Research progress in current status of soil heavy metal pollution and analysis technology
-
摘要:
土壤重金属污染是中国当前最突出的环境污染问题。污染调查公报显示全国土壤重金属总超标率为16.1%,其中镉的点位超标率为7%,对粮食安全产生威胁。本文介绍了中国土壤重金属污染的现状,梳理了土壤重金属污染检测分析的传统和新兴方法技术,包括重金属全量、化学形态和生物可利用态含量等。同时阐述了土壤重金属污染检测分析技术发展趋势,如分子水平上的重金属元素检测和生物传感技术应用于重金属元素检测。考虑到土壤系统的复杂性,未来发展的重点应实现地学、化学和生物学的交叉,加强重金属生物有效性的理论研究,形成土壤重金属污染的生物有效度分析检测指标体系,使评价方法科学化、标准化、统一化。进一步推动我国的有关分析测试技术标准与国际标准接轨。
Abstract:Soil heavy metal pollution is currently the most prominent soil environmental pollution problem in China. The total national soil pollution exceedance rate is 16.1%, mainly heavy metal pollution, including cadmium point exceedance rate of 7%, which is threatening on the food security. We introduced the status of soil heavy metal pollution, sorted the traditional and emerging methods and technologies of soil heavy metal pollution detection and analysis, and described the technical trends such as the detection of heavy metals at the molecular level and the application of biosensing technology to the detection of heavy metals. Considering the complexity of the soil system, the focus of future development should be to achieve the intersection of geoscience, chemistry, and biology, strengthen the theoretical research on the bioavailability of heavy metals, form a biological effectiveness analysis and detection indicators for soil heavy metals pollution, and make the evaluation method scientific, standardized, and unified. Make further efforts to promote integration of national heavy metals analysis standards with international standards.
-
Keywords:
- Soil /
- heavy metals /
- analysis methods /
- progress /
- geological survey engineering
-
1. 引言
华南广泛发育的中生代岩浆岩(图 1a)长期受到地质学家的关注(Jahn, 1974; Zhou et al., 2000; 王强等, 2005; 孙涛, 2006; 周新民, 2007; Li and Li, 2007; 杨明桂等, 2009; 徐先兵等, 2009; 舒良树, 2012; Wang et al., 2013; 郑永飞等, 2013; 崔建军等, 2013; 李三忠等, 2018;苑新晨等,2021)。尤其对华南晚中生代花岗岩类进行了较深入的研究,对其时空分布格局、岩石成因、形成构造背景及与成矿关系等方面取得了一系列的进展(Zhou and Li, 2000; 王强等, 2005; 孙涛, 2006; 周新民, 2007; 付建明等, 2007; 柏道远等, 2008; 肖庆辉等, 2010; 舒良树, 2012; 阳杰华等, 2017; 贾丽辉, 2018; Chen et al., 2019; 袁永盛等,2020;李宏卫等,2021)。其中,发现100 Ma左右的岩浆岩在东南沿海地区大量发育(王德滋和沈渭洲, 2003; 肖娥等, 2007; 李良林等, 2013; Chen et al., 2014; Zhao et al., 2016; Yan et al., 2016; 贾丽辉, 2018),而华南腹地(特别是南岭地区)该时期的岩浆活动较少(王强等, 2005; 蔡明海等, 2006; 贾小辉等, 2014; Wang et al., 2018)。对其成因及形成的构造环境仍存在争议,提出了如活动大陆边缘构造-岩浆作用(Jahn, 1974; Zhou et al., 2006)、大陆伸展-裂解(Gilder et al., 1991)、阿尔卑斯型碰撞造山(Hsu et al., 1990)等不同的认识。
图 1 华南主要构造单元和中生代岩浆岩分布图(a, 据Zhou and Li, 2000; Wang et al., 2013修改)、连阳岩体地质简图(b, 据高剑峰等, 2005修改;同位素年龄数据马星华等, 2014)及研究区地质简图与采样位置图(c, 据袁永盛等, 2020修改)1—燕山期火山岩;2—燕山期侵入岩;3—印支期侵入岩;4—大地构造单元界线;5—深大断裂;6—晚白垩世花岗斑岩;7—晚白垩世第五侵入次花岗岩;8—晚白垩世第四侵入次二长花岗岩;9—晚白垩世第三侵入次二长花岗岩;10—晚白垩世第二侵入次二长花岗岩;11—晚白垩世第一侵入次二长花岗岩;12—早白垩世正长花岗岩;13—地质界线;14—断层;15—采样位置;Q—第四系;K—白垩系;J—侏罗系;T—三叠系;C—石炭系;Є—寒武系;Є-K—寒武系—白垩系Figure 1. Geological sketch map of main tectonic units and Mesozoic igneous rocks in South China (a, modified from Zhou and Li, 2000; Wang et al., 2013), geological sketch of the Lianyang pluton (b, modified from Gao Jianfeng et al., 2005; isotopic age from Ma Xinhua et al., 2014), geological sketch and sampling location of the investigated area (c, modified from Yuan Yongsheng et al., 2020)1-Yanshanian volcanics; 2-Yanshanian intrusives; 3-Indosinian intrusives; 4-Boundary between tectonic block; 5-Deep fault; 6-Late Cretaceous granite porphyry; 7-The fifth intrusive episodes granite in Late Cretaceous; 8-The fourth intrusive episodes monzogranite of Late Cretaceous; 9-The third intrusive episodes monzogranite in Late Cretaceous; 10-The second intrusive episodes monzogranite in Late Cretaceous; 11-The first in-trusive episodes monzogranite in Late Cretaceous; 12-Early Cretaceous syenogranite; 13-Geological boundary; 14-Fault; 15-Sampling location; Q-Quaternary; K-Cretaceous; J-Jurassic; T-Triassic; C-Carboniferous; Є-Cambrian; Є-K-Cambrian-Cretaceous位于南岭西段的连阳花岗岩体曾被认为是复式侵入体,主要由晚侏罗世产出的粗—中粒花岗岩主体和早白垩世晚期侵位的中—细粒花岗岩补体构成(高剑峰等, 2005; 马星华等, 2014; 袁永盛等, 2020)。连阳岩体虽然位于南岭成矿带南部,但此前因为与其相关的矿产发现较少,所以对其研究在过去未得到足够重视。随着近年的矿产勘查与1∶5万地质调查工作的开展,在岩体与围岩接触带附近新发现了多处矽卡岩型磁铁矿、铁多金属矿以及矽卡岩型-热液脉型多金属矿床等。李晶等(2010)曾对连阳岩体北侧姓坪矽卡岩型钼多金属矿进行辉钼矿Re-Os法定年,获得其模式年龄范围为99.7~ 92.1 Ma,等时线年龄为97.9 Ma,与连阳花岗岩体侵位年龄相一致,表明成矿与岩体的形成密切相关。
由于此前位于洽水地区的连阳岩体南部及南侧的白水寨、鸡笼岭、将军头等花岗岩体缺乏精确的年代学资料,曾被认为均是晚侏罗世岩浆活动的产物(高剑峰等, 2005; 广西壮族自治区地质调查院,2005❶)。笔者近年来在粤西北洽水地区开展了1∶5万区域地质调查,在详细的野外地质调查及岩相学工作的基础上,对岩体进行侵入期次划分,并通过系统的LA-ICP-MS锆石U-Pb法精确测年,厘定上述岩体为100 Ma左右岩浆活动的产物。结合前人对华南同期(110~90 Ma)岩浆岩类的研究成果,进一步探讨连阳及其南侧一些花岗岩体的成因和华南晚中生代岩石圈伸展过程的地球动力学机制。
2. 区域地质背景及岩体地质概况
华南陆块紧邻太平洋板块西缘,由华夏地块和扬子地块于新元古代沿NE向的江—绍断裂带(大致与十—杭带重合)发生碰撞-拼贴形成(图 1a),并在显生宙主要经历了早古生代、早中生代和晚中生代3期强烈的构造-岩浆活动的改造(Wang et al., 2012)。自中侏罗世开始,华南陆块逐渐转变成以伸展为主的构造环境,岩浆事件频繁。晚侏罗世—早白垩世形成了大规模呈NE—NNE向展布的穹隆构造和断陷火山-沉积盆地,并发育大量流纹质岩石、I型、A型花岗岩和少量玄武质岩石等火山-侵入岩类,岩浆岩以广泛分布的钙碱性岩石为主,并呈现出向洋年轻化的分布规律(王德滋和沈渭洲, 2003; Zhou et al., 2006; 周新民, 2007; Chen et al., 2008)。晚白垩世岩浆活动主要分布在浙闽粤沿海区域,受余姚—丽水—政和—大埔断裂、温州—镇海断裂及长乐—南澳断裂所控制,以I型、A型花岗岩、流纹质-玄武质岩石等双峰式火山岩为主,呈NE向分布(Chen et al., 2008; Zhao et al., 2015)。
连阳岩体地处粤西北,位于郴州—临武大断裂东侧、华夏地块西部的南岭纬向构造-岩浆岩带南带(花山—连阳—佛冈—新丰江岩带)的西段,出露面积约1600 km2,为一大型花岗质岩基(高剑峰等, 2005; 马星华等, 2014; 袁永盛等, 2020),与加里东期大宁岩体和广宁岩体在空间上密切共生(图 1b)。本文报道的洽水地区花岗岩体,包括连阳岩基南部及其南侧的白水寨、鸡笼岭、将军头等岩株,以100 Ma左右的岩浆活动为主,可划分为5个侵入次(图 1c,详见后述)。另见很少量114 Ma的细粒少斑黑云母正长花岗岩(ζγK1)(另文发表)。区内地层主要为寒武系、石炭系、三叠系、侏罗系及白垩系,除寒武系岩性以变质砂岩、板岩等变质岩为主外,其他地层岩性主要为灰岩、白云质灰岩、砾岩、砂岩、粉砂岩、泥岩等。岩体主要受近SN向及NE—NNE向断裂控制。围岩与岩体接触带附近发生一定程度的角岩化、矽卡岩化、大理岩化等接触变质或接触交代变质作用,并新发现了多处矽卡岩型磁铁矿、铁多金属矿以及矽卡岩型-热液脉型多金属矿床等。
3. 岩石学特征
依据岩性\特征的不同及野外穿切关系,洽水地区(连阳岩体南部及南侧的白水寨、鸡笼岭、将军头小岩体)约100 Ma花岗岩体从早到晚可分为5个侵入次(图 1c),分别为第一侵入次粗—中粒斑状含角闪石黑云母二长花岗岩(ηγK21)、第二侵入次中—细粒斑状含角闪石黑云母二长花岗岩(ηγK22)、第三侵入次中—细粒斑状黑云母二长花岗岩(ηγK23)、第四侵入次中—细粒含斑黑云母二长花岗岩(ηγK24)和第五侵入次细粒含斑黑云母正长花岗岩(γK25)。各侵入次之间均具有较为明显的接触界线,并呈侵入接触关系(图 2a、b)。
图 2 洽水地区第一和第四侵入次、第四和第五侵入次花岗岩的接触特征a—第四侵入次花岗岩(左)侵入到第一侵入次花岗岩中;b—第五侵入次花岗岩侵入到第四侵入次花岗岩中Figure 2. Contacts between the first and fourth, and the fourth and fifth intrusive episodes granites in Qiashui regiona-The fourth episode(left) intruded into the first intrusive episode granite; b-The fifth episode intruded into the fourth intrusive episode granite第一侵入次粗—中粒斑状含角闪石黑云母二长花岗岩(ηγK21):块状构造,似斑状结构(图 3a、b)。主要由钾长石斑晶(7% ~25%)和基质钾长石(20% ~ 26%)、斜长石(26%~35%)、石英(25%~28%)、黑云母(4%~8%)及角闪石(0.5%~2%)等组成。副矿物主要有磁铁矿、褐帘石、钛铁矿、榍石、锆石、磷灰石和绿帘石,含少量黄铁矿和萤石。钾长石斑晶粒径8~40 mm,以半自形—他形为主,具条纹结构,常见有斜长石、黑云母、石英等包裹体,部分边缘可见有浅色斜长石围绕形成的“环斑”结构。基质主要为粗—中粒花岗结构,粒径2~6 mm为主,斜长石半自形板柱状,少量见环带结构,据电子探针分析结果(附表略,下同),其斜长石牌号An值为19.6~32.7;黑云母,鳞片状为主,局部丛状,据电子探针分析结果(附表略,下同),MF值0.30~0.39,属铁质黑云母(图 4a);角闪石,半自形长柱状,据电子探针分析结果(附表略,下同),按Leake et al.(1997)的分类方案,属铁角闪石(图 4b)。该次侵入岩中常见有浑圆状、椭圆状、不规则状暗色微粒包体(MME),大小一般为1 cm×2 cm~ 12 cm×15 cm,与主岩界线多较截然,个别为渐变,部分可见暗色矿物团粒(双包体)及长石、石英混染“斑晶”,其中有的石英“斑”具有眼斑结构(图 3a),即石英“斑”遭受熔蚀并与岩浆反应生成角闪石、黑云母等暗色矿物环边。MME的基质为微细粒结构,粒径一般为0.01~0.5 mm,矿物组成:角闪石约25%,黑云母约20%,斜长石约52%,副矿物主要有磁铁矿、榍石、磷灰石。斜长石常为自形长板条状,磷灰石常为针状。
图 3 洽水地区第一、第二和第三侵入次花岗岩野外与显微照片第一侵入次花岗岩(含MME)露头(a)及镜下特征(b);第二侵入次花岗岩露头(c)及镜下特征(d);第三侵入次花岗岩露头(e)及镜下特征(f);Q—石英;Kfs—钾长石;Pl—斜长石;Bt—黑云母;MME—暗色微粒包体Figure 3. Field and microscope photos of the first, second and third intrusive episodes granites in Qiashui regionOutcrop (a) and microscopic characteristics (b) of the first intrusive episode (MME-bearing); Outcrop (c) and microscopic characteristics (d) of the second intrusive episode; Outcrop (e) and microscopic characteristics (f) of the third intrusive episode; Q-Quartz; Kfs-K-feldspar; Pl-Plagioclase; Bt-Biotite; MME-Mafic magmatic enclaveFigure 4. Composition classification diagrams for biotite (a, after Foster, 1960) and amphibole (b, after Leake et al., 1997) from the granites in Qiashui area第二侵入次中—细粒斑状含角闪石黑云母二长花岗岩(ηγK22):块状构造,似斑状结构(图 3c、d)。斑晶粒径多在6~40 mm,以钾长石(10%~20%)为主,常见斜长石、黑云母、石英等包裹体,部分边缘可见有浅色斜长石围绕形成的“环斑”结构,偶见角闪石斑晶,局部见少量石英、斜长石斑晶。基质为中—细粒花岗结构,主要由粒径0.3~4 mm的钾长石(20% ~25%)、斜长石(25% ~33%)、石英(25% ~ 29%)、黑云母(5%~6%)和角闪石(1%~2%)等组成,副矿物主要有磁铁矿、褐帘石、钛铁矿、榍石和锆石,含少量黄铁矿、磷灰石及绿帘石。斜长石,半自形板柱状,少量见环带结构,An值绝大多数为15~ 27.9,个别35.5;黑云母,鳞片状—丛状,MF值0.24~0.38, 属铁质黑云母;角闪石,半自形长柱状,属铁角闪石。该次侵入岩中也常见浑圆状、椭圆状、不规则状暗色微粒包体(MME),与第一侵入次中的MME特点类似。
第三侵入次中—细粒斑状黑云母二长花岗岩(ηγK23):块状构造,似斑状结构(图 3e、f)。主要由粒径8~30 mm的钾长石斑晶(7%~15%)和粒径0.3~4 mm的钾长石(20%~25%)、斜长石(23%~33%)、石英(28%~32%)和黑云母(4%~6%)等基质组成。钾长石斑晶部分边缘可见有浅色斜长石围绕形成的“环斑”结构,常见有斜长石、黑云母、石英等包裹体。钾长石,具条纹结构,半自形板柱状—他形粒状;斜长石,半自形板柱状,少量见环带结构,An值为15.1~29.9;黑云母,鳞片状—丛状,MF值0.24~ 0.37, 属铁质黑云母。副矿物主要有磁铁矿、褐帘石、榍石、锆石、钛铁矿和磷灰石,含少量萤石和绿帘石。该次侵入岩见少量MME,特点与第一侵入次中的类似。
第四侵入次中—细粒含斑黑云母二长花岗岩((ηγK24):块状构造,似斑状结构(图 5a、b)。主要由粒径6~18 mm的钾长石斑晶(1% ~5%)和粒径0.3~3.5 mm的钾长石(35%~42%)、斜长石(21% ~ 29%)、石英(29%~33%)和黑云母(4%~5%)等基质组成。副矿物主要有磁铁矿、钛铁矿、独居石、褐帘石、锆石和绿帘石,含少量黄铁矿、榍石及磷灰石。钾长石斑晶中见有斜长石、黑云母、石英等包裹体。基质为中—细粒花岗结构,钾长石,具条纹结构,半自形板柱状—他形粒状,常高岭土化;斜长石,半自形板柱状,少量见环带结构,An值多为10.2~24.7,个别28~36.2,常绢云母化、黝帘石化;黑云母,鳞片状—丛状,MF值一般0.20~0.35,多属铁质黑云母,少部分属铁黑云母。靠近MME的主岩中个别黑云母MF值达0.53~0.74,可能是从MME中混染的黑云母。该次侵入岩局部可见少量MME。
图 5 洽水地区第四、第五侵入次花岗岩野外与显微照片第四侵入次花岗岩露头(a)及镜下特征(b);第五侵入次花岗岩露头(c)及镜下特征(d);Q—石英;Kfs—钾长石;Pl—斜长石;Bt—黑云母Figure 5. Field and microscope photos of the fourth and fifth intrusive episodes granites in Qiashui regionOutcrop (a) and microscopic characteristics (b) of the fourth intrusive episode; Outcrop (c) and microscopic characteristics (d) of the fifth intrusive episode; Q-Quartz; Kfs-K-Feldspar; Pl-Plagioclase; Bt-Biotite第五侵入次细粒含斑黑云母正长花岗岩(γK23):块状构造,似斑状结构(图 5c、d)。斑晶粒径多在2~ 13 mm,以钾长石(1%~3%)为主,少量石英、斜长石斑晶,偶见黑云母斑晶,斑晶钾长石中可见细小斜长石、黑云母、石英等包裹体。基质主要为细粒花岗结构,常见显微文像结构,主要由粒径0.2~1.5 mm的钾长石(39%~45%)、斜长石(14%~21%)、石英(30%~34%)和黑云母(2%~5%)等组成。副矿物主要有磁铁矿、钛铁矿、黄铁矿、独居石和锆石,含少量萤石、磷灰石。钾长石,具条纹结构,半自形板柱状—他形粒状,常泥化;斜长石,半自形板柱状,少量见环带结构,An值1.0~27.8,且多低于17,常绢云母化;黑云母,鳞片状—丛状,MF值绝大多数0.13~0.21,个别0.28,绝大多数属铁黑云母。
5个侵入次岩石的岩性特征表明,洽水地区(连阳岩体南部和南侧小岩体)花岗岩从早期侵入次到晚期侵入次,矿物颗粒粒度、暗色矿物含量总体逐渐降低,表现为黑云母含量逐渐下降,其MF值逐渐降低,从铁质黑云母变为铁黑云母。角闪石从有到无,斜长石牌号(An值)逐渐降低。岩石副矿物含量变化较大,其中早期侵入体的副矿物含量较高,晚期副矿物含量逐渐减少,主要表现为磁铁矿、榍石含量随岩浆演化不断降低,但钛铁矿和独居石有所增加,晚期还常出现萤石,总体副矿物组合为典型的磁铁矿-钛铁矿-榍石-锆石组合系列。第一和第二侵入次岩石中常见有MME,第三和第四侵入次岩石中含少量MME。MME多呈椭圆状或浑圆状,具有石英“眼斑”结构及斜长石自形长板条结构、磷灰石针状结构等岩相学特征,表明其为幔源岩浆与壳源岩浆(主岩)发生混合的产物(Xie et al., 2020)。第一至第三侵入次的主岩中常见钾长石斑晶的“环斑”结构(幔状长石结构),也反映了壳-幔岩浆混合作用(Narayana et al., 2000; 王超等, 2008)。综合分析表明,洽水地区壳源花岗质岩浆经历了较明显的分离结晶作用和一定程度的壳幔岩浆混合作用(袁永盛等, 2020)。
4. 采样位置与测试方法
本次工作在洽水地区的连阳岩体南部及其南侧的白水寨、鸡笼岭、将军头花岗岩体共采集了12件新鲜的锆石U-Pb年代学样品。其中DP222-1、PM06-3采自第一侵入次粗—中粒斑状含角闪石黑云母二长花岗岩,PM06-54采自第二侵入次中—细粒斑状含角闪石黑云母二长花岗岩,PM06-53、DP225-1和DP245-1采自第三侵入次中—细粒斑状黑云母二长花岗岩,PM06-1、DP204-1、D2029-1、D3178-1和D3020-1采自第四侵入次中—细粒含斑黑云母二长花岗岩,DP202-1采自第五侵入次细粒含斑黑云母正长花岗岩(图 1c)。
野外在岩体新鲜未蚀变位置采集样品5 kg,采用人工重砂法分选出锆石。锆石颗粒用环氧树脂固定并抛光露出核部(宋彪等, 2002),然后进行透射光和反射光照相,并使用JXA 8100型电子探针进行阴极发光(CL)照相(图 6)。锆石LA-ICP-MS U-Pb定年工作在南京大学内生金属矿床成矿机制研究国家重点实验室完成,使用Agilent 7500a ICP-MS连接起来的New Wave 213 nm激光剥蚀系统完成。分析过程中,激光束斑直径32 μm,频率5 Hz。U-Pb分馏采用澳大利亚锆石标样GEMOC GJ-1 (207Pb/206Pb年龄为(608.5 ± 1.5)Ma, Jackson et al., 2004) 进行校正,以Mud Tank((732 ± 5)Ma, Black and Gulson, 1978)作为内标控制分析精度。U-Pb年龄计算由GLITTER软件(4.4) 在线获得。使用ComPbCorr#3-15G程序(Andersen, 2002)进行普通铅校正。年龄数据处理采用ICPMS Data Cal(8.9)(Liu et al., 2008)和Isoplot(3.0)(Ludwig, 2003)软件进行。详细测试方法和流程见Griffin et al.(2004)。
5. 分析结果
12件样品中锆石以无色或浅黄色、黄粉色、褐粉色为主,透明—半透明,金刚光泽,多呈自形—半自形双锥柱状、柱状,晶内裂纹较发育,部分可见黑色包体,柱面以(110)占绝对优势,表明锆石形成温度较高。在阴极发光(CL)图像上(图 6),大部分锆石具有典型酸性岩浆锆石的振荡环带,且Th/U比值较高(为0.1~3.9,平均值为0.9,表 1),均显著>0.1,表明锆石为岩浆成因(周剑雄和陈振宇, 2007)。锆石LA-ICP-MS U-Pb定年结果分别如下所述:
表 1 洽水地区第一至第五次花岗岩锆石 LA-ICP-MS U-Pb 测年结果Table 1. Zircon LA-ICP-MS U-Pb data of the first to fifth episodes granites in Qiashui region第一侵入次:样品DP222-1共分析了21个测点,结果见表 1和图 7a。其中19个测点的206Pb/238U年龄集中在106~95 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(100.2±1.8)Ma(n=19,MSWD=4.0)。16号点明显偏离谐和线,15号点给出了112 Ma的谐和206Pb/238U表面年龄,且该点的CL图像具有典型岩浆锆石振荡环带,为捕获锆石,因此上述测点在计算年龄时未统计在内。样品PM06-3共分析了22个测点,结果见表 1和图 7b。其中21个测点的206Pb/238U年龄集中在105~95 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(98.9 ± 1.1)Ma(n=21,MSWD= 4.3)。10号点给出了126 Ma的谐和206Pb/238U表面年龄,且该点的CL图像具有典型岩浆锆石振荡环带,为捕获锆石,计算年龄时未统计在内。
第二侵入次:样品PM06-54共分析了24个测点,结果见表 1和图 7c。其中22个测点的206Pb/238U年龄集中在105~96 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(99.9±0.9)Ma(n= 22,MSWD=2.6)。8号点明显偏离谐和线,14号点为捕获锆石(135 Ma),计算年龄时未统计在内。
第三侵入次:样品PM06-53共分析了12个测点,结果见表 1和图 7d。所有测点的206Pb/238U年龄集中在102~93 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(97.1 ± 1.7)Ma(n=12,MSWD=4.1)。样品DP225-1共分析了20个测点,结果见表 1和图 7e。所有测点的206Pb/238U年龄集中在105~97 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(101.4±0.9)Ma(n=20,MSWD= 0.9)。样品DP245-1共分析了20个测点,结果见表 1和图 7f。所有测点的206Pb/238U年龄集中在103~97 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(100.9±0.9)Ma(n=20,MSWD=1.4)。
第四侵入次:样品PM06-1共分析了25个测点,结果见表 1和图 8a。其中13个测点的206Pb/238U年龄集中在103~98 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(100.1±0.8)Ma(n=13,MSWD=1.4)。9、13、16和18号点明显均偏离谐和线;11号点给出了87 Ma的谐和206Pb/238U表面年龄,且该点的CL图像具有典型岩浆锆石振荡环带,表明可能为另一期岩浆活动产物;1、2、7、10、12、22和23号点均位于锆石核部,为捕获锆石(132~109 Ma),因此上述测点在计算年龄时未统计在内。样品DP204-1共分析了20个测点,结果见表 1和图 8b。其中17个测点的206Pb/238U年龄集中在105~94 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(98.0 ± 1.4)Ma(n=17,MSWD=2.6)。20号点给出了113 Ma的谐和206Pb/238U表面年龄,可能为捕获锆石;12、15号点给出了87 Ma的表面年龄,且该点的CL图像具有典型岩浆锆石振荡环带,表明可能为另一期岩浆活动产物,因此上述测点在计算年龄时未统计在内。样品D2029-1共分析了24个测点,结果见表 1和图 8c。其中16个测点的206Pb/238U年龄集中在106~98 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(101.1 ± 1.1)Ma(n=16,MSWD= 2.0)。14号点明显偏离谐和线,5、7、20、22和23号点为捕获锆石(144~109 Ma),13、17号点给出了63.8 Ma、53.9 Ma的谐和表面年龄,可能为另一期岩浆细脉混入。因此上述测点在计算年龄时未统计在内。样品D3178-1共分析了27个测点,结果见表 1和图 8d。其中19个测点的206Pb/238U年龄集中在104~97 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(99.9 ± 1.0)Ma(n=19,MSWD=3.6)。7、15和24号点明显偏离谐和线,4、5、14、21和22号点可能为捕获锆石(112~108 Ma),因此上述测点在计算年龄时未统计在内。样品D3020-1共分析了14个测点,结果见表 1和图 8e。所有测点的206Pb/238U年龄集中在103~94 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(99.5±1.1)Ma(n=14,MSWD=1.1)。
第五侵入次:样品DP202-1共分析了22个测点,结果见表 1和图 8f。其中21个测点的206Pb/238U年龄集中在107~96 Ma,且全落在U-Pb年龄谐和线上或附近,计算其加权平均年龄为(101.8±1.5)Ma(n=21,MSWD=2.4)。22号点获得明显偏年轻的206Pb/238U表面年龄(63±1)Ma,可能为另一期岩浆细脉混入。
总体而言,12件样品的有效测点数据均落在U-Pb年龄谐和线上或附近,具有非常一致的206Pb/238U年龄,总体集中在107~93 Ma,其加权平均年龄变化于(101.8±1.5)~(97.1±1.7)Ma,在误差范围内基本一致。上述年龄可代表洽水地区(连阳岩体南部和南侧小岩体)第一到第五侵入次花岗岩体的结晶(侵位)时代。
6. 讨论
6.1 洽水地区花岗岩体的形成时代
对于洽水地区(连阳岩体南部及南侧白水寨、鸡笼岭、将军头小岩体)花岗岩体的形成时代,由于缺乏精确的同位素年龄,前人曾认为其均是晚侏罗世岩浆活动的产物(高剑峰等, 2005; 广西壮族自治区地质调查院, 2005❶)。前人曾获得连阳岩体黑云母K-Ar年龄为99~98 Ma和130~125 Ma(全国同位素地质年龄数据汇编第四集, 1986; 广东省地质矿产局, 1988),全岩Rb-Sr年龄为104~100 Ma(广西壮族自治区地质调查院, 2005❶)。由于上述方法获得的年龄有可能是受热事件改造的年龄,无法确凿地解释为连阳岩体的形成时代。近年来,利用更高精度及地质解释更明确的LA-ICP-MS锆石U-Pb法获得连阳岩体中北部中—细粒花岗岩同位素年龄为104~81 Ma(马星华等, 2014; 中国地质调查局武汉地质调查中心, 2015❷),连阳岩体南部粗—中粒斑状含角闪石黑云母二长花岗岩的同位素年龄为(99.4±0.7)Ma(袁永盛等, 2020)。本次采用LA-ICP-MS锆石U-Pb法获得洽水地区第一侵入次粗—中粒斑状含角闪石黑云母二长花岗岩、第二侵入次中—细粒斑状含角闪石黑云母二长花岗岩、第三侵入次中—细粒斑状黑云母二长花岗岩、第四侵入次中—细粒含斑黑云母二长花岗岩和第五侵入次细粒含斑黑云母正长花岗岩的成岩年龄分别为(100.2±1.8)~(98.9±1.1)Ma、(99.9±0.9)Ma、(101.4±0.9)~(97.1±1.7)Ma、(101.1±1.1)~(98.0±1.4)Ma和(101.8±1.5)Ma,年龄在误差范围内基本一致,代表连阳岩体南部及其南侧的白水寨、鸡笼岭、将军头花岗岩体的形成时代属早—晚白垩世之交(100 Ma±)。
值得一提的是,此次在洽水地区12件样品中获得了21颗捕获锆石,其年龄主要集中于114~108 Ma(n=13),剩余在144~123 Ma(n=8)(表 1,图 7,图 8),显示研究区曾存在过这些时代范围的岩浆活动。另外,作者还获得连阳岩体南部的寨坳细粒少斑黑云正长花岗质岩株的LA-ICP-MS锆石U-Pb年龄为(114.4±1.0)Ma(另文发表)。据此,结合本次获得的连阳岩体南部及南侧小岩体的同位素年龄综合分析,认为高剑峰等(2005)所报道的144 Ma的粗—中粒花岗岩可能仅为整个连阳岩基的局部产物,表明144 Ma左右的岩浆活动在洽水地区不是主要期次,连阳岩体应该主要于~100 Ma形成。
6.2 华南燕山晚期岩浆活动时空分布
综合已有资料,华南燕山期岩浆活动的时间可大致归纳为“两期3阶段”,分别是燕山早期(190~140 Ma)、燕山晚期第1阶段(140~120 Ma)和燕山晚期第2阶段(120~80 Ma)(图 9)。空间上,燕山早期花岗质岩浆活动主要分布于华南内陆地区,如闽西南、赣南、粤北及湘南等地,主体呈NE向分布,而在南岭地区为近EW向分布;燕山晚期的岩浆活动则广泛发育在长江中下游、浙闽沿海、琼南等一带,以NNE向展布(孙涛, 2006)。
Figure 9. Histograms of isotopic ages for Yanshanian igneous rocks in South China (modified from Li et al., 2010; Jia Lihui, 2018)近年来发表的一系列年代学成果(表 2)显示早—晚白垩世之交(110~90 Ma)是华南重要的构造-岩浆活动时期之一(图 9),该时期岩浆岩的空间分布与燕山晚期岩浆活动范围基本一致,集中分布于政和—大埔断裂以东的东南沿海地区,内陆则产出局限,且大部分岩体以岩株形式产出(图 10)。该时期东南沿海地区形成了大量中酸性岩浆岩(I型、A型花岗岩)及少量玄武质岩石(王德滋和沈渭洲,2003),如浙闽沿海地区的普陀山—大洞岙碱长花岗岩(98~96 Ma)(Zhao et al., 2016)、蜡江—东埔黑云母花岗岩(110.1~105.3 Ma)与石湖黑云母二长花岗岩((105.1±0.5)Ma)(丁聪, 2013),粤东三饶花岗闪长岩((102±1.9)Ma)、新圩花岗闪长岩(106~105 Ma)和石英闪长岩((103.5 ± 1.2)Ma)(贾丽辉, 2018),云开地区的天堂二长花岗斑岩((104.5±0.4)Ma)、石菉花岗闪长岩((103.7±0.5)Ma)和石英闪长岩(104.1~103.2 Ma)(郑伟, 2016)等I型花岗岩,大青山—桃花岛—虾峙岛过碱性花岗岩(89~86 Ma)(Zhao et al., 2016)、瑶坑碱性花岗岩((91.3 ± 2.5)Ma)(肖娥等, 2007)、太姥山—鼓山黑云母花岗岩(99.4~96.6 Ma)(李良林等, 2013)、石牛山正长花岗斑岩((93.8±1.3)Ma)(邢光福等, 2009)、洪山花岗岩(99 Ma)(黄泉祯, 1998)等A型花岗岩,以及少量主要受长乐—南澳断裂所控制的中基性脉岩、玄武质岩石,如福建永泰玄武岩(~85 Ma)(Meng et al., 2012)等。
表 2 华南 110~90 Ma 花岗岩类年代学资料Table 2. Geochronological data of the 110-90 Ma granitoids in South China1—燕山期火山岩;2—燕山期侵入岩;3—燕山期玄武质岩石;4—代表性花岗岩体;5—代表性玄武岩体;6—地质块体边界;7—深大断裂;8—岩体名称及年龄/Ma(资料来源见表 2)Figure 10. Distribution of the 110-90 Ma granitoids and basaltic rocks in South China (modified from Zhou and Li, 2000; Wang et al., 2013)1-Yanshanian volcanics; 2-Yanshanian intrusives; 3-Yanshanian basaltic rocks; 4-Representative granitoid pluton; 5-Representative basaltic pluton; 6-Geological block boundary; 7-Deep fault; 8-Name and isotopic age /Ma of pluton (See Table 2 for data source)而华南腹地该期岩浆活动范围较窄,主要以零星状态分布,除本文及前人报道的连阳花岗岩体((106.4±0.7)~(97.6±1.5)Ma)(高剑峰等, 2005; 马星华等, 2014; 袁永盛等,2020)外,尚有广西大厂黑云母花岗岩((93±1)Ma)和斑状花岗岩((91±1)Ma)(蔡明海等, 2006)、米场角闪黑云母花岗闪长岩(110~109 Ma)、三叉冲黑云母花岗岩((103 ± 1)Ma)、油麻坡花岗闪长岩((105±1)Ma)(Wang et al., 2018),湘南界牌岭花岗斑岩((92.0±1.6)Ma)(卢友月等, 2013),粤北新坪花岗闪长岩((104.6±1.8)Ma)(李宏卫等, 2021)、雪山嶂花岗斑岩((103.4±1.2)Ma)(贾小辉等, 2014)等。
综上所述,早—晚白垩世之交(110~90 Ma)发生了华南燕山晚期一次重要的构造-岩浆事件,广泛发育了碱性花岗岩、A型花岗岩、I型花岗岩、中基性脉岩、玄武质岩石等双峰式岩浆岩及一系列断陷拉张盆地等(Li, 2000; 杨振等, 2014)。
6.3 构造环境
关于华南燕山期花岗岩形成的大地构造背景及深部动力学机制已先后提出了如活动大陆边缘(Zhou and Li, 2000)、岩石圈伸展减薄与拆沉(张旗等, 2001)、板内伸展-裂谷环境(陈志刚等, 2003)、弧后环境(孙涛等, 2003)、平板俯冲(Li and Li, 2007)等不同模式。目前普遍认为,自燕山期以来华南腹地已经逐渐转变成以伸展拉张为主的构造环境,并经历了多期重要的伸展事件,古太平洋板块俯冲/后撤背景下幔源玄武质岩浆的底侵作用可能是导致华南晚中生代花岗质岩浆活动的重要原因(Zhou and Li, 2000; Zhou et al., 2006; Wang et al., 2012; Duan et al., 2017; 李三忠等, 2018)。
大地构造位置上,研究区位于郴州—临武深大断裂附近(图 10)(高剑峰等, 2005; 马星华等, 2014),该断裂被认为是华夏地块与扬子地块的岩石圈尺度缝合线(即十—杭带)(Gilder et al., 1996),是一个反复活化、深达软流圈的古构造薄弱带(Xie et al., 2020), 沿该断裂带分布有大量的燕山期幔源玄武质岩石(178~63 Ma),如湖南宁远—道县玄武岩(Li et al., 2004)、回龙圩煌斑岩(Wang et al., 2003)、长城岭斜斑玄武岩(Zhao et al., 1998; 杨帆等, 2018)、衡阳玄武岩和赣西北禾埠玄武岩(Meng et al., 2012)等,与同期花岗岩近于同时产出。华南内陆同期基性岩浆整体上具有更加亏损的Sr-Nd同位素组成,表现出从岛弧玄武岩向板内玄武岩逐步转变的趋势(杨帆等, 2018),暗示华南内陆在燕山期(特别是燕山晚期)可能经历了持续的伸展拉张作用,致使深部的软流圈幔源物质向上迁移。前人曾在华南识别出多条具低TDM-高εNd(t)值的燕山期花岗岩带,其中华夏地块TDM<1.7 Ga,εNd(t)>-7.0被认为是幔源物质参与岩浆演化过程的重要体现(Chen et al., 1998; 陈江峰等, 1999)。连阳花岗岩体具相对较高的εNd(t)值(-10.6~-4.2)、较年轻的二阶段Nd模式年龄(TDM2)(1.79~1.24 Ga)和较大变化范围的εHf(t)值(-10.5~+1.2)(高剑峰等, 2005; 马星华等, 2014; 袁永盛等, 2020; 作者未发表数据),在空间上正处于华南内陆的杭州—诸广山—花山低TDM-高εNd(t)值带附近(Chen and Jahn, 1998),这进一步明确了幔源岩浆不仅提供了源区岩石熔融所需的热,也一定程度为区内花岗岩提供了成岩物质。该结论与前述根据岩相学特征认为MME发生了幔源与壳源岩浆的混合作用的推论相一致。
相对于燕山晚期东南沿海发育大面积与俯冲相关的陆缘弧岩浆活动,同时期岩浆作用在华南内陆地区表现较为微弱(周新民, 2007)。燕山期华南内陆地区的构造-岩浆活动同东南沿海地区并不一致。笔者认为连阳岩体的形成并非直接起源于大洋板块或其上覆地幔楔,而可能与古太平洋板块不规则反复俯冲/后撤所导致的陆内或弧后剪切拉张环境相关,伴随该后撤作用发育大量的伸展构造活动(Li and Li, 2007; 郑永飞等, 2013),伸展活动影响华南内陆原先存在的郴州—临武等深大断裂,使其重新活化,软流圈地幔流沿这些薄弱带向上侵蚀上涌,导致岩石圈减薄,引起软流圈及上覆的富集岩石圈地幔发生部分熔融,形成幔源玄武质岩浆,并底侵华南中元古代陆壳基底岩石使其部分熔融形成花岗质岩浆,随后,花岗质岩浆可与玄武质岩浆发生岩浆混合。
7. 结论
(1)洽水地区(连阳岩体南部及南侧白水寨、鸡笼岭、将军头小岩体)花岗岩体的岩性主要为粒度不等的(角闪)黑云母二长花岗岩,少量黑云正长花岗岩,依据岩性特征及穿切关系的不同可划分为5个侵入次。
(2)通过锆石LA-ICP-MS U-Pb定年,新获得洽水地区第一到第五侵入次的年龄分别为102~ 97 Ma,均属燕山晚期早—晚白垩世之交(100 Ma±)的岩浆产物。认为连阳岩体主要于~100 Ma形成,144~123 Ma和~114 Ma的岩浆活动在洽水地区仅局部产出。
(3)综合分析表明,早—晚白垩世之交是华南一次重要的构造-岩浆活动时期。同期古太平洋板块向欧亚板块的俯冲/后撤所诱发的伸展作用,导致华南内陆的郴州—临武等古深大断裂重新活化,并引起软流圈上涌和岩石圈减薄,进而导致较强烈的幔源和壳源岩浆活动。连阳岩体的形成与此密切相关。
注释
❶广西壮族自治区地质调查院. 2005. 1∶250 000贺州市幅区域地质调查报告.
❷中国地质调查局武汉地质调查中心. 2015. 1∶50 000南乡、上程、福堂圩、小三江等4幅区域地质矿产调查报告.
❸中国人民武装警察部队黄金第九支队. 2016. 1∶50 000博白县幅、六万山幅区域地质矿产调查报告.
致谢: 感谢两位审稿专家对本文提出的宝贵意见和建议。 -
图 3 薄膜扩散梯度技术示意图(据李财等, 2018)
Figure 3. Scheme of DGT technology (after Li Cai et al., 2018)
图 4 土壤、植物中Cd含量相关关系(据Dai et al., 2017)
Figure 4. Relationships between plant and soil Cd contents (after Dai et al., 2017)
图 5 岩溶地质高背景地区土壤Cd的可提取率(a)和生物富集系数(b)与非高背景地区的对比(据Wen et al., 2020)
Figure 5. Comparison of the extractable rate(a)and bioconcentration coefficient (b)of soil Cd in the high background area of karst area and the non-high background area (after Wen et al., 2020)
图 6 岩溶地质高背景地区土壤Cd的生物富集系数和可提取率的相关关系(据Wen et al., 2020)
Figure 6. Correlations between the bioconcentration coefficient and extractable rate of soil Cd in the high background area of karst area (after Wen et al., 2020)
图 7 不同提取方法对比(数据来源于Ma et al., 2020)
Figure 7. Comparison of different extraction methods (Data source from Ma et al., 2020)
图 8 XAFS在重金属赋存形态上的应用(修改自Gankhurel et al., 2020)
Figure 8. Application of XAFS method for heavy metal speciation determination (modified from Gankhurel et al., 2020)
图 9 稻米籽实中不同部位(A为纵向,B为横向)元素含量分布图(据Meng et al., 2014)
Figure 9. Elemental maps of longitudinal (A) and latitudinal (B) sections of rice grain(after Meng et al., 2014)
表 1 土壤环境质量标准中的重金属元素检测方法
Table 1 Detection methods of heavy metal elements in the national soil environmental quality standard
表 2 全国地球化学基准网分析指标及分析方法中的重金属元素检测方法
Table 2 Methods used for analysis of heavy metals in the China Geochemical Baselines Project
-
Arai Yuji, Elzinga Evert J, Sparks Donald L. 2001. X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface[J]. Journal of Colloid and Interface Science, 235(1): 80-88. doi: 10.1006/jcis.2000.7249
Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636(in Chinese with English abstract).
Brown Gordon, Calas Georges. 2012. Mineral-aqueous solution interfaces and their impact on the environment[J]. Geochemical Perspectives, 1(4/5): 483-742. http://pubs.geoscienceworld.org/perspectives/article-pdf/1/4-5/483/3148043/abstract.pdf
Chen Huamain, Zheng Chunrong, Tu Cong, Zhu Yongguan. 1999. Heavy metal pollution in soils in China: Status and countermeasures[J]. Ambio, 28(2): 130-134.
Cheng Hangxin, Li Min, Zhao Chuandong, Li Kuo, Peng Min, Qin Aihua, Cheng Xiaomeng. 2014. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 139: 31-52. doi: 10.1016/j.gexplo.2013.08.012
Cheng Hangxin, Yang Zhongfang, Xi Xiaohuan, Zhao Chuandong, Xie Xuejin. 2008. A new round of global geochemical mapping: Opportunity and challenge to China[J]. Earth Science Frontiers, 15(5): 9-22. doi: 10.1016/S1872-5791(09)60001-4
Cheng Shuiping. 2003. Heavy metal pollution in China: Origin, pattern and control[J]. Environmental Science and Pollution Research, 10(3): 192-198. doi: 10.1065/espr2002.11.141.1
China Geological Survey. 2005. DD2005-03 Technical Requirements for Sample Analysis of Ecological Geochemical Assessment[S]. Beijing, September, 2005(in Chinese).
CNEPA, MLR. 2014. The Bulletin of National Survey on Soil Pollution Status[EB/OL]. (2014-04-17)[2020-10-12]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf (in Chinese).
Cui Xingtao, Wang Xueqiu, Luan Wenlou. 2015. An analysis of modes of occurrence and biological availability of the heavy metal elements in soil of the central and southern plain in Hebei[J]. Geology in China, 42(2): 655-663(in Chinese with English abstract). http://www.researchgate.net/publication/281977009_An_analysis_of_modes_of_occurrence_and_biological_availability_of_the_heavy_metal_elements_in_soil_of_the_central_and_southern_plain_in_Hebei
Dai Yunchao, Nasir Mubasher, Zhang Yulin, Wu Haiming, Guo Honghong, Lü Jialong. 2017. Comparison of DGT with traditional methods for assessing cadmium bioavailability to Brassica chinensis in different soils[J]. Scientific Reports, 7(1): 14206. doi: 10.1038/s41598-017-13820-3
Duan Yiren, Yang Zhongfang, Yu Tao, Yang Qiong, Liu Xu, Ji Wenbing, Jiang Hongyu, Zhuo Xiaoxiong, Wu Tiansheng, Qin Jianxun, Wang Lei. 2020. Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi[J]. Environmental Pollution, 260: 113905. doi: 10.1016/j.envpol.2019.113905
Fedotov Petr S., Kördel Werner, Miró Manuel, Peijnenburg Willie J G M, Wennrich Rainer, Huang Panming. 2012. Extraction and fractionation methods for exposure assessment of trace metals, metalloids, and hazardous organic compounds in terrestrial environments[J]. Critical Reviews in Environmental Science and Technology, 42(11): 1117-1171. doi: 10.1080/10643389.2011.556544
Gankhurel Baasansuren, Fukushi Keisuke, Akehi Akitoshi, Takahashi Yoshio, Zhao Xiaolan, Kawasaki Kazuo. 2020. Comparison of chemical speciation of lead, arsenic, and cadmium in contaminated soils from a historical mining site: Implications for different mobilities of heavy metals[J]. ACS Earth and Space Chemistry, 4(7): 1064-1077. doi: 10.1021/acsearthspacechem.0c00087
Gao Yanxin, Feng Jinguo, Tang Lei, Zhu Xianfang, Liu Wenqing, Ji Hongbing. 2012. Fraction distribution and risk sssessment of heavy metals in iron and gold mine soil of Miyun Reservoir upstream[J]. Chinese Journal of Environmental Science, 33(5): 1707-1717(in Chinese with English abstract).
Gu Qiubei, Yang Zhongfang, Yu Tao, Ji Junfeng, Hou Qingye, Zhang Qizuan. 2019a. Application of ecogeochemical prediction model to safely exploit seleniferous soil[J]. Ecotoxicology and Environmental Safety, 177: 133-139. doi: 10.1016/j.ecoenv.2019.03.084
Gu Qiubei, Yu Tao, Yang Zhongfang, Ji Junfeng, Hou Qingye, Wang Lei, Wei Xueji, Zhang Qizuan. 2019b. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China[J]. Environmental Toxicology and Pharmacology, 70: 103199. doi: 10.1016/j.etap.2019.103199
Guo Xiaoxiao, Liu Congqiang, Zhu Zhaozhou, Wang Zhongliang, Li Jun. 2011. Evaluation methods for soil heavy metals contamination: A review[J]. Chinese Journal of Ecology, 30(5): 889-896(in Chinese with English abstract).
Han Chunmei, Wang Linshan, Gong Zongqiang, Xu Huaxia. 2005. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 24(12): 1499-1502(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXZ200512024.htm
He Bin, Jiang Guibin. 2002. Methods of pretreatment in mercury speciation analysis[J]. Journal of Instrumental Analysis, 21(1): 89-94(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TEST200201028.htm
Hou Qihui, Ma Anzhou, Zhuang Xuliang, Zhuang Guoqiang. 2013. Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor[J]. Chinese Journal of Environmental Science, 34(1): 347-356(in Chinese with English abstract).
Hou Qingye, Yang Zhongfang, Ji Junfeng, Yu Tao, Chen Guoguang, Li Juan, Xia Xueqi, Zhang Ming, Yuan Xuyin. 2014. Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China[J]. Journal of Geochemical Exploration, 139: 68-84. doi: 10.1016/j.gexplo.2013.08.007
Hou Qingye, Yang Zhongfang, Yu Tao, You Yuanhang, Dou Lei, Li Kuo. 2020. Impacts of parent material on distributions of potentially toxic elements in soils from Pearl River Delta in South China[J]. Scientific Reports, 10(1): 17394. doi: 10.1038/s41598-020-74490-2
Jia Xiyue, O'Connor David, Shi Zhou, Hou Deyi. 2021. VIRS based detection in combination with machine learning for mapping soil pollution[J]. Environmental Pollution, 268: 115845. doi: 10.1016/j.envpol.2020.115845
Jiang Wei, Hou Qingye, Yang Zhongfang, Yu Tao, Zhong Cong, Yang Yi, Fu Yangrong. 2014. Annual input fluxes of heavy metals in agricultural soil of Hainan Island, China[J]. Environmental Science and Pollution Research, 21(13): 7876-7885. doi: 10.1007/s11356-014-2679-0
Kim Rog-Young, Yoon Jeong-Ki, Kim Tae-Seung, Yang Jae E, Owens Gary, Kim Kwon-Rae. 2015. Bioavailability of heavy metals in soils: Definitions and practical implementation-a critical review[J]. Environmental Geochemistry and Health, 37(6): 1041-1061. doi: 10.1007/s10653-015-9695-y
Kodom K, Preko K, Boamah D. 2012. X-ray Fluorescence (XRF) Analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana[J]. Soil & Sediment Contamination, 21(8): 1006-1021. doi: 10.1080/15320383.2012.712073
Kunene Sikhumbuzo Charles, Lin Kuensong, Mdlovu Ndumiso Vukile, Lin Yousheng, Mdlovu Ncobile Bagezile. 2020. Speciation and fate of toxic cadmium in contaminated paddy soils and rice using XANES/EXAFS spectroscopy[J]. Journal of Hazardous Materials, 383: 121167. doi: 10.1016/j.jhazmat.2019.121167
Lai Xuehui, Liu Zijing, Yan Cai, Zhang Yuwei, Cheng Zhi. 2020. Morphological characteristics and risk analysis of heavy metals in farmland soil in the suburb of Taiyuan[J]. Journal of Shandong Agricultural University(Natural Science Edition), 51(2): 242-248(in Chinese with English abstract).
Lal Rattan, Stewart B. A. 2010. Food Security and Soil Quality[M]. Boca Raton: CRC Press, 408.
Lei Ming, Liao Bohan, Qin Pufeng. 2007. Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation[J]. Ecology and Environment, 16(5): 1551-1556(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200705042.htm
Li Bin, Wang Maohua, Liu Gang. 2011. Analysis of the status and problems of heavy metal pollution detection technology in farmland soil[C]//Proceedings of the 2011 Heavy Metal Pollution Prevention and Control Technology and Risk Assessment Seminar. Beijing: 165-172(in Chinese).
Li Cai, Ren Mingyi, Shi Dan, Wang Yan, Yang Liyuan, Ding Shimin. 2018. Diffusive gradient in thin films(DGT): Technological progress and prospects[J]. Journal of Agro-Environment Science, 37(12): 2613-2628(in Chinese with English abstract). http://www.researchgate.net/publication/333369996_Diffusive_gradient_in_thin_filmsDGTTechnological_progress_and_prospects
Li Cheng, Yang Zhongfang, Yu Tao, Hou Qingye, Liu Xu, Wang Jue, Zhang Qizuan, Wu Tiansheng. 2021. Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County, Guangxi[J]. Ecotoxicology and Environmental Safety, 208: 111505. doi: 10.1016/j.ecoenv.2020.111505
Li Feili, Liu Congqiang, Song Zhaoliang. 2005. A review of fractionation of heavy metals in soils[J]. Environmental Monitoring in China, 21(4): 21-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-IAOB200504006.htm
Li Kuo, Peng Min, Zhao Chuandong, Yang Ke, Zhou Yalong, Liu Fei, Tang Shiqi, Yang Fan, Han Wei, Yang Zheng, Cheng Xiaomeng, Xia Xueqi, Guan Tao, Luo Jianlan, Cheng Hangxin. 2019. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 26(6): 128-158(in Chinese with English abstract).
Li Ting, Wu Minghui, Wang Yue, Yang Huaju, Tang Chundong, Duan Changqun. 2020. Advances in research on the effects of human disturbance on biogeochemical processes of heavy metals and remediation[J]. Acta Ecologica Sinica, 40(13): 4679-4688(in Chinese with English abstract).
Li Wei, Harrington Richard, Tang Yuanzhi, Kubicki James D, Aryanpour Masoud, Reeder Richard J, Parise John B, Phillips Brian L. 2011. Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina[J]. Environmental Science & Technology, 45(22): 9687-9692. http://europepmc.org/abstract/MED/21988151
Li Wei, Livi Kenneth J T, Xu Wenqian, Siebecker Matthew G, Wang Yujun, Phillips Brian L, Sparks Donald L. 2012. Formation of crystalline Zn-Al layered double hydroxide precipitates on gamma-Alumina: The role of mineral dissolution[J]. Environmental Science & Technology, 46(21): 11670-11677. http://www.ncbi.nlm.nih.gov/pubmed/23043294
Li Zhiyuan, Ma Zongwei, van der Kuijp Tsering Jan, Yuan Zengwei, Huang Lei. 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 468-469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090
Liao Vivian Hsiu-Chuan, Chien Mingte, Tseng Yuenyi, Ou Kunlin. 2006. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors[J]. Environmental Pollution, 142(1): 17-23. doi: 10.1016/j.envpol.2005.09.021
Lin Chengqi, Huang Huabin, Hu Gongren, Yu Ruilian, Hao Chunli, Lin Ying. 2019. Assessment of the speciation and pollution of heavy metals in paddy soils from the Jiulong River Basin[J]. Chinese Journal of Environmental Science, 40(1): 453-460(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/30628305
Liu Dongsheng, Yang Zhongfang, Xia Xueqi, Hou Qingye, Yu Tao. 2008. Geochemical characteristics and fluxes of elements in rain water and soil leaching water in the Chengdu economic region[J]. Earth Science Frontiers 15(5): 74-81(in Chinese with English abstract). http://www.researchgate.net/publication/284700327_Geochemical_characteristics_and_fluxes_of_elements_in_rain_water_and_soil_leaching_water_in_the_Chengdu_economic_region
Liu Guodong, Yang Ze, Dai Huimin, Zhang Yihe, Xiao Hongye, Chen Jiang. 2020. Geochemical evaluation of land quality and development suggestion of land in Hailun City of Heilongjiang Province[J]. Geology and Resources, 29(6): 533-542(in Chinese with English abstract).
Liu Huafeng, Zhang Surong, Dai Jierui, Wang Zenghui, Ren Wenkai. 2020. Characteristics and influencing factors of total nitrogen and alkaline-hydrolyzed nitrogen in surface soil from Diaozhen town and Xinzhai town in Zhangqiu district[J]. Geological Survey and Research, 43(3): 240-245(in Chinese with English abstract).
Liu Jin, Tu Yaoren, Duan Yanping, Zhang Hao. 2020. Research progresses of Cu-Isotope-Tracer technique in environmental applications[J]. Environmental Protection Science, 46(2): 85-92(in Chinese with English abstract).
Liu Sijia, Wang Xuedong, Guo Guanlin, Yan Zengguang. 2021. Status and environmental management of soil mercury pollution in China: A review[J]. Journal of Environmental Management, 277: 111442. doi: 10.1016/j.jenvman.2020.111442
Liu Xiaohui. 2015. Zhao Qiguo talks about China's soil heavy metal pollution and the countermeasures[EB/OL]. (2015-10-29)[2020-10-12]. http://www.mnr.gov.cn/dt/ywbb/201810/t20181030_2280298.html (in Chinese)
Liu Yizhang, Xiao Tangfu, Zhu Jianming. 2015. Cadmium isotopes and environmental tracing[J]. Earth and Environment, 43(6): 687-696(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201506013.htm
Luo Yongming, Teng Ying. 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 33(2): 145-152(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYX201802005.htm
Ma Qiang, Zhao Wanfu, Guan Dongxing, Teng H. Henry, Ji Junfeng, Ma Lena Q. 2020. Comparing CaCl2, EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils[J]. Environmental Pollution, 260: 114042. doi: 10.1016/j.envpol.2020.114042
Ma Xuemei, Tian Dazheng, Li Wei, He Jin. 2020. Geochemical evaluation of land quality in Qvyang County[J]. Geological Survey and Research, 43(3): 230-239(In Chinese with English abstract).
McNear D H, Tappero R, Sparks D L. 2005. Shining light on metals in the environment[J]. Elements, 1(4): 211-216. doi: 10.2113/gselements.1.4.211
Meng Bo, Feng Xinbin, Qiu Guangle, Anderson Christopher W N, Wang Jianxu, Zhao Lei. 2014. Localization and speciation of mercury in brown rice with implications for Pan-Asian public health[J]. Environmental Science & Technology, 48(14): 7974-7981. http://www.ncbi.nlm.nih.gov/pubmed/24925231
Moor Christoph, Lymberopoulou Theopisti, Dietrich Volker J. 2001. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS[J]. Microchimica Acta, 136(3): 123-128. doi: 10.1007/s006040170041
Peralta Elena, Pérez Gustavo, Ojeda Gerardo, Alcañiz Josep Maria, Valiente Manuel, López-Mesas Montserrat, Sánchez-Martín María-Jesús. 2020. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils[J]. Science of the Total Environment, 726: 138670. doi: 10.1016/j.scitotenv.2020.138670
Priyadarshi Himanshu, Alam Absar, Gireesh-Babu P, Das Rekha, Kishore Pankaj, Kumar Shivendra, Chaudhari Aparna. 2012. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(Ⅱ) in environment[J]. Journal of Environmental Sciences, 24(5): 963-968. doi: 10.1016/S1001-0742(11)60820-6
Rasmussen L D, Sorensen S J, Turner R R, Barkay T. 2000. Application of a merlux biosensor for estimating bioavailable mercury in soil[J]. Soil Biology & Amp; Biochemistry, 32(5): 639-646. http://www.cabdirect.org/abstracts/20001912453.html
Shan Yushu, Tysklind Mats, Hao Fanghua, Ouyang Wei, Chen Siyang, Lin Chunye. 2013. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS[J]. Journal of Soils and Sediments, 13(4): 720-729. doi: 10.1007/s11368-012-0637-3
Siebecker Matthew, Li Wei, Khalid Syed, Sparks Donald L. 2014. Real-time QEXAFS spectroscopy measures rapid precipitate formation at the mineral-water interface[J]. Nature Communications, 5: 5003. doi: 10.1038/ncomms6003
Smith David B, Smith Steven M, Horton John D. 2013. History and evaluation of national-scale geochemical data sets for the United States[J]. Geoscience Frontiers, 4(2): 167-183. doi: 10.1016/j.gsf.2012.07.002
Soodan Rajneet Kour, Pakade Yogesh B, Nagpal Avinash, Katnoria Jatinder Kaur. 2014. Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review[J]. Talanta, 125: 405-410. doi: 10.1016/j.talanta.2014.02.033
Sparks Donald L. 2015. Advances in coupling of kinetics and molecular scale tools to shed light on soil biogeochemical processes[J]. Plant and Soil, 387(1/2): 1-19. doi: 10.1007/s11104-014-2251-1
Tang Qifeng, Yang Zhongfang, Zhang Benren, Jin Lixin, Liu Aihua. 2007. Cadmium flux in soils of the agroecosystem in the Chengdu economic region, Sichuan, China[J]. Geological Bulletin of China, 26(7): 869-877(in Chinese with English abstract). http://www.cqvip.com/QK/95894A/200707/24926369.html
Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851. doi: 10.1021/ac50043a017
Wang Jianhua, Tao Peifeng, Yuan Yue, Li Zhizhong, Yang Jiajia. 2020. PSR-based evaluation of the cultivated land quality in Hailun City of Heilongjiang Province[J]. Geology and Resources, 29(6): 525-532(in Chinese with English abstract).
Wang Liyuan, Peng Xianglian, Fu Hongjun, Huang Chao, Li Yaping, Liu Zhiming. 2020. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food[J]. Biosensors & Bioelectronics, 147: 111777. http://www.sciencedirect.com/science/article/pii/S0956566319308565
Wang Xueqiu, Zhou Jian, Xu Shanfa, Chi Qinghua, Nie Lanshi, Zhang Bimin, Yao Wensheng, Wang Wei, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Liu Qingqing. 2016. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 43(5): 1469-1480(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201605001.htm
Wen Yubo, Li Wei, Yang Zhongfang, Zhuo Xiaoxiong, Guan Dongxing, Song Yinxian, Guo Chao, Ji Junfeng. 2020. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China[J]. Environmental Pollution, 258: 113645. doi: 10.1016/j.envpol.2019.113645
Wu Chunlin, Wang Ruiting, Ding Kun, Han Ling. 2018. Geochemical survey and evaluation on soil quality in China: Research status and advances[J]. Northwestern Geology, 251(3): 240-252(in Chinese with English abstract).
Wu Guanghai, Wang Chensheng, Chen Honghan. 2020. Eco-environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten-molybdenum mine area in Inner Mongolia[J]. Geology in China, 47(6): 1838-1852(in Chinese with English abstract).
Xi Xiaohuan. 2008. Ecological geochemistry: From a geochemical survey to an applied theory[J]. Earth Science Frontiers, 15(5): 1-8(In Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/28404762.html
Xi Xiaohuan. 2004. Eco-geochemical research and eco-geochemical evaluation[J]. Geophysical and Geochemical Exploration, 28(1): 10-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200401002.htm
Yang Qianqi, Li Zhiyuan, Lu Xiaoning, Duan Qiannan, Huang Lei, Bi Jun. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068
Yang Zhongfang, Yu Tao, Hou Qingye, Xia Xueqi, Feng Haiyan, Huang Chunlei, Wang Lisheng, Lü Yaoyao, Zhang Meng. 2014. Geochemical evaluation of land quality in China and its applications[J]. Journal of Geochemical Exploration, 139: 122-135. doi: 10.1016/j.gexplo.2013.07.014
Zhang Hao, Zhao Fangjie, Sun Bo, Davison William, Mcgrath Steve P. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants[J]. Environmental Science & Technology, 35(12): 2602-2607. http://europepmc.org/abstract/MED/11432571
Zhang Hongzhen, Luo Yongming, Song Jing, Yu Haibo, Wu Longhua, Weng Liping, Zhao Qiguo. 2010. Solid-solution partitioning of soil heavy metals and free-ion concentration measurement in neutral salt extractions[J]. Acta Scientiae Circumstantiae, 30(1): 124-132(in Chinese with English abstract). http://www.oalib.com/paper/1591084
Zhang Jie, Xu Zhengqi, Huang Huan, Tian Jianmin, Zhang Guodong. 2020. Characteristics and speciation analysis of heavy metals in soils around a phosphate mining area in Mabian, Sichuan[J]. Sichuan Environment, 39(2): 9-15(in Chinese with English abstract).
Zhang Lei, Wu Yongning, Zhao Yunfeng. 2007. Study on the stability of different forms of arsenic compounds and sample pretreatment technology in the analysis of arsenic[J]. Foreign Medical Sciences (Section Hygiene), 34(4): 238-244 (in Chinese).
Zhang Qiaochu, Wang Chengchen. 2020. Natural and human factors affect the distribution of soil heavy metal pollution: A review[J]. Water, Air, & Soil Pollution, 231(7). https://doi.org/10.1007/s11270-020-04728-2.
Zhang Qin. 2005. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Research, 25(3): 292-297(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200503003.htm
Zhao Fangjie, Ma Yibing, Zhu Yongguan, Tang Zhong, McGrath Steve P. 2015. Soil Contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=101065609&site=ehost-live
Zhong Cong, Yang Zhongfang, Jiang Wei, Yu Tao, Hou Qingye, Li Desheng, Wang Jianwu. 2014. Annual input fluxes and source identification of trace elements in atmospheric deposition in Shanxi Basin: The largest coal base in China[J]. Environmental Science and Pollution Research, 21(21): 12305-12315. doi: 10.1007/s11356-014-3052-z
Zhong Xiaolan, Zhou Shenglu, Huang Mingli, Zhao Qiguo. 2009. Chemical form distribution characteristic of soil heavy metals and its influencing factors[J]. Ecology and Environmental Sciences, 18(4): 1266-1273(in Chinese with English abstract). http://www.researchgate.net/publication/304361904_Chemical_form_distribution_characteristic_of_soil_heavy_metals_and_its_influencing_factors
Zhou Weihong, Zhang Jingjing, Zou Mengmeng, Du Xiaolong, Zhang Ying, Yang Yue, Li Jianlong. 2017. The detection and monitoring of available heavy metal content in soil: A review[J]. Chinese Journal of Eco-Agriculture, 25(4): 605-615(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTN201704015.htm
Zhou Weihong, Zhang Jingjing, Zou Mengmeng, Liu Xiaoqing, Du Xiaolong, Wang Qian, Liu Yangyang, Liu Ying, Li Jianlong. 2019. Feasibility of using rice leaves hyperspectral data to estimate CaCl2 extractable concentrations of heavy metals in agricultural soil[J]. Scientific Reports, 9(1): 16084. doi: 10.1038/s41598-019-52503-z
Zhou Jianjun, Zhou Jie, Feng Renguo. 2014. Current status of soil heavy metal pollution and its control strategy in China[J]. Bulletin of the Chinese Academy of Sciences, 29(3): 310-315, 350(in Chinese).
鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200602&flag=1 崔邢涛, 王学求, 栾文楼. 2015. 河北中南部平原土壤重金属元素存在形态及生物有效性分析[J]. 中国地质, 42(2): 655-663. doi: 10.3969/j.issn.1000-3657.2015.02.023 高彦鑫, 冯金国, 唐磊, 朱先芳, 刘文清, 季宏兵. 2012. 密云水库上游金属矿区土壤中重金属形态分布及风险评价[J]. 环境科学, 33(5): 1707-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205048.htm 郭笑笑, 刘丛强, 朱兆洲, 王中良, 李军. 2011. 土壤重金属污染评价方法[J]. 生态学杂志, 30(5): 889-896. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201105007.htm 韩春梅, 王林山, 巩宗强, 许华夏. 2005. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 24(12): 1499-1502. doi: 10.3321/j.issn:1000-4890.2005.12.025 何滨, 江桂斌. 2002. 汞形态分析中的前处理技术[J]. 分析测试学报, 21(1): 89-94. doi: 10.3969/j.issn.1004-4957.2002.01.029 侯启会, 马安周, 庄绪亮, 庄国强. 2013. 微生物全细胞传感器在重金属生物可利用度监测中的研究进展[J]. 环境科学, 34(1): 347-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201301056.htm 环境保护部, 国土资源部. 2014. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2020-10-12]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf 来雪慧, 刘子婧, 闫彩, 张玉薇, 程志. 2020. 太原市郊区农田土壤重金属的形态特征及其风险分析[J]. 山东农业大学学报(自然科学版), 51(2): 242-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHO202002010.htm 雷鸣, 廖柏寒, 秦普丰. 2007. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 16(5): 1551-1556. doi: 10.3969/j.issn.1674-5906.2007.05.043 李斌, 汪懋华, 刘刚. 2011. 农田土壤重金属污染及检测技术现状与问题分析[C]//2011年重金属污染防治技术及风险评价研讨会论文集. 北京: 165-172. 李财, 任明漪, 石丹, 王燕, 杨丽原, 丁士明. 2018. 薄膜扩散梯度(DGT)-技术进展及展望[J]. 农业环境科学学报, 37(12): 2613-2628. doi: 10.11654/jaes.2018-1403 李非里, 刘丛强, 宋照亮. 2005. 土壤中重金属形态的化学分析综述[J]. 中国环境监测, 21(4): 21-27. doi: 10.3969/j.issn.1002-6002.2005.04.007 李括, 彭敏, 赵传冬, 杨柯, 周亚龙, 刘飞, 唐世琪, 杨帆, 韩伟, 杨峥, 成晓梦, 夏学齐, 关涛, 骆检兰, 成杭新. 2019. 全国土地质量地球化学调查二十年[J]. 地学前缘, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm 李婷, 吴明辉, 王越, 杨化菊, 唐春东, 段昌群. 2020. 人类扰动对重金属元素的生物地球化学过程的影响与修复研究进展[J]. 生态学报, 40(13): 4679-4688. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202013042.htm 林承奇, 黄华斌, 胡恭任, 于瑞莲, 郝春莉, 林颖. 2019. 九龙江流域水稻土重金属赋存形态及污染评价[J]. 环境科学, 40(1): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901055.htm 刘东盛, 杨忠芳, 夏学齐, 侯青叶, 余涛. 2008. 成都经济区天降水与下渗水元素地球化学特征及土壤元素输入输出通量[J]. 地学前缘, 15(5): 74-81. doi: 10.3321/j.issn:1005-2321.2008.05.008 刘国栋, 杨泽, 戴慧敏, 张一鹤, 肖红叶, 陈江. 2020. 黑龙江省海伦市长发镇土地质量地球化学评价及开发建议[J]. 地质与资源, 29(6): 533-542. 刘华峰, 张素荣, 代杰瑞, 王增辉, 任文凯. 2020. 章丘区刁镇和辛寨镇表层土壤全氮与碱解氮特征及影响因素[J]. 地质调查与研究, 43(3): 240-245. doi: 10.3969/j.issn.1672-4135.2020.03.007 刘靳, 涂耀仁, 段艳平, 张浩. 2020. Cu同位素示踪技术应用于环境领域的研究进展[J]. 环境保护科学, 46(2): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBH202002017.htm 刘晓慧. 2015. 赵其国谈我国土壤重金属污染问题与治理的对策[EB/OL]. (2015-10-29)[2020-10-12]. http://www.mnr.gov.cn/dt/ywbb/201810/t20181030_2280298.html 刘意章, 肖唐付, 朱建明. 2015. 镉同位素及其环境示踪[J]. 地球与环境, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm 骆永明, 滕应. 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802005.htm 马雪梅, 田大争, 李伟, 何锦. 2020. 曲阳县土地质量地球化学评价[J]. 地质调查与研究, 43(3): 230-239. doi: 10.3969/j.issn.1672-4135.2020.03.006 汤奇峰, 杨忠芳, 张本仁, 金立新, 刘爱华. 2007. 成都经济区农业生态系统土壤镉通量研究[J]. 地质通报, 26(7): 869-877. doi: 10.3969/j.issn.1671-2552.2007.07.011 [英] Ure A M, Davidson C M. 著. 2010. 环境中的化学形态(第二版)[M]. 王亚平, 许春雪, 王苏明, 安子怡, 王岚, 李艳艳, 译. 北京: 中国标准出版社, 1-393. 王建华, 陶培峰, 袁月, 李志忠, 杨佳佳. 2020. PSR框架下的黑龙江省海伦市耕地质量评价[J]. 地质与资源, 29(6): 525-532. 王学求, 周建, 徐善法, 迟清华, 聂兰仕, 张必敏, 姚文生, 王玮, 刘汉粮, 刘东盛, 韩志轩, 柳青青. 2016. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 43(5): 1469-1480. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160501&flag=1 武春林, 王瑞廷, 丁坤, 韩玲. 2018. 中国土壤质量地球化学调查与评价的研究现状和进展[J]. 西北地质, 51(3): 240-252. doi: 10.3969/j.issn.1009-6248.2018.03.023 邬光海, 王晨昇, 陈鸿汉. 2020. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 47(6): 1838-1852. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200619&flag=1 奚小环. 2008. 生态地球化学: 从调查实践到应用理论的系统工程[J]. 地学前缘, 15(5): 1-8. doi: 10.3321/j.issn:1005-2321.2008.05.001 奚小环. 2004. 生态地球化学与生态地球化学评价[J]. 物探与化探, 28(1): 10-15. doi: 10.3969/j.issn.1000-8918.2004.01.002 张红振, 骆永明, 宋静, 余海波, 吴龙华, 翁丽萍, 赵其国. 2010. 基于中性盐提取的土壤重金属固液分配与自由态金属离子浓度测定[J]. 环境科学学报, 30(1): 124-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201001018.htm 张杰, 徐争启, 黄寰, 田建民, 张国栋. 2020. 四川马边某磷矿区土壤重金属特征及形态分析[J]. 四川环境, 39(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002002.htm 张磊, 吴永宁, 赵云峰. 2007. 不同形态砷化合物稳定性研究和砷形态分析中样品前处理技术[J]. 国外医学(卫生学分册), 34(4): 238-244. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYX200704009.htm 张勤. 2005. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 25(3): 292-297. doi: 10.3321/j.issn:1001-7410.2005.03.004 中国地质调查局. 2005. DD 2005-03生态地球化学评价样品分析技术要求(试行)[S]. 北京: 2005年10月. 钟晓兰, 周生路, 黄明丽, 赵其国. 2009. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 18(4): 1266-1273. doi: 10.3969/j.issn.1674-5906.2009.04.013 周建军, 周桔, 冯仁国. 2014. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 29(3): 310-315, 350. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201403008.htm 周卫红, 张静静, 邹萌萌, 杜小龙, 张颖, 杨悦, 李建龙. 2017. 土壤重金属有效态含量检测与监测现状、问题及展望[J]. 中国生态农业学报, 25(4): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201704015.htm -
期刊类型引用(4)
1. 马兴涛. 土壤水入渗参数非线性预测模型改进及应用研究. 水利技术监督. 2024(04): 238-242 . 百度学术
2. 刘泳佚,史婷婷,王清,刘添文,刘亚磊,李梦茹. 江汉平原过渡带黏性层状土弥散试验与模拟研究. 水文地质工程地质. 2023(01): 41-50 . 百度学术
3. 刘广景. 煤层气高产水井原因分析及水源识别——以沁水盆地柿庄南区块3号煤井为例. 天然气勘探与开发. 2023(03): 123-130 . 百度学术
4. 魏玉涛,刘明欢,刘可,普薇如. 多尺度土壤水监测研究进展. 中国农学通报. 2021(26): 140-145 . 百度学术
其他类型引用(3)