高级检索

    碳酸岩型稀土矿床成矿流体演化机制研究现状及展望

    李胜虎, 于学峰, 田京祥, 单伟, 沈昆

    李胜虎, 于学峰, 田京祥, 单伟, 沈昆. 碳酸岩型稀土矿床成矿流体演化机制研究现状及展望[J]. 中国地质, 2021, 48(2): 447-459. DOI: 10.12029/gc20210207
    引用本文: 李胜虎, 于学峰, 田京祥, 单伟, 沈昆. 碳酸岩型稀土矿床成矿流体演化机制研究现状及展望[J]. 中国地质, 2021, 48(2): 447-459. DOI: 10.12029/gc20210207
    LI Shenghu, YU Xuefeng, TIAN Jingxiang, SHAN Wei, SHEN Kun. Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits[J]. GEOLOGY IN CHINA, 2021, 48(2): 447-459. DOI: 10.12029/gc20210207
    Citation: LI Shenghu, YU Xuefeng, TIAN Jingxiang, SHAN Wei, SHEN Kun. Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits[J]. GEOLOGY IN CHINA, 2021, 48(2): 447-459. DOI: 10.12029/gc20210207

    碳酸岩型稀土矿床成矿流体演化机制研究现状及展望

    基金项目: 

    山东省自然科学基金青年项目 ZR2020QD029

    山东省自然科学基金青年项目 ZR2019PD019

    山东省博士后创新项目专项资金 201903084

    山东地质勘查基金 Lukanzi (2019) 8

    山东地质勘查基金 Lukanzi (2020) 7

    详细信息
      作者简介:

      李胜虎, 男, 1985年生, 博士, 主要从事成矿流体高温高压实验模拟研究; E-mail: lshcugb@163.com

    • 中图分类号: P618.7

    Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits

    Funds: 

    Shandong Provincial Natural Science Foundation Youth Project ZR2020QD029

    Shandong Provincial Natural Science Foundation Youth Project ZR2019PD019

    Shandong Postdoctoral Innovation Project Special Fund 201903084

    Geological Exploration Project of Shandong Province Lukanzi (2019) 8

    Geological Exploration Project of Shandong Province Lukanzi (2020) 7

    More Information
      Author Bio:

      LI Shenghu, male, born in 1985, doctor, engaged in high temperature and high pressure experimental simulation of ore-forming fluids; E-mail: lshcugb@163.com

    • 摘要:

      与碱性岩有关的碳酸岩型内生稀土矿床在中国乃至世界上轻稀土资源储量中占有极为重要的地位,诸如我国内蒙古的白云鄂博稀土矿床、川西冕宁—德昌稀土成矿带中的牦牛坪、大陆槽等稀土矿床、山东微山县郗山稀土矿床以及美国的Mountain Pass稀土矿床等都属于这种类型的稀土矿床。当前,对于这类稀土矿床的成矿流体演化机制,学界主要存在结晶分异作用、不混溶作用(熔体-熔体不混溶、熔体-流体不混溶以及流体-流体不混溶)以及热液交代蚀变作用之间的分歧。结晶分异作用可以使具有不相容性的稀土元素在残余熔体相中逐渐富集,直至形成稀土矿物。不混溶作用能够使稀土元素在不混溶后形成的两相或多相中的某一相中发生选择性富集,形成稀土矿化。成矿流体演化晚阶段的热液流体对早期生成的矿物或围岩进行交代蚀变,使其释放出能与稀土元素在热液中形成络合物的F-、(CO3)2-以及(SO4)2-等阴离子(团),并最终在合适的构造控矿部位和外界环境条件下,重结晶或沉淀出稀土矿物。上述3种观点各有其理论依据,但是在解释一些碳酸岩型稀土矿床地质现象或实验地球化学模拟结果的时候都或多或少存在一定程度上的不足。前人的研究结果表明,碳酸岩型稀土矿床中发育了大量的熔体包裹体、熔体-流体包裹体以及富CO2的流体包裹体,以往在利用Linkam TS1400XY以及Linkam THMS600等这类常规高温热台,在101325 Pa条件下对其进行热力学测温时,这些包裹体大多在尚未达到完全均一状态前就已发生爆裂或泄露,极大制约了人们对这类稀土矿床在高温岩浆阶段和中高温岩浆-热液阶段成矿流体演化过程的认知。另外,对于稀土元素在成矿流体演化过程中的含量变化特征及其地球化学行为的研究,目前主要是通过包裹体成分组成的拉曼光谱分析,以及对矿体和围岩进行的全岩地球化学分析,尚缺乏单个包裹体中元素含量的原位微区分析方面的数据。未来,对碳酸岩型稀土矿床中发育的熔体包裹体、熔体-流体包裹体和富CO2的流体包裹体,利用热液金刚石压腔开展高温高压原位均一实验模拟研究,以及对单个包裹体中微量元素的含量利用LA-ICP-MS进行原位微区分析,将是揭示该类稀土矿床成矿流体演化机制的关键。

      Abstract:

      Carbonatite-hosted endogenetic rare earth element (REE) deposits related to alkaline rocks are very important in light rare earth resources in China and even in the world. At present, controversies for the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits are mainly among crystallization differentiation, liquid immiscibility (melt-melt, melt-fluid and fluid-fluid immiscibility) and hydrothermal metasomatic alteration. Crystallization differentiation can gradually enrich the incompatible REEs in the residual melt phase until the REE minerals are formed. Immiscibility can lead to selective enrichment of REEs in one of the two or multiple-phases formed after immiscibility, resulting in REE mineralization. The hydrothermal fluids formed in the late stage of ore-forming fluids evolutionary process have metasomatic reaction with the early-formed minerals or surrounding rocks and release anions (anion clusters) such as F-, (CO3)2- and (SO4)2-, which can form complexes with REEs in the hydrothermal aqueous solution, and finally recrystallize or precipitate REE minerals in appropriate ore-hosting structures under suitable external conditions. Each of the above three viewpoints has its own theoretical basis, but they are more or less inadequate in the explanation of some geological phenomena or experimental geochemical simulation results of carbonatite-hosted REE deposits. The previous study results shown that there are a large number of melt inclusions, melt-fluid inclusions and CO2-rich fluid inclusions in carbonatite-hosted REE deposits. In the past, most of these inclusions decrepitated or were leaked before reaching the total homogenization status when heated at 101325 Pa by using conventional high temperature heating stages, such as Linkam TS1400XY and Linkam THMS600, which greatly restrict our understanding of the evolutionary process of ore-forming fluids in high temperature magmatic stage and medium-high temperature magmatic-hydrothermal stage for this type of REE deposits. In addition, studies on the contents variation characteristics and geochemical behavior of REEs in the ore-forming fluid evolutionary process is mainly through the Raman spectroscopy analysis of the components of inclusions, as well as the whole rock geochemical analysis of ore bodies and surrounding rocks, and there is still a lack of in-situ microanalysis data about the element contents of individual inclusions. In the future, for melt inclusions, melt-fluid inclusions, and CO2-rich fluid inclusions that trapped in this type of deposits, in-situ high temperature and high pressure microthermometry experiments by employing hydrothermal diamond-anvil cell together with in-situ LA-ICP-MS microanalysis of trace elements contents in individual inclusions, are supposed crucial to reveal its evolution mechanism of ore-forming fluids.

    • 松科二井,获取了从基底—火石岭组—沙河子组—营城组—登娄库组下部连续完整的原位岩心。本文对松科二井沙河子组上部的孢粉化石进行研究,为研究白垩纪地球温室气候和环境变化,建立服务“百年大庆”目标和基础地质研究的“金柱子”提供基础资料。

      孢粉样品采自松科二井3395.46~3901.35 m,岩性为黑色、灰黑色泥岩、粉砂质泥岩,层位为沙河子组上部。孢粉分析鉴定在吉林大学古生物学与地层学研究中心完成,具体过程为:每个样品取过筛的干样50 g,进行盐酸→氢氟酸→氢氧化钾→盐酸→硝酸→氢氧化钾→盐酸等分析处理,用筛选法将样品中的孢粉化石集中在试管中,制2个固定片在生物显微镜下鉴定。

      依据松科二井3395.46~3901.35 m井段的孢粉化石演化特征,划分出两个孢粉组合。

      (1)Leiotriletes sp.- Cyathidites australis - Chasmatosporites sp.组合(简称LCC组合),分布在3832.94~3901.35m井段。蕨类孢子占绝对优势,裸子类花粉较低,未见被子类花粉。蕨类孢子含量最高的是Cyathidites australis,其次是Leiotriletes sp.和Cyclogranisporites sp.,有时代意义的还有Cicatricosisporites exilisC. minutaestriatusC. splendidusC.australiensisKlukisporites sp.、Maculatisporites sp.、Triporoletes singularisTrilobosporites tribotrysAequitriradites sp.和Polycingulatisporites reduncus等;裸子类花粉含量最高的是Chasmatosporites sp.,其次是Psophosphaera sp.,有时代意义的类型有Parvisaccites sp.、Erlianpollis minisculusPaleoconifersp.、Pseudowalchia sp.和Classopollis sp.等。

      (2)Klukisporites triangulus- Aequitriradites sp.- Pristinuspollenites sp.组合(简称KAP组合),分布在3395.46~3613.62 m井段。裸子类花粉百分含量(53.03%~72.13%)较高,其次为蕨类孢子(27.87% ~46.97%),未见到被子类花粉。裸子类花粉中含量最高的是Alisporites parvus,其次是Piceaepollenites sp.,含量较高的类型还有Chasmatosporites sp.、Pinuspollenites divulgatus和P. sp.等,有时代意义的还有Parvisaccites otagoensisErlianpollis minisculusE. mediocrisJiaohepollis sp.和Classopollis classoides等。蕨类孢子含量最高的是Klukisporites sp.,其次是Leiotriletes sp.和Cyathidites australis,含量较高的类型还有Cyclogranisporites sp.等,有时代意义的有Cicatricosisporites exilisC.apiteretusC. australiensisKlukisporites triangulusK.variegatusPilosisporites scitulusImpardecispora sp.、Levisporites wulinensisTriporoletes singularisTrilobosporites humilisAequitriradites sp.和Schizaeoisporites sp.等。

      含有早白垩世特有或在早白垩世繁盛的分子:CicatricosisporitesKlukisporitesPilosisporitesMaculatisporitesImpardecisporaLevisporitesTriporoletesTrilobosporitesAequitriraditesSchizaeoisporitesPolycingulatisporitesParvisaccitesPaleoconiferusErlianpollisFoveotriletes.和Classopollis等(图 1)。

      图  1  松科二井沙河子组部分孢粉化石
      (1-Cicatricosisporites exilis,样品号:SK2-375;2. -Cicatricosisporites minutaestriatus,标品号:SK2-385;3-Cicatricosisporites splendidus,标品号:SK2-385;4-Cicatricosisporites australiensis,样品号(sample number):SK2-375;5-Levisporites wulinensis,样品号(sample number):SK2-205;6. Aequitriradites sp.,样品号(sample number):SK2-389; 7-Trilobosporites tribotrys,样品号(sample number):SK2-389;8- Classopollis classoides,标品号:SK2-97;9-Erlianpollis minisculus,样品号(number):SK2-395; 10. Parvisaccites sp.,样品号:SK2-395;11. Pilosisporites scitulus,标品号:SK2-201;12-Triporoletes asper,标品号(specimen number):SK2-219;13. Foveotriletes subtriangulularis,样品号:SK2-219;14-Klukisporites triangulus,样品号(sample number):SK2-205;15-Impardecispora sp.,样品号:SK2-201; 16-Schizaeoisporites polaris,样品号:SK2-173;17-Polycingulatisporites reduncus,标品号:SK2-395;18-Maculatisporites sp.,样品号:SK2-391。19-Chasmatosporites sp.,样品号:SK2-389; 20-Paleoconiferae sp.,样品号(sample number):SK2-391;线段比例尺为10 μm, the scale of the line segment is 10 μm)
      Figure  1.  Spores and pollen from the Lower Cretaceous Shahezi Formation in Well SK2

      上述2个孢粉组合分布在,属沙河子组上部,LCC组合蕨类孢子百分含量占绝对优势,裸子类花粉较少,从组合特点来看,可以与高瑞琪等人建立的沙河子组上部Granulatisporites-Lophotriletes-Cicatricosisporites组合大致对比,但上部的KAP组合层位显然高于高瑞琪等人建立的孢粉组合。与高瑞琪等人建立的孢粉组合相比,当前孢粉组合出现的有时代意义的孢粉类型更多且时代更新。

      两个孢粉组合海金砂科孢子繁盛,类型多样化,没有发现早期被子植物花粉;虽在蕨类孢子与裸子类花粉的百分含量及属种构成上明显不同,但出现的有时代意义的化石类型基本相同,其时代均为早白垩世早期。

      本文为国家自然科学基金项目(41790451)和中国地质调查局项目(DD20190097)共同资助。孢粉化石由张淑琴研究员鉴定。

      致谢: 本文在成文过程中得到了中国地质科学院矿产资源研究所李建康研究员的大力帮助; 两位审稿专家以及编辑对论文提出了宝贵的修改意见,在此一并表示衷心的感谢!
    • 图  1   上地幔橄榄岩低度部分熔融形成的初始岩浆在结晶分异作用下REE进行富集的模型(据Cullers and Medaris, 1977)

      实心圆代表上地幔橄榄岩部分熔融产生的初始熔体中REE的含量;点虚线代表初始熔体中单斜辉石和石榴石以99∶1的比例结晶50% 后所产生的剩余熔体中的REE预测含量;虚线代表霓辉岩中的REE含量;实线代表霓辉质的初始熔体(磷灰石:榍石:单斜辉石:不透明矿物:霞石:黑云母=2.2∶3.8∶46.7∶5.5∶33.4∶8.4)结晶40%后,所产生的剩余熔体中的REE含量。通过以上几种结晶分异作用所产生的熔体中的REE含量均达不到碳酸岩中的REE含量

      Figure  1.   Fractional crystallization model for the enrichment of REE from low degree partial melting of peridotite in the upper mantle (after Cullers and Medaris, 1977)

      Initial melt for the fractional crystallization model (solid circle); predicted melt after 50% crystallization of clinopyroxene∶garnet = 99∶ 1 from the initial melt (dot- dashed line); actual ijolite (dashed line). Forty percent fractional crystallization of the ijolite in the ratio of apatite∶sphene∶clinopyroxene∶opaques∶nepheline∶biotite = 2.2∶3.8∶ 46.7∶5.5∶33.4∶8.4 yields a REE content of the ijolite (solid line), and the REE content will never become similar to that of the carbonatite

      图  2   碱土、碱性元素在碳酸盐-硅酸盐不混溶熔体间的分配系数

      Figure  2.   Distribution coefficients of alkaline earth and alkaline elements in carbonate-silicate immiscible melts

      图  3   REE在共生的碳酸盐-硅酸盐两相中的分配系数

      (据Veksler et al., 2012)

      Figure  3.   Distribution coefficients of REE elements between immiscible carbonate and silicate phases (after Veksler et al., 2012)

      图  4   Kalkfeld碳酸岩及其出溶盐流体中REE和其他微量元素的含量(据Bühn and Rankin, 1999)

      Figure  4.   REE and other trace elements in Kalkfeld carbonatite and the exsolution salt fluid (after Bühn and Rankin, 1999)

      图  5   牦牛坪REE矿床成矿流体演化P-T轨迹示意图(据Xie et al., 2009)

      Ⅰ—熔体包裹体组合代表的碳酸岩阶段;Ⅱ—熔-流体包裹体组合代表的伟晶岩阶段;Ⅲ—富CO2流体包裹体组合代表的重晶石-氟碳铈矿阶段;Ⅳ—富水溶液流体包裹体组合代表的方解石阶段。图中阴影区根据实际包裹体测温数据绘制,阴影区之外的椭圆部分是根据含CO2流体包裹体、含CO2且含子矿物的流体包裹体以及熔体-流体包裹体的未均一测温结果而推测的其可能均一温度和压力范围

      Figure  5.   Schematic T-P path for evolution of the ore-forming fluid in the Maoniuping REE deposit (after Xie et al., 2009)

      Ⅰ-Carbonatite stage, melt inclusion assemblage; Ⅱ-Pegmatite stage, melt- fluid inclusion assemblage; Ⅲ- Barite- bastnaesite stage, CO2- rich fluid inclusion assemblage; Ⅳ- Calcite stage, aqueous rich fluid inclusion assemblage. Shaded ellipse represents T-P range based on microthermometry data, unshaded ellipse shows estimated range based on unhomogenized inclusion data for aqueous- liquid CO2 fluid inclusions, aqueous daughter minerals-liquid CO2 fluid inclusions and melt-fluid inclusions

      图  6   深源岩浆在缓慢冷却和结晶过程中发生的两相碳酸盐-硅酸盐熔体不混溶以及多相碳酸盐-盐类熔体不混溶过程示意图(据Panina and Motorina, 2008修改)

      Figure  6.   Flow chart illustrating the mechanism of two-phase carbonate-silicate liquid immiscibility and polyphase carbonate-salt liquid immiscibility in deep-seated magmas during their slow cooling and crystallization in the Earth's crust (modified from Panina and Motorina, 2008)

    • Andreeva I A, Kovalenko V I, Naumov V B. 2007. Silicate-salt (sulfate) liquid immiscibility: A study of melt inclusions in minerals of the Mushugai-Khuduk carbonatite-bearing complex (southern Mongolia)[J]. Acta Petrologica Sinica, 23(1): 73-82. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20070109

      Beccaluva L, Barbieri M, Born H, Brotzu P, Coltorti M, Conte A, Gapbarino C, Gomes G B, Macciotta G, Morbidelli L, Ruberti E, Siena F, Traversa G. 1992. Fractional crystallization and liquid immiscibility processes in the alkaline-carbonatite complex of Juquiá (São Paulo, Brazil)[J]. Journal of Petrology, 33(6): 1371-1404. doi: 10.1093/petrology/33.6.1371

      Braunger S, Marks M A, Wenzel T, Chmyz L, Azzone R G, Markl, G. 2020. Do carbonatites and alkaline rocks reflect variable redox conditions in their upper mantle source?[J]. Earth and Planetary Science Letters, 533: 116041. doi: 10.1016/j.epsl.2019.116041

      Bühn B, Rankin A H. 1999. Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 63(22): 3781-3797. doi: 10.1016/S0016-7037(99)00180-5

      Castor S B. 2008. Rare earth deposits of North America[J]. Resource Geology, 58(4): 337-347. doi: 10.1111/j.1751-3928.2008.00068.x

      Chen Yuchuan, Wang Ruijiang. 2019. A certain need for development of strategic emerging industry: Broadening mineral resources survey from rare metals, rear earth metals and rare bulk metals (RRR) to key mineral resources——Recommendation of the Special Issue of Acta Geologica Sinica, Vol. 93, No. 6, 2019[J]. Geological Review, (4): 915-916(in Chinese with English abstract).

      Cui Hao, Zhong Richen, Xie Yuling, Yuan Xueyin, Liu Weihua, Brugger J, Yu Chang. 2020. Forming sulfate-and REE-rich fluids in the presence of quartz[J]. Geology, 48(2): 145-148. doi: 10.1130/G46893.1

      Cullers R L, Medaris G. 1977. Rare earth elements in carbonatite and cogenetic alkaline rocks: Examples from Seabrook Lake and Callander Bay, Ontario[J]. Contributions to Mineralogy and Petrology, 65(2): 143-153. doi: 10.1007/BF00371054

      Doroshkevich A G, Viladkar S G, Ripp G S, Burtseva M V. 2009. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, Indian[J]. The Canadian Mineralogist, 47: 1105-1116. doi: 10.3749/canmin.47.5.1105

      Eby G N. 1975. Abundance and distribution of the rare-earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec[J]. Geochimica et Cosmochimica Acta, 39(5): 597-620. doi: 10.1016/0016-7037(75)90005-8

      Fan Hongrui, Tao Kejie, Xie Yihan, Wang Kaiyi. 2003. Laser Raman spectroscopy of typical rare-earth fluoro-carbonate minerals in Bayan Obo REE-Fe-Nb deposit and identification of rare-earth daughter minerals hosted in fluid inclusions[J]. Acta Petrologica Sinica, 19(1): 169-172 (in Chinese with English abstract). http://www.oalib.com/paper/1471618

      Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Kaiyi. 2006. Fluid unmixing/immiscibility as an ore-forming process in the giant REE-Nb-Fe deposit, Inner Mongolian, China: Evidence from fluid inclusions[J]. Journal of Geochemical Exploration, 89(1/3): 104-107. http://ci.nii.ac.jp/naid/10030175150

      Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar[J]. Lithos, 112: 274-283. doi: 10.1016/j.lithos.2009.03.020

      Guo Dongxu, Liu Yan. 2019. Occurrence and geochemistry of bastnäsite in carbonatite-related REE deposits, Mianning-Dechang REE belt, Sichuan Province, SW China[J]. Ore Geology Review, 107: 266-282. doi: 10.1016/j.oregeorev.2019.02.028

      Haas J R, Shock E L, Sassani D C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P

      Hou Zengqian, Tian Shihong, Xie Yuling, Yang Zhusen, Yuan Zhongxin, Yin Shuping, Yi Longsheng, Fei Hongcai, Zou Tianren, Bai Ge, Li Xaioyu. 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China[J]. Ore Geology Reviews, 36(1/3): 65-89. http://www.sciencedirect.com/science/article/pii/S0169136809000237

      Hurai V, Huraiova M, Slobodnik M, Thomas R. 2016. Geofluids: Developments in microthermometry, spectroscopy, thermodynamics and stable isotopes[J]. Economic Geology, 111(4): 1041-1041. doi: 10.2113/econgeo.111.4.1041

      Ionov D A. 1998. Trace element composition of mantlederived carbonates and coexisting phases in peridotite xenoliths from alkali basalts[J]. Journal of Petrology, 39: 1931-1941. doi: 10.1093/petroj/39.11-12.1931

      Ionov D, Harmer R E. 2002. Trace element distribution in calcite-dolomite carbonatites from Spitskop: Inferences for differentiation of carbonatite magmas and the origin of carbonates in mantle xenoliths[J]. Earth and Planetary Science Letters, 198(3/4): 495-510. http://www.sciencedirect.com/science/article/pii/S0012821X02005320

      Jia Yuheng, Liu Yan. 2020. REE enrichment during magmatic-hydrothermal processes in carbonatite-related REE deposits: A case study of the Weishan REE deposit, China[J]. Minerals, 10(1): 25.

      Jones A P, Wyllie P J. 1986. Solubility of rare earth elements in carbonatite magmas, indicated by the liquidus surface in CaCO3-Ca(OH)2-La(OH)3 at 1 kbar pressure[J]. Applied Geochemistry, 1(1): 95-102. doi: 10.1016/0883-2927(86)90040-5

      Jones J H, Walker D, Pickett D A, Murrell M T, Beattie P. 1995. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids[J]. Geochimica et Cosmochimica Acta, 59(7): 1307-1320. doi: 10.1016/0016-7037(95)00045-2

      Kjarsgaard B A. 1998. Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa[J]. Journal of Petrology, 39(11/12): 2061-2075. http://petrology.oxfordjournals.org/content/39/11-12/2061.full

      Lan Tingguang, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Yong. 2011. Genesis of the Weishan REE deposit, Shandong Province: Evidences from Rb-Sr isochron age, LA-MC-ICPMS Nd isotopic compositions and fluid inclusions[J]. Geochemica, 40(5): 428-442 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201105004.htm

      Lee C T, Rudnick R L, McDonough W F, Horn I. 2000. Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania[J]. Contributions to Mineralogy and Petrology, 139(4): 470-484. doi: 10.1007/s004100000144

      Li Baohua, Yang Qianqian, Gao Kunli, Chen Chen, Huang Baozeng, Dong Xiaoyan, Fu Taiyu. 2018. Melt and fluid inclusions and their constraints on ore-forming conditions of Ganshaebo rare earth deposit, Gansu Province, China[J]. Acta Mineralogica Sinica, (2): 223-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201802011.htm

      Li Jiankang, Yuan Zhongxin, Bai Ge, Chen Yuchuan, Wang Denghong, Ying Lijuan, Zhang Jian. 2009. Ore-forming fluid evolution and its controlling to REE mineralization in the Weishan deposit, Shandong[J]. Mineralogy and Petrology, 29(3): 60-68 (in Chinese with English abstract). http://www.researchgate.net/publication/286386693_Ore-forming_fluid_evolvement_and_its_controlling_to_ree_AG_mineralizing_in_the_Weishan_deposit_Shandong

      Li Jiankang, Li Shenghu. 2014. Application of hydrothermal diamond anvil cell to homogenization experiments of silicate melt inclusions[J]. Acta Geologica Sinica, 88 (3): 854-864. doi: 10.1111/1755-6724.12242

      Li Shenghu, Li Jiankang, Zhang Dehui. 2015. Application of hydrothermal diamond-anvil cell in fluid inclusions: An example from the Jiajika pegmatite deposit in Western Sichuan, China[J]. Acta Geologica Sinica, 89(4): 747-754 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201504007&dbcode=CJFD&year=2015&dflag=pdfdown

      Liang Yuwei, Lai Yong, Hu Hong, Zhangfeng. 2017. Zircon U-Pb ages and geochemical characteristics study of syenite from Weishan REE deposit, Western Shandong[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 53 (4): 652-666 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ201704006.htm

      Liu Shang, Fan Hongrui, Groves D I, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2020. Multiphase carbonatite-related magmatic and metasomatic processes in the genesis of the ore-hosting dolomite in the giant Bayan Obo REE-Nb-Fe deposit[J]. Lithos, 354: 105359. http://www.sciencedirect.com/science/article/pii/S0024493719305195

      Liu Yan, Chen Chao, Shu Xiaochao, Guo Dongxu, Li Zijing, Zhao Haixuan, Jia Yuheng. 2017. The formation model of the carbonatite-syenite complex REE deposits in the east of Tibetan Plateau: A case study of Dalucao REE deposit[J]. Acta Petrologica Sinica, 33(7): 1978-2000 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/1682868?mode=full&submit_simple=Show+full+item+record

      Liu Yan, Chakhmouradian A R, Hou Zengqian, Song Wenlei, Kynicky J. 2019a. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): Insights from mineralogy, fluid inclusions, and trace-element geochemistry[J]. Mineralium Deposita, 54: 701-718. doi: 10.1007/s00126-018-0836-y

      Liu Yan, Hou Zengqian, Zhang Rongqing, Wang Ping, Gao Jianfeng, Raschke M B. 2019b. Zircon alteration as a proxy for rare earth element mineralization processes in carbonatite-nordmarkite complexes of the Mianning-Dechang Rare Earth Element Belt, China[J]. Economic Geology, 114(4): 719-744. doi: 10.5382/econgeo.4660

      Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements[M]. Beijing: Science Press, 194-215 (in Chinese with English abstract).

      Mitchell R H, Brunfelt A O. 1975. Rare earth element geochemistry of the Fen alkaline complex, Norway[J]. Contributions to Mineralogy and Petrology, 52(4): 247-259. doi: 10.1007/BF00401455

      Mitchell R H. 2005. Carbonatites and carbonatites and carbonatites[J]. The Canadian Mineralogist, 43(6): 2049-2068. doi: 10.2113/gscanmin.43.6.2049

      Ngwenya B T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Processes at the fluid/rock interface[J]. Geochimica et Cosmochimica Acta, 58(9): 2061-2072. doi: 10.1016/0016-7037(94)90285-2

      Nielsen T F D, Solovova I P, Veksler I V. 1997. Parental melts of melilitolite and origin of alkaline carbonatite: Evidence from crystallised melt inclusions, Gardiner complex[J]. Contributions to Mineralogy and Petrology, 126(4): 331-344. doi: 10.1007/s004100050254

      Panina L I. 2005. Multiphase carbonate-salt immiscibility in carbonatite melts: Data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia)[J]. Contributions to Mineralogy and Petrology, 150(1): 19-36. doi: 10.1007/s00410-005-0001-3

      Panina L I, Motorina I V. 2008. Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts[J]. Geochemistry International, 46(5): 448-464. doi: 10.1134/S0016702908050029

      Shu Xiaochao, Liu Yan. 2019. Fluid inclusion constraints on the hydrothermal evolution of the Dalucao carbonatite-related REE deposit, Sichuan Province, China[J]. Ore Geology Reviews, 107: 41-57. doi: 10.1016/j.oregeorev.2019.02.014

      Slezak P, Spandler C. 2020. Petrogenesis of the Giford Creek carbonatite complex, western Australia[J]. Contributions to Mineralogy and Petrology, 175: 28. doi: 10.1007/s00410-020-1666-3

      Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare earth elements deposits related to carbonatite-alkaline complex[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(4): 725-740 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ201304025.htm

      Solovova I P, Girnis A V, Kogarko L N, Kononkova N N, Stoppa F, Rosatelli G. 2005. Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy[J]. Lithos, 85(1/4): 113-128.

      Student J J, Bodnar R J. 1999. Synthetic fluid inclusions XIV: Coexisting silicate melt and aqueous fluid inclusions in the haplogranite-H2O-NaCl-KCl system[J]. Journal of Petrology, 40(10): 1509-1525. doi: 10.1093/petroj/40.10.1509

      Suk N I. 2003. Experimental studies of fluid-magmatic differentiation of alkaline systems in connection with the problem of genesis of carbonatites[C]//Plumes and Problem of Deep Sources of Alkaline Magmatism. Irkutsk-Habarovsk, 62-74.

      Tian Jingxiang, Zhang Ritian, Fan Yuechun, Li Xiuzhang, Xu Hongyan, Wang Bingying. 2002. Geological characteristics and relation with rare earth elements of alkaline complex in Chishan of Shandong Province[J]. Shandong Geology, 18(1): 21-25 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SDDI200201003&dbcode=CJFD&year=2002&dflag=pdfdown

      Treiman A H, Essene E J. 1985. The Oka carbonatite complex, Quebec: Geology and evidence for silicate-carbonate liquid immiscibility[J]. American Mineralogist, 70(11/12): 1101-1113. http://www.researchgate.net/publication/279589229_The_Oka_carbonatite_complex_Quebec_geology_and_evidence_for_silicate-carbonate_liquid_immiscibility

      Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998a. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave[J]. Journal of Petrology, 39(11/12): 2095-2104.

      Veksler I V, Nielsen T F D, Sokolov S V. 1998b. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis[J]. Journal of Petrology, 39(11/12): 2015-2031. http://petrology.oxfordjournals.org/content/39/11-12/2015.full

      Veksler I V, Lentz D, Webster J D. 2006. Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: Evidence from melt and fluid inclusions[J]. Melt Inclusions in Plutonic Rocks, 36: 123-149.

      Veksler I V, Dorfman A M, Dulski P, Kamenetsky V S, Danyushevsky L V, Jeffries T, Dingwell D B. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 79: 20-40. doi: 10.1016/j.gca.2011.11.035

      Wall F, Mariano A N. 1995. Rare earth minerals in carbonatites: A discussion centred in the Kangankunde carbonatite, Malawi[C]//Jones A P, Wall F, Williams C T. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Mineralogical Society Series, Vol 7. London: Chapman and Hall, 193-225.

      Wang Chen, Liu Jianchao, Zhang Haidong, Zhang Xinzhu, Zhang Deming, Xi Zhixuan, Wang Zijie. 2019. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, eastern China[J]. Geoscience Frontiers, 10(2): 769-785. doi: 10.1016/j.gsf.2018.07.008

      Wang Denghong, Sun Yan, Dai Hongzhang, Guo Weiming, Zhao Zhi, Zhao Ting, Li Jiankang, Wang Chenghui, Huang Fan, Yu Yang, Li Dexian. 2019. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China[J]. Chinese Engineering Science, 21(1): 119-127(in Chinese with English abstract). doi: 10.15302/J-SSCAE-2019.01.017

      Wang Xibin, Hao Ziguo, Li Zhen, Xiao Guowang, Zhang Tairong. 2002. A typical alkaline rock-carbonatite complex in Bayan Obo, Inner Mongolia[J]. Acta Geologica Sinica, 76(4): 501-524 (in Chinese with English abstract).

      Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. 1987. Geochemistry of Rare Earth Elements[M]. Beijing: Science Press, 54-67 (in Chinese with English abstract).

      Wendlandt R F, Harrison W J. 1979. Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: Results and implications for the formation of light rare earth-enriched rocks[J]. Contributions to Mineralogy and Petrology, 69(4): 409-419. doi: 10.1007/BF00372266

      Wood S A. 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q

      Wyllie P J, Jones A P, Deng J. 1996. Rare earth elements in carbonate-rich melts from mantel to crust//Jones A P, Wall F, Williams C T. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. The Mineralogical Society Series, Vol 7. London: Chapman and Hall, 77-103.

      Xie Yuling, Tian Shihong, Hou Zengqian, Chen Wei, Yin Shuping, Gao Sheng. 2008. Discussion of migration and precipitation mechanics in Muluo REE desposit Mianning county, west Sichun Province: Evidence from fluid inclusions in bastnaesite[J]. Acta Petrologica Sinica, 24 (3): 555-561(in Chinese with English abstract).

      Xie Yuling, Hou Zengqian, Yin Shuping, Dominy S C, Xu Jiuhua, Tian Shihong, Xu Wenyi. 2009. Continuous carbonatitic melt-fluid evolution for a REE mineralization system: Evidence from inclusions in the Maoniuping REE deposit in the western Sichuan, China[J]. Ore Geology Reviews, 36: 89-104.

      Xu Cheng, Campbell I H, Kynicky J, Allen C M, Chen Yanjing, Huang Zhilong, Qi Liang. 2008. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China[J]. Lithos, 106(1/2): 12-24.

      Xu Cheng, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China[J]. Lithos, 118(1/2): 145-155.

      Xu Jiuhua, Xie Yuling, Li Jianping, Hou Zengqian. 2001. Discovery of daughter minerals containing silver and LREE in fluid inclusions from the Miaoniuping REE deposit in Mianming County, Sichuan[J]. Advances in Natural Science, 11(5): 543-547 (in Chinese).

      Yang Xiaoyong, Sun Weidong, Zhang Yuxu, Zheng Yongfei. 2009. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China[J]. Geochimca et Cosmochimica Acta, 73: 1417-1435. doi: 10.1016/j.gca.2008.12.003

      Yang Kuifeng, Fan Hongrui, Pirajno F, Li Xiaochun. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology, 47(12): 1198-1202. doi: 10.1130/G46674.1

      Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Xing Changming. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for rare metal mineralization[J]. Lithos, 105411.

      Ying Jifeng. 2002. Geochemical Characteristics and Genesis of Mesozoic Carbonatite and Volcanic Rocks in Western Shandong Province[D]. 1-121 (in Chinese with English abstract).

      Yu Xuefeng, Tang Haosheng, Han Zuozhen, Li Changyou. 2010. Geological characteristics and origin of rare earth elements deposits related with alkaline rock in the Chishan-Longbaoshan area, Shandong Province[J]. Acta Geologica Sinica, 84(3): 407-417(in Chinese with English abstract).

      Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues[J]. China Science Foundation, 33(2): 106-111 (in Chinese with English abstract).

      Zheng Xu, Liu Yan. 2019. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: Evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China[J]. Ore Geology Reviews, 107: 218-238. doi: 10.1016/j.oregeorev.2019.02.021

      陈毓川, 王瑞江. 2019. 从三稀资源调查扩大到关键矿产调查是战略性新兴产业发展的必然需要——推荐阅读《地质学报》"关键矿产"专辑[J]. 地质论评, (4): 915-916. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904010.htm
      范宏瑞, 陶克捷, 谢奕汉, 王凯怡. 2003. 白云鄂博REE-Fe-Nb矿床稀土氟碳酸盐矿物激光拉曼光谱特征及流体包裹体内稀土子矿物的鉴定[J]. 岩石学报, 19(1): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301018.htm
      蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 王永. 2011. 山东微山稀土矿矿床成因: 来自云母Rb-Sr年龄, 激光Nd同位素及流体包裹体的证据[J]. 地球化学, 40(5): 428-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105004.htm
      梁雨薇, 赖勇, 胡弘, 张丰. 2017. 山东省微山稀土矿正长岩类锆石U-Pb年代学及地球化学特征研究[J]. 北京大学学报(自然科学版), 53 (04): 652-666. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201704006.htm
      李葆华, 杨倩倩, 高昆丽, 陈晨, 黄增保, 董晓燕, 傅太宇. 2018. 甘肃干沙鄂博稀土矿床熔体和流体包裹体对成矿的制约[J]. 矿物学报, (2): 223-233. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201802011.htm
      李建康, 袁忠信, 白鸽, 陈毓川, 王登红, 应立娟, 张建. 2009. 山东微山稀土矿床成矿流体的演化及对成矿的制约[J]. 矿物岩石, 29(3): 60-68. doi: 10.3969/j.issn.1001-6872.2009.03.010
      李胜虎, 李建康, 张德会. 2015. 热液金刚石压腔在流体包裹体研究中的应用——以川西甲基卡伟晶岩型矿床为例[J]. 地质学报, 89(4): 747-754. doi: 10.3969/j.issn.0001-5717.2015.04.007
      刘琰, 陈超, 舒小超, 郭东旭, 李自静, 赵海璇, 贾玉衡. 2017. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式——以大陆槽REE矿床为例[J]. 岩石学报, 33(7): 1978-2000. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707002.htm
      刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 194-215.
      宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩-碱性杂岩体相关的内生稀土矿床成矿作用研究进展[J]. 北京大学学报(自然科学版), 49(4): 725-740. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201304025.htm
      田京祥, 张日田, 范跃春, 李秀章, 徐洪岩, 王炳颖. 2002. 山东郗山碱性杂岩体地质特征及与稀土矿的关系[J]. 山东地质, 18(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200201003.htm
      王登红, 孙艳, 代鸿章, 郭唯明, 赵芝, 赵汀, 李建康, 王成辉, 黄凡, 于扬, 李德先. 2019. 我国"三稀矿产" 的资源特征及开发利用研究[J]. 中国工程科学, 21(1): 119-127.
      王希斌, 郝梓国, 李震, 肖国望, 张台荣. 2002. 白云鄂博: 一个典型的碱性-碳酸岩杂岩的厘定[J]. 地质学报, 76(4): 501-524. doi: 10.3321/j.issn:0001-5717.2002.04.009
      王中刚, 于学元, 赵振华. 1987. 稀土元素地球化学[M]. 北京: 科学出版社, 54-67.
      谢玉玲, 田世洪, 侯增谦, 陈伟, 尹淑苹, 高升. 2008. 四川冕宁木落稀土矿床稀土元素迁移与沉淀机制: 来自稀土矿物中流体包裹体的证据[J]. 岩石学报, 24 (3): 555-561. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803015.htm
      徐九华, 谢玉玲, 李建平, 侯增谦. 2001. 四川冕宁牦牛坪稀土矿床流体包裹体中发现含锶和轻稀土的子矿物[J]. 自然科学进展, 11(5): 543-547. doi: 10.3321/j.issn:1002-008X.2001.05.016
      英基丰. 2002. 山东西部中生代碳酸岩和火山岩的地球化学特征及其成因研究[D]. 1-121.
      于学峰, 唐好生, 韩作振, 李长有. 2010. 山东郗山-龙宝山地区与碱性岩有关的稀土矿床地质特征及成因[J]. 地质学报, 84(3): 407-417. doi: 10.3969/j.issn.1004-9665.2010.03.018
      翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm
    • 期刊类型引用(2)

      1. 吴怀春,李山,王成善,褚润健,王璞珺,高远,万晓樵,贺怀宇,邓成龙,杨光,黄永建,高有峰,席党鹏,王天天,房强,杨天水,张世红. 松辽盆地白垩纪综合年代地层格架. 地学前缘. 2024(01): 431-445 . 百度学术
      2. 张德军,郑月娟,张淑芹,张健,黄欣,陈树旺,孙雷. 松科2井早白垩世沙河子组孢粉组合及其古气候意义. 地质通报. 2024(Z1): 429-442 . 百度学术

      其他类型引用(2)

    图(6)
    计量
    • 文章访问数:  2956
    • HTML全文浏览量:  1197
    • PDF下载量:  4443
    • 被引次数: 4
    出版历程
    • 收稿日期:  2020-07-09
    • 修回日期:  2021-02-24
    • 网络出版日期:  2023-09-25
    • 刊出日期:  2021-04-24

    目录

    /

    返回文章
    返回
    x 关闭 永久关闭