组底部玄武岩和苏雄组火山岩均为约800 Ma双峰式岩浆活动的产物,且双峰式岩浆岩带形成于大陆裂谷环境(崔晓庄等, 2013, 2015刘军平等,2019)。Li et al.(2010)研究发现侵入至盐边同德杂岩中的苦橄质岩墙来源于比同期周边洋中脊玄武岩源地幔高200℃的异常高温地幔,该地幔温度与现代地幔柱相当,从而认为同德苦橄质岩墙应该是800 Ma左右地幔柱岩浆作用的可靠证据。值得注意的是,云南东川下田坝黑云母二长花岗岩的成岩年龄为(769±4.4) Ma,属于典型的A型花岗岩,形成于板内伸展环境(程佳孝等,2014);这些证据均表明扬子西缘康滇裂谷应为与地幔柱活动有关的大陆裂谷;云南宾川地区响水花岗质岩体锆石U-Pb同位素测年显示,响水花岗质岩体侵位与冷凝时期为(761.9±4.1) Ma,与扬子地台周缘Rodinia超大陆裂解时期形成的花岗岩年龄峰值相对应;汪正江等(2011)报道了川西南峨边县牛郎坝A型花岗岩,该花岗岩具有高硅、低钙、贫镁、铝质的特征,其SHRIMP锆石U-Pb测年结果为(826±21.4) Ma,认为牛郎坝A型花岗岩是新元古代中期在Rodinia超大陆裂解背景下与地幔柱构造相关的壳幔相互作用的产物。

    大量资料表明扬子板块西缘存在约830 Ma、800 Ma、760 Ma、700 Ma及635 Ma构造热事件,这些构造热事件与Rodinia超大陆裂解的幕式地幔柱活动有关(Li et al., 2002a;江新胜,2012崔晓庄等,2015)。本文对石虎山岩体进行锆石U-Pb及Hf同位素分析,获得的岩浆结晶年龄为616 Ma,其锆石所有分析点Th/U比值均较高,在0.4~1.0,显示出岩浆锆石的高Th/U比值特征,由于这些分析点的年龄均是从具有岩浆结晶环带的锆石微区所获得,且其形成于拉张伸展环境,可以说明该期岩浆组合应是Rodinia超大陆裂解的响应,616 Ma可能是Rodinia超大陆在扬子板块西缘最终裂解时限,与王梦玺等(2012)认识一致;而(839 ± 17) Ma、(766 ± 15) Ma、(705.5 ± 9.4) Ma的构造热事件年龄组合可能是Rodinia超大陆裂解构造过程在扬子西缘的记录,该期岩浆组合可能与导致Rodinia超大陆裂解的幕式地幔柱活动有关(Li et al., 2002a;崔晓庄等,2015毕政家等,2016刘军平等,2019)。

    通过对扬子地块西缘后石虎山花岗岩的锆石U-Pb年代学和岩石地球化学研究,得到如下结论:

    (1)锆石LA-ICP-MS U-Pb法测得石虎山碱长花岗岩样品(D0120)的锆石206Pb/238U年龄加权平均值为(839±17) Ma、(767±15) Ma、(705.5±9.4) Ma及(616±20) Ma四组年龄值;其中616 Ma代表了该花岗岩岩体的侵位时代;(839±17) Ma、(766± 15) Ma、(705.5±9.4) Ma为继承性年龄或捕获年龄。石虎山花岗岩岩浆形成于板内伸展环境,说明该期岩浆应是Rodinia超大陆裂解构造过程的响应,616 Ma可能是Rodinia超大陆在扬子板块西缘最终裂解时限;而(839 ± 17) Ma、(766 ± 15) Ma、(705.5 ± 9.4) Ma的构造热事件年龄组合可能是Rodinia超大陆裂解构造过程在扬子西缘的记录,该期岩浆组合可能与导致Rodinia超大陆裂解的幕式地幔柱活动有关。

    (2)石虎山花岗岩的岩石地球化学化学特征及Hf同位素反映出该岩体具有板内-裂谷型的地球化学特征;其原始岩浆为古元古代下地壳页岩60%部分熔融的同源岩浆产物,其物源可能为古元古界易门群。

    致谢: 感谢审稿专家提出的宝贵修改意见。
  • 图  1   全球煤系天然气有利区分布(据邹才能等,2019)

    Figure  1.   Distribution of prospects of global coal measures natural gas resources (after Zou Caineng et al., 2019)

    图  2   中国煤系天然气有利区分布(据邹才能等,2019)

    Figure  2.   Distribution of natural gas prospects in coal measures in China (after Zou Caineng et al., 2019)

    图  3   国内外典型盆地煤系地层柱状图(据俞益新等,2018李勇等,2020修改)

    Figure  3.   Coal measure strata column of typical coal-nearing basins at home and abroad

    (modified from Yu Yixin et al., 2018; Li Yong et al., 2020)

    图  4   黔西地区各煤层压力系数分布特征(据杨兆彪等,2015)

    Figure  4.   Pressure coefficient distribution of each coal seam in Western Guizhou (after Yang Zhaobiao et al., 2015)

    图  5   煤层气1井单系统排采(a)与多系统合排(b)日产气量变化曲线图(据傅雪海等,2013)

    Figure  5.   Variation curve of daily gas production of single system drainage (a) and multi-system combined drainage (b) of coalbed methane well 1(after Fu Xuehai et al., 2013)

    图  6   煤系天然气藏类型(据朱炎铭等,2016)

    Figure  6.   Types of natural gas reservoirs in coal measures (after Zhu Yanming et al., 2016)

    图  7   叠置含气系统共采兼容性的关键地质控制

    (据秦勇等,2016)

    Figure  7.   Key geological control of co-production compatibility of superimposed gas bearing system

    (after Qing Yong et al., 2016)

    图  8   煤系气合采井产量曲线类型及其合采有效性(据秦勇等,2020b)

    Figure  8.   Curve type of joint CMG and its effectiveness(after Qin Yong et al., 2020b)

    表  1   国内外典型含煤盆地煤层气地质条件及赋存特征(据李勇等,2020)

    Table  1   Geological conditions and occurrence characteristics of coalbed methane in typical coal-bearing basins at home and abroad (after Li Yong et al., 2020)

    下载: 导出CSV

    表  2   煤系气储层地质特点与开发技术比较(据吴建光等,2016)

    Table  2   Comparison of geological characteristics and development technology of coal measure gas reservoir (after Wu Jianguang et al., 2016)

    下载: 导出CSV

    表  3   不同地区煤系气合层开采的地质条件门限值(据秦勇等,2018b修改)

    Table  3   Threshold value of geological conditions for coal measure gas seam mining in different areas (modified after Qin Yong et al., 2018b)

    下载: 导出CSV

    表  4   主要非常规油气资源评价方法及优缺点比较

    Table  4   Advantages and disadvantages of evaluation methods of main unconventional oil and gas resources

    下载: 导出CSV
  • Bi Caiqin, Shan Yansheng, Pang Bo, Zhang Jiaqiang, Liu Wei, Zhao Yingkai, Zhou Yang. 2018. High gas coal reservoir drilled in coal resource exhausted mining area of Jixi Basin[J]. Geology in China, 45(6): 1306-1307(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201270234297.html

    Bi Caiqin, Zhang Jiaqiang, Shan Yansheng, Hu Zhifang, Wang Fuguo, Chi Huanpeng, Tang Yue, Yuan Yuan, Liu Yaran. 2020. Geological characteristics and co-exploration and co-production methods of Upper Permian Longtan coal measure gas in Yangmeishu syncline, western Guizhou Province, China[J]. China Geology, 3(1): 38-51. doi: 10.31035/cg2020020

    Cao daiyong, Yao Zheng, Li Jing. 2014. Current situation and development trend of unconventional natural gas evaluation in coal measures[J]. Coal Science and Technology, 42(1): 89-92, 105 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201401024.htm

    Cao Daiyong, Yao Zheng, Li Jing. 2014. Evaluation status and development trend of unconventional gas in coal measure[J]. Coal Science and Technology, 42(1): 89-92(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201401024.htm

    Cheung Katrina, Sanei Hamed, Klassen Patrick, Mayer Bernhard, Goodarzi Fariborz. 2008. Produced fluids and shallow groundwater in coalbed methane (CBM) producing regions of Alberta, Canada: Trace element and rare earth element geochemistry[J]. International Journal of Coal Geology, 77(3/4): 338-349.

    Fu Yutong, Yuan Junhong, Cui Bin, Xu Zuwei. 2018. Key technology on co-exploitation of coalbed methane and tight sandstone in south area of Yanchuan[J]. Journal of China Coal Society, 43(6): 1747-1753(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201215990144.html

    Fu Xuehai, Chen Zhensheng, Song Ru, Zhang Qinghui. 2018. Discovery of coal measures limestone gas and its significance[J]. Coal Geology of China, 30(6): 59-63(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT201806012.htm

    Fu Xuehai, Deleqiati Jianatayi, Zhu Yanming, Shen Jian, Li Gang. 2016. Resources characteristics and separated reservoirs' drainage of unconventional gas in coal measures[J]. Earth Science Frontiers, 23(3): 36-40(in Chinese with English abstract). http://www.cqvip.com/QK/98600X/201603/668857496.html

    Fu Xuehai, Ge Yanyan, Liang Wenqing, Li Sheng. 2013. Pressure control and fluid effect of progressive drainage of multiple superposed CBM systems[J]. Natural Gas Industry, 33(11): 35-39(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRQG201311006.htm

    Gao Wei, Tian Weijiang, Qin Wen, Kong Weimin, Chen Min. 2014. Geological optimization of coalbed methane and shale gas co-exploration and concurrent production in Guizhou Province[J]. Fault-Block Oil and Gas Field, 21(1): 36-38(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dkyt201401008.htm

    Guo Benguang, Xu Hao, Meng Shangzhi, Zhang Wenzhong, Liu Yinan, Luo Haohan, Li Yong, Shen Wenmin. 2012. Geology condition analysis for unconventional gas co-exploration and concurrent production in Linxing area[J]. Clean Coal Technology, 18(5): 110-112, 115(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=43669566

    Guo Chen, Xia Yucheng, Lu Lingling, Ren Yaping. 2017. Development features and mechanism of multi-layer superimposed independent CBM systems in Bide-Santang Basin, western Guizhou, South China[J]. Natural Gas Geoscience, 28(4): 622-632(in Chinese with English abstract). http://www.researchgate.net/publication/318777717_Development_features_and_mechanism_of_multi-layer_superimposed_independent_CBM_systems_in_Bide-Santang_Basin_western_Guizhou_South_China

    Guo Qiulin, Zhou Changqian, Chen Ningsheng, Hu Junwen, Xie Hongbing. 2011. Evaluation methods for unconventional hydrocarbon resources[J]. Lithologic Reservoirs, 23(4): 12-19(in Chinese with English abstract). http://www.cqvip.com/QK/88054A/201104/39100823.html

    Hao Shumin, Li Liang, You Huanzeng. 2007. Permo-Carboniferous paralic depositional systems in the Daniudi gas field and its near-source box-type gas accumulation-forming model[J]. Geology in China, 34(4): 606-611(in Chinese with English abstract). http://www.researchgate.net/publication/287865714_Permo-Carboniferous_paralic_depositional_systems_in_the_Daniudi_gas_field_and_its_near-source_box-type_gas_accumulation-forming_model

    Hao Shumin, Li Liang, Zhang Wei, Qi Rong, Ma Chao, Chen Jingtie. 2016. Forming conditions of large-scale gas fields in Permo-Carboniferous in the northern Ordos Basin[J]. Oil & Gas Geology, 37(2): 149-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201602002.htm

    Hou J C, Wang Z W, Liu P K. 2018. Current states of coalbed methane and its sustainability perspectives in China[J]. International Journal of Energy Research, 42: 3454-3476. doi: 10.1002/er.4085

    Hu Haiyang, Bai Lina, Zhao Lingyun, Wang Lingxia, Zhou Peiming. 2019. Drainage and mining control dtudy on co-mining coal measure gas of Longtan Formation in Western Guizhou Region[J]. Safety in Coal Mines, 50(1): 175-178(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MKAQ201901044.htm

    Jamieson Michael, Elson Mabbie, Carruthers Ross, Ordens Carlos Miraldo. 2020. The contribution of citizen science in managing and monitoring groundwater systems impacted by coal seam gas production: An example from the Surat Basin in Australia's Great Artesian Basin[J]. Hydrogeology Journal, 28 (1): 439-459. doi: 10.1007/s10040-019-02050-8

    Jiang Wenli, Zhao Suping, Zhang Jinchuan, Ye Xin. 2010. Comparison of main control factors of coalbed methane and shale gas accumulation[J]. Natural Gas Geoscience, 21(6): 1057-1060(in Chinese with English abstract).

    Ju Yiwen, Wei Mingming, Xue Chuandong. 2011. Constraints of basin mountain evolution on the occurrence of deep coal and coalbed methane in North China[J]. Journal of China University of Mining and Technology, 40(3): 390-398(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201103012.htm

    Lau H C, Li H Y, Huang S. 2017. Challenges and opportunities of coalbed methane development in China[J]. Energy & Fuels, 31(5): 4588-4602. doi: 10.1021/acs.energyfuels.7b00656

    Laubach S E, Gale J F W. 2006. Obtaining fracture information for low-permeability (tight) gas sandstones from sidewall cores[J]. Journal of Petroleum Geology, 29(2): 147-158. doi: 10.1111/j.1747-5457.2006.00147.x

    Law B E. 2002. Introduction to unconventional petroleum systems[J]. AAPG Bulletion, 86(11): 1851-1852. doi: 10.1306/61eedda0-173e-11d7-8645000102c1865d

    Li Guobiao, Li Guofu. 2012. Study on the differences and main controlling factors of the coalbed methane wells between single layer and multi-layer drainage[J]. Journal of China Coal Society, 37(8): 1354-1358(in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2012/00000037/00000008/art00019

    Li Jing, Yao Zheng, Chen Limin, Jiang Ailin, Yang Chengwei, Cao Daiyong. 2017. Study on the coexistence of unconventional gas in Jurassic coal measures of Muli Coalfield[J]. Coal Science and Technology, 45(7): 132-138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201707024.htm

    Li Jun, Zhang Dingning, Li Dahua, Tang Shuheng, Zhang Songhang. 2018. Symbiosis and accumulation mechanism of unconventional natural gas in Qinshui Basin[J]. Journal of China Coal Society, 43(06): 1533-1546(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201806005.htm

    Li Wuzhong, Tian Wenguang, Chen Gang, Sun Qinping. 2010. Research and application of appraisal variables for the prioritizing of coalbed methane areas featured by different coal ranks[J]. Natural Gas Industry, 30(6): 45-47, 63(in Chinese with English abstract). http://www.cqvip.com/QK/90587X/201006/34498151.html

    Li Yong, Wang Yanbin, Meng Shangzhi, Wu Xiang, Tao Chuanqi, Xu Weikai. 2020. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society, 45(4): 1406-1418(in Chinese with English abstract).

    Li Yong, Yang Jianghao, Pan Zhejun, Meng Shangzhi, Wang Kai, Niu Xinlei. 2019. Unconventional natural gas accumulations in Stacked Deposits: A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China[J]. Acta Geologica Sinica, 93(1): 111-129. doi: 10.1111/1755-6724.13767

    Liang Bing, Shi Yingshuang, Sun Weiji, Liu Qiang. 2016. Reservoir forming of characteristics of "the three gas" in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society, 41(1): 167-173(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201601024.htm

    Liang Hongbin, Lin Yuxiang, Qian Zheng, Liu Jianjun, Yu Tengfei. 2011. Study on coexistence of absorbed gas and free gas in coal strata South of Qinshui Basin[J]. China Petroleum Exploration, 16(2): 72-78(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201102015.htm

    Liu Xinjia, Zhang Sui'an, Jin Jianhu, Xiao Fengzhao, Wang Ruijie, Wang Yi, Zhang Shouren. 2018. Feasibility evaluation of commingle fracturing in the integrated development of coal-derived gas resources[J]. Journal of China Coal Society, 43(6): 1687-1693(in Chinese with English abstract).

    Li Jianzhong, Guo Bincheng, Zheng Min, Yang Tao. 2012. Main types, geological features and resource potential of tight sandstone gas in China[J]. Natural Gas Geoscience, 23(4): 607-615(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-tdkx201204002.htm

    Liu Jieqi. 2017. A Study on the Gas Accumulation Process of Coal Source Rocks: A Case Study of Shanxi Formation in the East of Ordos Basin[D]. Xi'an: Xi'an Shiyou University(in Chinese with English abstract).

    Lu Jiamin, Liu Chao. 2016. Accumulation conditions and resource potential of tight glutenite gas in fault depression basins: A case study on Lower Cretaceous Shahezi Formation in Xujiaweizi fault depression, Songliao Basin[J]. China Petroleum Exploration, 21(2): 53-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201602007.htm

    Ma Bing. 2016. Study on Coalbed Methane Drainage Theory in Multi Seam Area[D]. Jiaozuo: Henan Polytechnic University.

    Men X Y, Han Z, Gao B S, Ren J H, Cui B L. 2017. Present situation and development suggestion of CBM exploration and development in China[J]. China Mining Magazine, 26: 1-4. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA2017S2001.htm

    Meng Shangzhi, Li Yong, Wu Xiang, Guo Hui, Xu Yanyong. 2018. Productivity equation and influencing factors of co-producing coalbed methane and tight gas[J]. Journal of China Coal Society, 43(6): 1709-1715(in Chinese with English abstract). http://www.researchgate.net/publication/327988523_Productivity_equation_and_influencing_factors_of_co-producing_coalbed_methane_and_tight_gas

    Meng Yanjun, Tang Dazhen, Xu Hao, Zhang Wenzhong, Chen Tonggang. 2013. Interlayer contradiction problem in coalbed methane development: A case study in Liulin area[J]. Coal Geology & Exploration, (3): 29-33, 37(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201303010.htm

    Mu F Y, Zhong W Z, Zhao X L, Che C B, Chen Y P, Zhu J, Wang B. 2015.2018. Strategies for the development of CBM gas industry in China[J]. Natural Gas Industry B, (2): 383-389.

    Ni Xiaoming, Su Xianbo, Li Guangsheng. 2010. Feasibility of Multi-layer Drainage for No. 3 and No. 15 Coal Seams in the Fanzhuang Area[J]. Natural Gas Geoscience, 21(1): 144-149(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201001020.htm

    Oison T, Hobbs B, Brooks R, et al. 2002. Paying off for tom brown in white river dom field's tight sandstone, deep coals[J]. The American Oil and Gas Reports, (10): 67-75. http://www.researchgate.net/publication/292089367_Paying_off_for_Tom_Brown_in_white_river_dome_field's_tight_sandstones_deep_coals

    Ouyang Yonglin, Sun Bin, Wang Bo, Tian Wenguang, Zhao Yang, Cao Haixiao. 2016. CBM sealing system and its relationship with CBM enrichment[J]. Natural Gas Industry, 36(10): 19-27(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854017300608?utm_source=TrendMD&utm_medium=cpc

    Ouyang Yonglin, Tian Wenguang, Sun Bin, Wang Bo, Qi Ling, Sun Qinping, Yang Qing, Dong Haichao. 2018. Characteristics of coal measure gas accumulation and such gas exploration strategies in China[J]. Natural Gas Industry, 38(3): 15-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201803002.htm

    Qin Yong. 2017. Introduction to Fossil Energy Geology[M]. Xuzhou: China University of Mining and Technology Press.

    Qin Yong. 2018a. Research progress of coalbed gas CO generation in China[J]. Natural Gas Industry, 38(4): 26-36(in Chinese with English abstract).

    Qin Yong, Liang Jianshe, Shen Jian, Liu Yinghong, Wang Cunwu. 2014. Gas logging display and gas reservoir type of tight sandstone and shale in the south of Qinshui Basin[J]. Journal of China Coal Society, 39(8): 1559-1565(in Chinese with English abstract).

    Qin Y, Moore T A, Shen J, Yang Z B, Shen Y L, Wang G. 2017. Resources and geology of coalbed methane in China: A review[J]. International Geology Review, (1): 1-36. doi: 10.1080/00206814.2017.1408034

    Qin Yong, Shen Jian, Shen Yulin. 2016. Joint mining compatibility of superposed gas bearing systems: A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society, 41(1): 14-23(in Chinese with English abstract).

    Qin Yong, Shen Jian, Shen Yulin, Li Geng, Fan Bing Heng, Yao Haipeng. 2019. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica, 40(10): 1147-1157(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-PEAD201903021.htm

    Qin Yong, Shen Jian, Wang Baowen, Yang Song, Zhao Lijuan. 2012. Deep coalbed methane accumulation effect and its coupling relationship[J]. Acta Petrolei Sinica, 33(1): 48-54(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201201005.htm

    Qin Yong, Wu Jianguang, Li Guozhang, Wang Yingbin, Shen Jian, Zhang Bing, Shen Yulin. 2020b. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Society, Network Launch(in Chinese with English abstract).

    Qin Yong, Wu Jianguang, Shen Jian, Yang Zhaobiao, Shen Yulin, ZhangBing. 2018. Frontier research of geological technology for coal measure gas joint-mining[J]. Journal of China Coal Society, 43(6): 1504-1516(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201215990150.html

    Qin Yong, Wu Jianguang, Zhang Zhengguang, Yi Tongsheng, Yang Zhaobiao, Jin Jun, Zhang Bing. 2020a. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Society, 45(1): 241-257(in Chinese with English abstract).

    Qin Yong, Xiong Menghui, Yi Tongsheng, Yang Zhaobiao, Wu Caifang. 2008. On unattached multiple superposed coalbed-methane system: in a case of the Shuigonghe Syncline, Zhijin-Nayong Coalfield, Guizhou[J]. Geological Review, 54(1): 65-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200801009.htm

    Shao Longyi, Lu Jing, Wang Hao, Zhang Pengfei, Han Dexin. 2008. Research progress in sedimentology and sequence stratigraphy of coal bearing series of offshore type[J]. Journal of Palaeogeography, 10(6): 561-570(in Chinese with English abstract). http://www.researchgate.net/publication/284041737_Advances_in_sedimentology_and_sequence_stratigraphy_of_paralic_coal_measures

    Shen Yulin, Qin Yong, Guo Haiying, Yi Tongsheng, Shao Yubao, Jin Hongbo. 2012. Sedimentary controlling factor of unattached multiple superimposed coalbed-methane system formation[J]. Earthe Science——Journal of China University of Geoscience, 37(3): 573-579(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203021.htm

    Shen Jian, Qin Yong, Zhang Bing, Li Guozhang, Shen Yulin. 2018. Superimposing gas-bearing system in coal measures and its compatibility in Linxing block, east Ordos Basin[J]. Journal of China Coal Society, 43(6): 1614-1619 (in Chinese with English abstract). http://www.researchgate.net/publication/327988516_Superimposing_gas-bearing_system_in_coal_measures_and_its_compatibility_in_Linxing_blockeast_Ordos_Basin

    Sheng Qiuhong, Li Wencheng. 2016. Evaluation method of shale fracability and its application in Jiaoshiba area[J]. Progress in Geopgysics, 31(4): 1473-1479(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201604009.htm

    Shi Xunzhi, Dai Jinxing, Wang Zemin, Zhu Jiawei, Liu Jiaqi. 1985. A study of methane carbon isotope of coal-formed gas in FRG and its inspiration to us[J]. Natural Gas Industry, 5(2): 1-9(in Chinese with English abstract). http://www.researchgate.net/publication/287949279_A_study_of_methane_carbon_isotope_of_coal-formed_gas_in_FRG_and_its_inspiration_to_us

    Song Ru, Su Yufei, Chen Xiaodong. 2019. Progress and Research on exploration and development of "three gas" resources of deep coal measure in Shanxi Province, China[J]. Coal Geology of China, 31(1): 53-58(in Chinese with English abstract).

    Song Yan, Li zhuo, Jiang Zhenxue, Luo Qun, Liu Dongdong, Gao Zhiye. 2017. Research progress and development trend of unconventional oil and gas geology[J]. Petroleum Exploration and Development, (4): 638-648 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380417300770

    Sun Bin, Ju Yiwen, Lu Shuangfang, Wu Jianguang, Wang Jingming, Li Wuyang, Qi Yu, Yu Kun, Chen Wangang, Qiao Peng. 2020. Reconstruction evaluation method and application of coal measure three gases co-mining reservoirs in Linxing Block, East Ordos Basin[J]. Advances in Geosciences, 10(2): 85-99(in Chinese with English abstract). doi: 10.12677/AG.2020.102010

    Tao S, Pan Z J, Tang S L, Chen S D. 2019. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review[J]. International Journal of Coal Geology, 202: 95-108. doi: 10.1016/j.coal.2018.11.020

    Vinson D S, Blair N E, Ritter N E, Martini A M, McIntosh J C. 2019. Carbon mass balance, isotopic tracers of biogenic methane, and the role of acetate in coal beds: Powder River Basin (USA)[J]. Chemical Geology, 530: 119-329. http://www.researchgate.net/publication/336544642_Carbonass_balance_isotopic_tracers_of_biogenic_methane_and_the_role_of_acetate_in_coal_beds_Powder_River_Basin_USA

    Wang Qian. 2015. The Study on Gas Accumulation Dynamics of Upper Palaeozoic Group in the Middle of Ordos Basin[D]. Xi'an: Xi'an Shiyou University.

    Wang Rui, Shi Juntai, Wang Tianju, Huang Liang, Sun Zheng, Zhang Lei. 2016. Study on different superimposed CBM and tight gas joint exploitation schemes optimization[J]. Coal Geology of China, 28(6): 42-46(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGMT201606008.htm

    Wang Tong, Wang Qingwei, Fu Xuehai. 2014. The significance and the systematic research of the unconventional gas in coal measures[J]. Coal Geology & Exploration, 42(1): 24-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201401007.htm

    Wang Yibing, Tian Wenguang, Li Wuzhong, Zhao Qingbo, Tian Lizhi. 2006. Criteria for the evaluation of coalbed methane area selection in China[J]. Geological Bulletin of China, 25(9): 1104-1107(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2006Z2019.htm

    Wang Zhenyun, Tang Shuheng, Sun Pengjie, Zheng Guiqiang. 2013. Feasibility Study of Multi-layer Drainage for Nos. 3 and 9 Coal Seams in Shouyang Block, Qinshui Basin[J]. Coal Geology of China, (11): 21-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201311005.htm

    Wu Jianguang. 2013. Progressive recognition of unconventional gas exploration and development in coal bearing series in China[C]//China Coal Society, State Administration of Coal Mine Safety: 25-41.

    Wu Jianguang. 2016. Current Situation and Technical Progress of CBM Exploration and Development in CUCBM[R]. Beihai: 2016 National CBM Symposium, 2016-11-03.

    Xiao Qian, Shen Yulin, Qin Yong, Shen Jian, Gu Jiaoyang, Zhang Chunliang. 2017. The logging identification and the geological significance of the mudstone containing siderite in multiple superposed coalbed-methane system in northeastern area of the Ordos Basin, China[J]. Natural Gas Geoscience, 28(4): 590-601(in Chinese with English abstract). http://www.researchgate.net/publication/318777368_The_logging_identification_and_the_geological_significance_of_the_mudstone_containing_siderite_in_multiple_superposed_coalbed-methane_system_in_northeastern_area_of_the_Ordos_Basin_China

    Xie Xiangjun, Zhang Wei. 2014. Analysis on the factors of partial pressure combined mining of coalbed methane in Baiyanghe block[J]. Science and Technology of West China, (3): 29-29, 99(in Chinese).

    Yang Guang. 2016. Permo Carboniferous Coal Measure Fluid Pressure System and Its Sedimentary Sequence Control in Linxing Block[D]. Xuzhou: China University of Mining and Technology.

    Yang Hua, Fu Jinhua, Liu Xinshe, Meng Peilong. 2012. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 39(3): 295-303(in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60045-7

    Yang Xiaoying, Li Yongchen, Zhu Wentao, Huang Jiyong, Shan Yongle, Zhang Qiang. 2018. The main controlling factors for production and the comprehensive evaluation model of dessert area of coalbed methanein Guizhou Province[J]. Natural Gas Geoscience, 29(11): 1664-1671, 1678(in Chinese with English abstract).

    Yang Yanqing, Zhang xiaodong, Xu Yakun, Zhang Peng, Wang Kun, Zhu Chunhui. 2019. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. Coal Geology & Exploration, 47(2): 111-120(in Chinese with English abstract).

    Yang Zhaobiao, Li Yangyang, Qin Yong, Sun Hansen, Zhang Ping, Zhang Zhengguang, Wu Congcong, Li Cunlei, Chen Changxiao. 2019. Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration and Development, 46(3): 559-568(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-exploration-development-english_thesis/0201273158718.html

    Yang Zhaobiao, Qin Yong. 2015. A study of the unattached multiple superposed coalbed-methane system under stress conditions[J]. Journal of China University of Mining & Thchnology, 44(1): 70-75(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgkydxxb201501011

    Yang Zhaobiao, Qin Yong, Chen Shiyue, Liu Changjiang. 2013. Controlling mechanism and vertical distribution characteristics of reservoir energy of multi-coalbeds[J]. Acta Geologica Sinica, 87(1): 139-144(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201301014.htm

    Yang Zhaobiao, Qin Yong, Gao Di, Wang Bin. 2011. Coalbed methane (CBM) reservoir-forming character under conditions of coal seam groups[J]. Coal Geology & Exploration, 39(5): 22-26(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-MDKT201105007.htm

    Yang Zhaobiao, Qin Yong, Zhang Zhengguang, Sun Hansen, Li Yangyang, Wu Congcong. 2018. Production layer combination selection for coalbed methane development in multi-coal seams based on cluster analysis[J]. Journal of China Coal Society, 43(6): 1641-1646(in Chinese with English abstract).

    Yi Tongsheng, Gaowei. 2018. Reservoir formation characteristics as well as co-exploration and co-mining orientation of Upper Permian coal-bearing gas in Liupanshui Coalfield[J]. Journal of China Coal Society, 43(6): 1553-1564(in Chinese with English abstract).

    Yin Huaixin, Tan Hongmei, Tan Junying, Wu Xiang. 2009. Discussion on criteria for evaluation of selected target areas in prospecting CBM in low rank coal in Xingjiang[J]. China Coalbed Methane, 6(6): 9-13(in Chinese with English abstract).

    Yu Yixin, Tang Xuan, Wu Xiaodan, Su Zhan, Ye Hao. 2018. Geological characteristics and accumulation mode of coalbed methane in Surat Basin of Australia[J]. Coal Science and Technology, 46(3): 160-167(in Chinese with English abstract).

    Yuan Xuexu. 2014. Study on the Recognition of Multi Seam Gas Bearing system-Taking the Upper Permian in Western Guizhou as An Example[D]. Xuzhou: China University of Mining and Technology.

    Zhang Jian. 2018. Applicability analysis and technique of combined coalbed methane drainage at same pressure in deep and shallow depth seam[J]. Coal Science and Technology, 46(6): 101-106(in Chinese with English abstract).

    Zhang Jinchuan, Jiang Shengling, Tang Xuan, Zhang Peixian, Tang Ying, Jing Tieya. 2009. Accumulation types and resources characteristics of shale gas in China[J]. Natural Gas Industry, 29(12): 109-114(in Chinese with English abstract).

    Zhang Jinchuan, Lin Lamei, Li Yuxi, Jiang Shenglin, Liu Jinxia, Jiang Wenli, Tang Xuan, Han Shuangbiao. 2012. The method of shale gas assessment: Probability volume method[J]. Earth Science Frontiers, 19(2): 184-191(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxqy201202028

    Zhang Jinchuan, Xu Bo, Nie Haikuan, Wang Zongyu, Jiang Shengling, Song Xiaowei, Zhang Qin. 2008. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 28(6): 136-140(in Chinese with English abstract).

    Zhang Wenhao, Miao Miaoqing, Jiang Kunpeng, Liu Weibin. 2019. Characteristics, trends and ecological management of oil-gas resources exploration and development in China[J]. Geology and Resources, 28(5): 454-459. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HKGL201903018.htm

    Zhang Xiaodong, Zhang Shuo, Xu Yakun, Wang Kun, Zhang Peng, Zhu Chunhui. 2018. Favorable block prediction of coal measure gas resource exploration in eastern Henan area based on fuzzy mathematics[J]. Coal Science and Technology, 46(11): 172-181(in Chinese with English abstract).

    Zhang Zheng, Qin Yong, Fu Xuehai. 2014. The favorable developing geological conditions for CBM multi-layer drainage in southern Qinshui basin[J]. Journal of China University of Mining & Technology, 43(6): 1019-1024(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgkydxxb201406009

    Zheng Shujie. 2016. Source Reservoir Cap Assemblage of Coal Measures and Its Sequence Stratigraphic Framework Control in Linxing area[D]. Xuzhou: China University of Mining and Technology(in Chinese with English abstract).

    Zhu Yanming, Hou Xiaowei, Cui Zhaobang, Liu Gang. 2016. Resources and reservoir formation of unconventional gas in coal measure, Hebei Province[J]. Journal of China Coal Society, 41 (1): 202-211(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201601028.htm

    Zou Caineng, Yang Zhi, Huang Shipeng, Ma Feng, Sun Qinping, Li Fuheng, Pan Songqi, Tian Wenguang. 2019. Resource types, distribution and development prospects of coal measures natural gas[J]. Petroleum Exploration and Development, 46(3): 433-442(in Chinese with English abstract).

    毕彩芹, 单衍胜, 逄礴, 张家强, 刘伟, 赵英凯, 周阳. 2018. 鸡西盆地煤炭资源枯竭矿区钻获高含气量煤系储层[J]. 中国地质, 45(6): 1306-1307. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180620&flag=1
    曹代勇, 姚征, 李靖. 2014. 煤系非常规天然气评价研究现状与发展趋势[J]. 煤炭科学技术, 42(1): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201401024.htm
    傅雪海, 陈振胜, 宋儒, 张庆辉. 2018. 煤系灰岩气的发现及意义[J]. 中国煤炭地质, 30(6): 59-63. doi: 10.3969/j.issn.1674-1803.2018.06.12
    傅雪海, 德勒恰提·加娜塔依, 朱炎铭, 申建, 李刚. 2016. 煤系非常规天然气资源特征及分隔合采技术[J]. 地学前缘, 23(3): 36-40 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603006.htm
    傅雪海, 葛燕燕, 梁文庆, 李升. 2013. 多层叠置含煤层气系统递进排采的压力控制及流体效应[J]. 天然气工业, 33(11): 35-39. doi: 10.3787/j.issn.1000-0976.2013.11.006
    傅玉通, 原俊红, 崔彬, 许祖伟. 2018. 延川南区块深部煤层气与致密砂岩气合采关键技术[J]. 煤炭学报, 43(6): 1747-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806031.htm
    高为, 田维江, 秦文, 孔维敏, 陈敏. 2014. 贵州省煤层气与页岩气共探共采的地质优选[J]. 断块油气田, 21(1): 36-38 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201401008.htm
    郭本广, 许浩, 孟尚志, 张文忠, 刘一楠, 罗皓菡, 李勇, 申文敏. 2012. 临兴地区非常规天然气合探共采地质条件分析[J]. 洁净煤技术, 18(5): 110-112, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201205033.htm
    郭晨, 夏玉成, 卢玲玲, 任亚平. 2017. 黔西比德-三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 28(4): 622-632. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704018.htm
    郭秋麟, 周长迁, 陈宁生, 胡俊文, 谢红兵. 2011. 非常规油气资源评价方法研究[J]. 岩性油气藏, 23(4): 12-19. doi: 10.3969/j.issn.1673-8926.2011.04.003
    郝蜀民, 李良, 尤欢增. 2007. 大牛地气田石炭-二叠系海陆过渡沉积体系与近源成藏模式[J]. 中国地质, 34(4): 606-611. doi: 10.3969/j.issn.1000-3657.2007.04.008
    郝蜀民, 李良, 张威, 齐荣, 马超, 陈敬铁. 2016. 鄂尔多斯盆地北缘石炭系-二叠系大型气田形成条件[J]. 石油与天然气地质, 37(2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201602002.htm
    胡海洋, 白利娜, 赵凌云, 汪凌霞, 周培明. 2019. 黔西地区龙潭组煤系气共采排采控制研究[J]. 煤矿安全, 50(1): 175-178. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201901044.htm
    姜文利, 赵素平, 张金川, 叶欣. 2010. 煤层气与页岩气聚集主控因素对比[J]. 天然气地球科学, 21(6): 1057-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201006027.htm
    琚宜文, 卫明明, 薛传东. 2011. 华北盆山演化对深部煤与煤层气赋存的制约[J]. 中国矿业大学学报, 40(3): 390-398. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201103012.htm
    李国彪, 李国富. 2012. 煤层气井单层与合层排采异同点及主控因素[J]. 煤炭学报, 37(8): 1354-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201208018.htm
    李建忠, 郭彬程, 郑民, 杨涛. 2012. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 23(4): 607-615. . https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204002.htm
    李靖, 姚征, 陈利敏, 蒋艾琳, 杨承伟, 曹代勇. 2017. 木里煤田侏罗系煤系非常规气共存规律研究[J]. 煤炭科学技术, 45(7): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201707024.htm
    李俊, 张定宇, 李大华, 唐书恒, 张松航. 2018. 沁水盆地煤系非常规天然气共生聚集机制[J]. 煤炭学报, 43(6): 1533-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806005.htm
    李五忠, 田文广, 陈刚, 孙钦平. 2010. 不同煤阶煤层气选区评价参数的研究与应用[J]. 天然气工业, 30(6): 45-47, 63. doi: 10.3787/j.issn.1000-0976.2010.06.012
    李勇, 王延斌, 孟尚志, 吴翔, 陶传奇, 许卫凯. 2020. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报, 45(4): 1406-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202004023.htm
    梁冰, 石迎爽, 孙维吉, 刘强. 2016. 中国煤系"三气"成藏特征及共采可能性[J]. 煤炭学报, 41(1): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601024.htm
    梁宏斌, 林玉祥, 钱铮, 刘建军, 于腾飞. 2011. 沁水盆地南部煤系地层吸附气与游离气共生成藏研究[J]. 中国石油勘探, 16(2): 72-78. doi: 10.3969/j.issn.1672-7703.2011.02.014
    刘洁琪. 2017. 煤系烃源岩天然气成藏过程研究——以鄂尔多斯盆地东部山西组为例[D]. 西安: 西安石油大学.
    陆加敏, 刘超. 2016. 断陷盆地致密砂砾岩气成藏条件和资源潜力——以松辽盆地徐家围子断陷下白垩统沙河子组为例[J]. 中国石油勘探, 21(2): 53-60. doi: 10.3969/j.issn.1672-7703.2016.02.007
    刘欣佳, 张遂安, 靳建虎, 肖凤朝, 王瑞杰, 万毅, 张守仁. 2018. 煤成(层)气资源综合开发中的合层压裂可行性评价[J]. 煤炭学报, 43(6): 1687-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806024.htm
    马兵. 2016. 多煤层地区煤层气合层排采理论研究[D]. 焦作: 河南理工大学.
    孟尚志, 李勇, 吴翔, 郭晖, 徐延勇. 2018. 煤层气和致密气合采产能方程及影响因素[J]. 煤炭学报, 43(6): 1709-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806027.htm
    孟艳军, 汤达祯, 许浩, 张文忠, 陈同刚. 2013. 煤层气开发中的层间矛盾问题——以柳林地区为例[J]. 煤田地质与勘探, (3): 29-33, 37. doi: 10.3969/j.issn.1001-1986.2013.03.007
    倪小明, 苏现波, 李广生. 2010. 樊庄地区3#和15#煤层合层排采的可行性研究[J]. 天然气地球科学, 21(1): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201001020.htm
    欧阳永林, 孙斌, 王勃, 田文广, 赵洋, 曹海霄. 2016. 煤层气封闭体系及其与煤层气富集的关系[J]. 天然气工业, 36(10): 19-27. doi: 10.3787/j.issn.1000-0976.2016.10.003
    欧阳永林, 田文广, 孙斌, 王勃, 祁灵, 孙钦平, 杨青, 董海超. 2018. 中国煤系气成藏特征及勘探对策[J]. 天然气工业, 38(3): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803002.htm
    秦勇. 2017. 化石能源地质学导论[M]. 徐州: 中国矿业大学出版社.
    秦勇. 2018a. 中国煤系气共生成藏作用研究进展[J]. 天然气工业, 38(4): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804005.htm
    秦勇, 梁建设, 申建, 柳迎红, 王存武. 2014. 沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J]. 煤炭学报, 39(8): 1559-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408026.htm
    秦勇, 申建, 沈玉林. 2016. 叠置含气系统共采兼容性——煤系"三气"及深部煤层气开采中的共性地质问题[J]. 煤炭学报, 41(1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601004.htm
    秦勇, 申建, 沈玉林, 李耿, 范炳恒, 姚海鹏. 2020. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报, 40(10): 1147-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201910001.htm
    秦勇, 申建, 王宝文, 杨松, 赵丽娟. 2012. 深部煤层气成藏效应及其耦合关系[J]. 石油学报, 33(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201005.htm
    秦勇, 吴建光, 张争光, 易同生, 杨兆彪, 金军, 张兵. 2020a. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报, 45(1): 241-257. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001025.htm
    秦勇, 吴建光, 李国璋, 王应斌, 申建, 张兵, 沈玉林. 2020b. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报, 网络首发, 2020-5-16.
    秦勇, 吴建光, 申建, 杨兆彪, 沈玉林, 张兵. 2018b. 煤系气合采地质技术前缘性探索[J]. 煤炭学报, 43(6): 1504-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806002.htm
    秦勇, 熊孟辉, 易同生, 杨兆彪, 吴财芳. 2008. 论多层叠置独立含煤层气系统: 以贵州织金-纳雍煤田水公河向斜为例[J]. 地质论评, 54(1): 65-70. doi: 10.3321/j.issn:0371-5736.2008.01.008
    邵龙义, 鲁静, 汪浩, 张鹏飞, 韩德鑫. 2008. 近海型含煤岩系沉积学及层序地层学研究进展[J]. 古地理学报, 10(6): 561-570. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200806004.htm
    申建, 秦勇, 张兵, 李国璋, 沈玉林. 2018. 鄂尔多斯盆地东缘临兴区块煤系叠置含气系统及其兼容性[J]. 煤炭学报, 43(6): 1614-1619 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806014.htm
    沈玉林, 秦勇, 郭海英, 易同生, 邵玉宝, 金洪波. 2012. 多层叠置独立含煤层气系统"形成的沉积控制因素[J]. 地球科学——中国地质大学学报, 37(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203021.htm
    盛秋红, 李文成. 2016. 泥页岩可压性评价方法及其在焦石坝地区的应用[J]. 地球物理学进展, 31(4): 1473-1479. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201604009.htm
    史训知, 戴金星, 王则民, 朱家蔚. 刘家祺. 1985. 联邦德国煤成气的甲烷碳同位素研究和对我们的启示[J]. 天然气工业, 5(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG198502000.htm
    宋儒, 苏育飞, 陈小栋. 2019. 山西省深部煤系"三气"资源勘探开发进展及研究[J]. 中国煤炭地质, 31(1): 53-58. doi: 10.3969/j.issn.1674-1803.2019.01.10
    宋岩, 李卓, 姜振学, 罗群, 刘冬冬, 高之业. 2017. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, (4): 638-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704020.htm
    孙斌, 琚宜文, 卢双舫, 吴建光, 王璟明, 李午阳, 戚宇, 余坤, 陈万钢, 乔鹏. 2020. 鄂尔多斯盆地东缘临兴区块煤系"三气"合采储层可改造性评价因素分析及其应用[J]. 地球科学前沿, 10(2): 85-99.
    王倩. 2015. 鄂尔多斯盆地西南部上古生界天然气成藏动力研究[D]. 西安: 西安石油大学.
    王蕊, 石军太, 王天驹, 黄亮, 孙政, 张磊. 2016. 不同叠置关系下煤层气与致密气合采方案优化研究[J]. 中国煤炭地质, 28(6): 42-46. doi: 10.3969/j.issn.1674-1803.2016.06.08
    王佟, 王庆伟, 傅雪海. 2014. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探, 42(1): 24-27. doi: 10.3969/j.issn.1001-1986.2014.01.005
    王一兵, 田文广, 李五忠, 赵庆波, 田立志. 2006. 中国煤层气选区评价标准探讨[J]. 地质通报, 25(9): 1104-1107. doi: 10.3969/j.issn.1671-2552.2006.09.020
    王振云, 唐书恒, 孙鹏杰, 郑贵强. 2013. 沁水盆地寿阳区块3号和9号煤层合层排采的可行性研究[J]. 中国煤炭地质, (11): 21-26. doi: 10.3969/j.issn.1674-1803.2013.11.05
    吴建光. 2013. 我国含煤岩系非常规天然气勘探开发进展及认识[C]. 中国煤炭学会, 国家煤矿安全监察局, 25-41.
    吴建光. 2016. 中联公司煤层气勘探开发现状及技术进展[R]. 北海: 2016年全国煤层气学术研讨会, 2016-11-03.
    肖骞, 沈玉林, 秦勇, 申建, 顾娇杨, 张春良. 2017. 鄂尔多斯盆地东北缘叠置含气系统中菱铁质泥岩测井识别及地质意义[J]. 天然气地球科学, 28(4): 590-601. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704013.htm
    谢相军, 张伟. 2014. 白杨河区块煤层气分压合采因素分析[J]. 中国西部科技, (3): 29-29, 99. doi: 10.3969/j.issn.1671-6396.2014.03.012
    杨光. 2016. 临兴区块石炭二叠纪煤系流体压力系统及其沉积层序控制[D]. 徐州: 中国矿业大学.
    杨华, 付金华, 刘新社, 孟培龙. 2012. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发, 39(3): 295-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203006.htm
    杨晓盈, 李永臣, 朱文涛, 黄纪勇, 单永乐, 张强. 2018. 贵州煤层气高产主控因素及甜点区综合评价模型[J]. 天然气地球科学, 29(11): 1664-1671, 1678. doi: 10.11764/j.issn.1672-1926.2018.08.004
    杨燕青, 张小东, 许亚坤, 张鹏, 王昆, 朱春辉. 2019. 豫东地区煤系烃源岩有机质特征与煤系气资源潜力[J]. 煤田地质与勘探, 47(2): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201902018.htm
    杨兆彪, 李洋阳, 秦勇, 孙晗森, 张平, 张争光, 吴丛丛, 李存磊, 陈长骁. 2019. 煤层气多层合采开发单元划分及有利区评价[J]. 石油勘探与开发, 46(3): 559-568. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903015.htm
    杨兆彪, 秦勇. 2015. 地应力条件下的多层叠置独立含气系统的调整研究[J]. 中国矿业大学学报, 44(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201501012.htm
    杨兆彪, 秦勇, 陈世悦, 刘长江. 2013. 多煤层储层能量垂向分布特征及控制机理[J]. 地质学报, 87(1): 139-144. doi: 10.3969/j.issn.0001-5717.2013.01.014
    杨兆彪, 秦勇, 高弟, 王斌. 2011. 煤层群条件下的煤层气成藏特征[J]. 煤田地质与勘探, 39(5): 22-26. doi: 10.3969/j.issn.1001-1986.2011.05.006
    杨兆彪, 秦勇, 张争光, 孙晗森, 李洋阳, 吴丛丛. 2018. 基于聚类分析的多煤层煤层气产层组合选择[J]. 煤炭学报, 43(6): 1641-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806018.htm
    易同生, 高为. 2018. 六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J]. 煤炭学报, 43(6): 1553-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806007.htm
    尹淮新, 谈红梅, 坛俊颖, 吴翔. 2009. 新疆低煤阶煤层气勘探选区评价标准的探讨[J]. 中国煤层气, 6(6): 9-13. doi: 10.3969/j.issn.1672-3074.2009.06.002
    俞益新, 唐玄, 吴晓丹, 苏展, 叶浩. 2018. 澳大利亚苏拉特盆地煤层气地质特征及富集模式[J]. 煤炭科学技术, 46(3): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201803027.htm
    袁学旭. 2014. 多煤层含气系统识别研究——以黔西上二叠统为例[D]. 徐州: 中国矿业大学.
    张健. 2018. 深浅煤层同压合采煤层气的适用性分析及工艺[J]. 煤炭科学技术, 46(6): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806017.htm
    张金川, 姜生玲, 唐玄, 张培先, 唐颖, 荆铁亚. 2009. 我国页岩气富集类型及资源特点[J]. 天然气工业, 29(12): 109-114. doi: 10.3787/j.issn.1000-0976.2009.12.033
    张金川, 林腊梅, 李玉喜, 姜生玲, 刘锦霞, 姜文利, 唐玄, 韩双彪. 2012. 页岩气资源评价方法与技术: 概率体积法[J]. 地学前缘, 19(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202028.htm
    张金川, 徐波, 聂海宽, 汪宗余, 林拓, 姜生玲, 宋晓微, 张琴. 2008. 中国页岩气资源勘探潜力[J]. 天然气工业, 28(6): 136-140. doi: 10.3787/j.issn.1000-0976.2008.06.040
    张文浩, 苗苗青, 姜鲲鹏, 刘卫彬. 2019. 中国油气资源勘探开发特点、趋势及生态管理[J]. 地质与资源, 28(5): 454-459. doi: 10.3969/j.issn.1671-1947.2019.05.007
    张小东, 张硕, 许亚坤, 王昆, 张鹏, 朱春辉. 2018. 基于模糊数学的豫东煤系气资源勘探有利区预测[J]. 煤炭科学技术, 46(11): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201811027.htm
    张政, 秦勇, 傅雪海. 2014. 沁南煤层气合层排采有利开发地质条件[J]. 中国矿业大学学报, 43(6): 1019-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406010.htm
    郑书洁. 2016. 临兴地区煤系生储盖组合及其层序地层格架控制[D]. 徐州: 中国矿业大学.
    朱炎铭, 侯晓伟, 崔兆帮, 刘刚. 2016. 河北省煤系天然气资源及其成藏作用[J]. 煤炭学报, 41(1): 202-211 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601028.htm
    邹才能, 杨智, 黄士鹏, 马锋, 孙钦平, 李富恒, 潘松圻, 田文广. 2019. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 46(3): 433-442. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903003.htm
  • 期刊类型引用(2)

    1. 焦守涛,张旗,汤军,原杰,王振,陈万峰,蔡宏明,王跃. 量子科学与大数据科学:推动地质学跨越式发展的两大利器. 地学前缘. 2023(03): 294-307 . 百度学术
    2. XU Xiangzhen,YANG Jingsui,XIONG Fahui,GUO Guolin. Petrology and Geochemistry of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet, China. Acta Geologica Sinica(English Edition). 2019(02): 344-361 . 必应学术

    其他类型引用(7)

图(8)  /  表(4)
计量
  • 文章访问数:  3780
  • HTML全文浏览量:  905
  • PDF下载量:  4803
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-12-15
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回
x 关闭 永久关闭