• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

新疆东准噶尔扎河坝橄榄岩单斜辉石、铬尖晶石地球化学特征及铬铁矿成矿作用

王召林, 孟贵祥, 汤贺军, 袁璐璐, 杨竹森, 肖艳东

王召林, 孟贵祥, 汤贺军, 袁璐璐, 杨竹森, 肖艳东. 新疆东准噶尔扎河坝橄榄岩单斜辉石、铬尖晶石地球化学特征及铬铁矿成矿作用[J]. 中国地质, 2021, 48(2): 477-494. DOI: 10.12029/gc20210209
引用本文: 王召林, 孟贵祥, 汤贺军, 袁璐璐, 杨竹森, 肖艳东. 新疆东准噶尔扎河坝橄榄岩单斜辉石、铬尖晶石地球化学特征及铬铁矿成矿作用[J]. 中国地质, 2021, 48(2): 477-494. DOI: 10.12029/gc20210209
WANG Zhaolin, MENG Guixiang, TANG Hejun, YUAN Lulu, YANG Zhusen, XIAO Yandong. Geochemistry of clinopyroxene and chrome spinel in the Zhaheba peridotite, Eastern Junggar, Xinjiang, China and its chromitite metallogenesis[J]. GEOLOGY IN CHINA, 2021, 48(2): 477-494. DOI: 10.12029/gc20210209
Citation: WANG Zhaolin, MENG Guixiang, TANG Hejun, YUAN Lulu, YANG Zhusen, XIAO Yandong. Geochemistry of clinopyroxene and chrome spinel in the Zhaheba peridotite, Eastern Junggar, Xinjiang, China and its chromitite metallogenesis[J]. GEOLOGY IN CHINA, 2021, 48(2): 477-494. DOI: 10.12029/gc20210209

新疆东准噶尔扎河坝橄榄岩单斜辉石、铬尖晶石地球化学特征及铬铁矿成矿作用

基金项目: 

中国地质调查局项目 DD20190071

中国地质科学院基本科研业务费项目 JKY201908-01

详细信息
    作者简介:

    王召林, 男, 1978年生, 博士, 教授级高级工程师, 主要从事金属矿产勘查、研究工作; E-mail: geology231@126.com

  • 中图分类号: P618.33

Geochemistry of clinopyroxene and chrome spinel in the Zhaheba peridotite, Eastern Junggar, Xinjiang, China and its chromitite metallogenesis

Funds: 

the project of China Geological Survey DD20190071

scientific research project of Chinese Academy of Geological Sciences JKY201908-01

More Information
    Author Bio:

    WANG Zhaolin, male, born in 1978, senior engineer, engaged in metal mineral exploration and research; Email: geology231@126.com

  • 摘要:

    扎河坝蛇绿岩是东准噶尔地区一条重要的蛇绿岩带,主要由橄榄岩、层状辉长岩、玄武岩、斜长花岗岩、硅质岩等组成。其中橄榄岩主要由方辉辉橄岩(方辉橄榄岩)、二辉橄榄岩和少量纯橄岩组成。二辉橄榄岩中的单斜辉石Cr2O3平均1.11%,Al2O3平均4.77%,MgO平均16.99%,CaO平均21.84%,SiO2平均50.00%;铬尖晶石副矿物具有较低的Cr2O3(平均40.35%)、Cr#(平均0.53)和更高的Al2O3(平均24.10%),MgO(平均13.23%)和Mg#(0.62)含量,属高Al型,橄榄岩形成于扎河坝洋扩张时期(MOR环境);块状铬铁矿铬尖晶石各元素含量变化较小:Cr2O3平均55.45%,Al2O3平均10.88%,MgO平均11.98%和Mg#为0.60,属SSZ背景高Cr型铬铁矿。二辉橄榄岩单斜辉石具有典型的熔融残余结构和熔-岩反应结构,斜方辉石保留绢石化假晶和部分未蚀变的辉石残余体(主要是顽火辉石),铬尖晶石副矿物具有熔蚀特征。单斜辉石的熔融残余结构是含铬矿物熔融、释放铬的一种表现,是橄榄岩部分熔融程度升高,向更富镁方向演化的结构标志,但可能对富Cr型铬铁矿的形成贡献有限。橄榄岩存在熔-岩反应新生的单斜辉石、橄榄石及结构标志。熔-岩反应过程中流体、挥发分的作用不可忽视。文章还探讨了铬铁矿Cr#、Mg#和Al2O3含量差异与蛇绿岩形成的构造背景关系及影响因素。卡拉麦里洋壳俯冲和地幔对流循环使扎河坝早期形成于MOR环境的富Al铬尖晶石富集,形成高Cr块状铬铁矿。

    Abstract:

    Zhaheba ophiolite is a significant ophiolite complex in Eastern Junggar, consisting mainly of peridiotite, basalt, layered gabbro, plagiogranite and chert. Among them, the peridiotite is mainly composed of harzburgite, herzolite, and minor dunite. The average contents of clinopyroxene in herzolite are Cr2O3 1.11%, Al2O3 4.77%, MgO 16.99%, CaO 21.84%, SiO2 50.00%, and the accessory mineral chromium spinel falling within the high-Al types has lower average contents Cr2O3 40.35%、Cr# 0.53 but higher Al2O3 24.10%, MgO 13.23% and Mg#(0.62), which indicate that it was formed during the extension of Zhaheba ocean in MOR environment. While the element contents of chrome spinels in massive chromites changes little with average contents of Cr2O3 55.45%、Al2O3 10.88%, MgO 11.98% and Mg# 0.60, which fall in high-Cr type fields and belong to SSZ type of chromites. Clinopyroxenes in herzolite is characterized by typical structures of melted residue and melt-rock reaction, and orthopyroxene in harzburgite kept bastitic pseudomorphs and unaltered enstatites, but chrome spinel accessory minerals show corrosion features. The melting residual structure of monocline is a manifestation of the melting and chromium release of chromium-bearing minerals, and also a structural indicator of the partial melting degree of peridotite increasing and the evolution towards more magnesium rich direction, which may have limited contribution to the formation of Cr-rich chromite. The peridotite contains monoclinopyroxene, olivine and textures newly generated from melt-rock reaction. The role of fluid and volatiles in the melt-rock reaction cannot be ignored. Based on the above studies, the relationship among the content differences of Cr#、Mg# and Al2O3 of chromite and tectonic settings of ophiolite, and its influence factors are discussed. It is concluded that mantle convection and subduction of Kalamaili ocean led to the enrichment of the high-Al chrome spinels in MOR environment and forming of massive chromites.

  • 甘肃省高台县大青山地区地处阿拉善地块龙首山基底杂岩带,位于酒东盆地马营凹陷东段山前沉积盆地北缘(图 1a)。区内主要出露有古元古界—新太古界龙首山岩群、中元古界蓟县系墩子沟群、海西期侵入岩、侏罗系龙凤山组和白垩系庙沟组(图 1b)。

    图  1  甘肃省高台县大青山地区大地构造位置图(a)、区域地质图(b)以及ZK1201岩性柱状图(c),含油气岩心照片(d-g)和油气成藏模式图(h)
    Figure  1.  Tectonic location (a), regional geological map(b), lithology column(c) and drill photos of ZK1201 (d-g), hydrocarbon accumulation pattern (h) in the Daqingshan area of Gaotai County, Gansu Province

    为实现研究区金属资源和油气资源的综合调查,中国地质调查局发展研究中心联合甘肃省地调院、探矿工程所、吉林大学在前期“甘肃省高台县臭泥墩—西小口子地区三幅1∶5万矿产远景调查”项目基础上,通过开展专题地质填图、矿产综合信息预测、智能找矿预测等工作,部署实施钻孔ZK1201,以期实现找矿突破。

    利用研究区地质调查、磁法、激电测深、化探数据和无人机影像等资料,开展综合信息解译。采用卷积和孪生网络神经网络模型对区内典型金属矿床成矿作用特征标志、油气赋矿层位进行深度学习,提出工程验证建议。钻探验证所采用钻机为汽车钻,整机包括车底盘、动力系统、液压系统、操控系统等。

    在综合研究和智能预测的基础上,布设的ZK1201孔在钻穿早二叠世花岗闪长岩(图 1c)后,钻遇地层,续钻至393.8 m后终孔(图 1c)。此次工作共钻遇中侏罗统龙凤山组地层220 m,共发现14层油层(总厚145 m,单层最大厚度28 m,最小厚度1.4 m)。钻孔含油性由上部砾岩(油斑级以下)向下部砂岩(富含油或饱含油)逐渐增多,其中高角度裂缝普遍见可流动原油(图 1d~g)。经国家地质实验测试中心分析,原油中饱和烃、芳烃含量分别占32.4%和34.6%,为高品质轻质原油。原油中正构烷烃分布完整,主峰碳数、奇偶优势及甾烷和藿烷分布都指示其陆相烃源岩来源。

    野外地质调查发现,白垩系庙沟组近水平发育,与下伏侏罗系龙凤山组呈角度不整合接触。庙沟组主要由厚层暗色泥岩组成,并发育薄层暗色粉砂质泥岩,可能为区域烃源岩层。初步判断成熟的烃源岩排出的油气沿角度不整合运移至侏罗系砂砾岩和砂岩储层后,被逆冲推覆花岗岩体封闭,形成构造-岩性油气藏(图 1h)。

    研究发现区域内沉积盆地最南缘边界处在祁连山北缘断裂之下,最北缘处在龙首山断裂的下盘,南北跨度约80 km。区域内沉积地层较厚,其中侏罗系龙凤山组厚约2100 m,白垩系庙沟组厚约900 m,说明研究区具有较大的成藏潜力。此次油气藏的发现,预示着大青山地区具有完整的油气成藏系统,显示出良好油气勘探前景。建议进一步加强油气基础地质调查研究工作。

    (1)在大青山地区花岗岩逆冲推覆体之下的中生代沉积地层中发现原油,所发现的高品质轻质原油,具陆相烃源岩来源特征。

    (2)研究区具有良好的油气勘探前景,建议进一步加强油气地质调查研究工作。

    感谢甘肃省地质调查院董国强,北京探矿工程研究所渠洪杰、谭春亮以及国家实验测试中心沈斌在野外工作和样品测试过程中的协助。

  • 图  1   研究区构造单元图(据新疆地矿局修改

    Ⅰ—西伯利亚板块;Ⅰ-1—阿尔泰活动陆缘带;Ⅰ-1-1—清河中间地块;Ⅰ-1-2—震旦纪边缘海盆;Ⅰ-1-3—乌恰沟-玛因鄂博晚古生代岛弧带;Ⅱ—哈萨克斯坦—准噶尔板块;Ⅱ-1—准噶尔北缘构造带;Ⅱ-1-1—二台晚古生代复合岛弧带;Ⅱ-1-2—乌伦古二叠纪上叠盆地;Ⅱ-1-3—扎河坝—二台古生代沟弧带;Ⅱ-1-4—库兰卡孜干晚古生代岛弧带;Ⅱ-1-5—东准噶尔晚古生代陆缘盆地;EMT—额尔齐斯-玛因鄂博缝合带

    Figure  1.   Tectonic division map of the study area (modified from Xinjiang Bureau of Geology and Mineral Resources)

    Ⅰ-Siberian plate; Ⅰ-1-Altai active marginal zone; Ⅰ-1-1-Qinghe intermediate massif; Ⅰ-1-2-Sinia marginal basin; Ⅰ-1-3-Wuqiagou-Mayinebo late Paleozoic island arc belt; Ⅱ-KazakhstanJunggar Plate; Ⅱ-1-Northern margin of Junggar tectonic belt; Ⅱ-1-1-Ertai late Paleozoic composite island arc belt; Ⅱ-1-2-Wulungu Permian superimposed basin; Ⅱ-1-3-Zhaheba-Ertai Paleozoic trencharc belt; Ⅱ-1-4-Kulankazigan late Paleozoic island arc belt; Ⅱ-1-5-East Junggar late Paleozoic continental margin basin; EMT-ErtixMayinebo suture zone

    图  2   扎河坝蛇绿岩地质图

    Figure  2.   Geological map of Zhaheba ophiolite

    图  3   扎河坝铬铁矿矿石照片

    a—6号铬铁矿点角砾状、块状铬铁矿(ZHB-b40);b—铬尖晶石显微照片(ZHB-b40);c—3号铬铁矿点地表块状铬铁矿体;d—3号铬铁矿点浅井内块状铬铁矿;e—3号铬铁矿点块状铬铁矿显微照片(ZHB-b56)

    Figure  3.   Photoes and photomicrographs of Zhaheba chromite ore

    a-No.6 chromite spot brecciated and massive chromite (ZHB-B40); b-Microphotograph of chrome spinel (ZHB-B40); c-Surface massive chromite orebody at No. 3 ore occurrence; d-Mmicrophotograph of massive chromite at the No. 3 ore occurrence (ZHB-B56)

    图  4   扎河坝橄榄岩显微照片

    a—ZHB-15样品方辉橄榄岩内铬尖晶石和新生橄榄石(正交偏光);b—Z19-26样品二辉橄榄岩斜方辉石残余、新生橄榄石和橄榄石残留晶(单偏光);c—Z19-25样品蛇纹石化二辉橄榄岩内熔融残余结构、新生橄榄石、新生的单斜辉石(正交偏光);d—Z19-25样品蛇纹石化二辉橄榄岩内新生的橄榄石、单斜辉石(正交偏光);e—D363样品二辉橄榄岩内熔融残余结构、新生单斜辉石(正交偏光);f—Z19-25样品蛇纹石化二辉橄榄岩内新生的橄榄石和单斜辉石(正交偏光);g—D363样品二辉橄榄岩内熔融残余结构、反应边结构(正交偏光);h—D363样品二辉橄榄岩熔融残余结构(反射光)。Opx—斜方辉石;Cpx—单斜辉石;Ol—橄榄石;Bas—绢石;Sp—尖晶石;Serp—蛇纹石;Ol2—新生橄榄石;Cpx2—新生的单斜辉石;BMS—贱金属硫化物

    Figure  4.   Microphtographs of Zhaheba peridotite

    a-Chrome spinel and new olivine in harzburgite, cross-polar (ZHB-15); b-Orthopyroxene relicts, new olivine and olivine relicts in lherzolite, plane-polar (Z19-26); c-Structure of melted residual, new olivine, new clinopyroxene in serpentinized lherzolite, cross-polar (Z19-25); d-New olivine, new clinopyroxene in serpentinized lherzolite, cross-polar (Z19-25); e-Structure of melted residual, new clinopyroxene in lherzolite, cross-polar (D363); f-New olivine, new clinopyroxene in serpentinized lherzolite, cross-polar (Z19-25); g-Structure of melted residual, reactionrim texture in in lherzolite, cross-polar (D363); h-Structure of melted residual in lherzolite, cross-polar, reflected light (D363). OpxOrthopyroxene; Cpx-Clinopyroxene; Ol-Olivine; Bas-Bastite; Sp-Spinel; Serp-Serpentine; Ol2-New olivine; Cpx2-New clinopyroxene; BMSBase metal sulfides

    图  5   橄榄岩尖晶石副矿物、块状铬铁矿镜下照片及背散射图像

    a(正交偏光)、b(反射光)—D15样品方辉橄榄岩内新生单斜辉石及铬尖晶石边部发生磁铁矿化;c—ZHB-b15样品方辉橄榄岩内半自形铬尖晶石及不规则状铬尖晶石残留;d—3号铬铁矿点ZHB-b40样品角砾状铬铁矿反射光照片;e—D357样品方辉橄榄岩内铬尖晶石熔蚀结构背散射(BSE)照片;f、h—D15样品方辉橄榄岩背散射(BSE)照片,尖晶石副矿物熔蚀结构及其边部、裂隙处铁铬铁矿(Fe-chr);g—3号铬铁矿点碎裂状、块状铬铁矿尖晶石背散射(BSE)照片;Cpx—单斜辉石;Bas—绢石;Cr—铬铁矿;Serp—蛇纹石;Cal—碳酸盐;Cpx2—新生单斜辉石;Fe-chr—铁铬铁矿;Mag—磁铁矿

    Figure  5.   Microphtograph of spinel in peridotite and back scattered electron images (BSE) of spinels in massive chromite

    a (cross-polar), b (reflected light)-New clinopyroxene, magnetization occurs at the edge of chrome spinel in harzburgite (D15); c-Subhedral chrome spinel, irregular chrome spinel relicts in harzburgite, reflected light (ZHB-b15); d-Photomicrographs of brecciaous chromitite in No. 3 chromite point, reflected light (ZHB-b40); e-BSE images of chrome spinel with melting corrosion structure in harzburgite (D357); f, h-BSE images of chrome spinel with melting corrosion structure, altered to ferritchromite (Fe-chr) along it's cracks and edges in harzburgite (D15); gBSE images of chrome spinel of fractured, massive chromites in No.3 chromite point; Cpx-Clinopyroxene; Bas-Bastite; Cr-Chromite; SerpSerpentine; Cal-Carbonate; Cpx2-New clinopyroxen; Fe-chr-Ferritchromite; Mag-Magnetite

    图  6   单斜辉石主要氧化物关系图解

    Figure  6.   Diagram showing the relationship among major oxides of the clinopyroxene

    图  7   橄榄岩内尖晶石副矿物、块状铬铁矿尖晶石Al2O3-Cr2O3含量(%)图解

    (层状铬铁矿、豆荚状铬铁矿数据范围参考Bonavia et al., 1993;土耳其高Cr、高Al铬铁矿数据范围参考Uysal et al., 2009;埃及CED铬铁矿数据范围参考Ahmed et al., 2001;萨尔托海数据范围参考Zhou et al., 2014;罗布莎数据范围参考周二斌等, 2011, 下同)

    Figure  7.   Al2O3 versus Cr2O3(%) diagram of spinels in peridotite and massive chromite

    Compositional fields of stratiform and podiform chromitites are from Bonavia et al., 1993; High-Cr and high-Al compositional fields of SW Turkey (Uysal et al., 2009); Central and southern Eastern Desert (CED, SED) of Egypt (Ahmed et al., 2001); Compositional fields of Sartohay (Zhou et al., 2014); Compositional fields of Luobusha (Zhou, 2011)

    图  8   橄榄岩内尖晶石副矿物、块状铬铁矿尖晶石Cr#-Mg#(Mg/(Mg+Fe+2))关系图解

    High Cr,High Al和High Fe数据范围引自Zhou and Bai (1992);豆荚状铬铁矿、层状铬铁矿和Alpine型范围参考Irvine (1967)Leblanc and Nicolas (1992);玻安岩范围参考Arai (1992),abyssal橄榄岩范围参考Dick and Bullen (1984);弧后环境橄榄岩范围参考Monnier et al.(1995),SSZ环境橄榄岩范围参考Choi et al.(2008),萨尔托海铬铁矿数据引自Zhou et al,2014;罗布莎铬铁矿数据周二斌等(2011)

    Figure  8.   Cr# versus Mg#(Mg/(Mg+Fe+2)) diagram of spinels in peridotite and massive chromite

    Compositional fields of High Cr, High Al and High Fe are from Zhou and Bai (1992); The podiform, stratiform fields and Alpine-type field are from Irvine (1967) and Leblanc and Nicolas (1992); The boninite field is from Arai (1992). The abyssal peridotite field is from Dick and Bullen (1984); Back-arc Peridotite field is from Monnier et al. (1995); SSZ peridotite field is from Choi et al. (2008); Compositional fields of Sartohay (Zhou et al, 2014); Compositional fields of Luobusha (Zhou E B et al, 2011)

    图  9   橄榄岩内尖晶石副矿物、块状铬铁矿尖晶石Cr/Fe-Cr#关系图解

    分区范围参考Rammlmair (1986)Günay and Çolakoğlu (2016), 萨尔托海铬铁矿数据引自Zhou et al., (2014);罗布莎铬铁矿数据周二斌等(2011)

    Figure  9.   Cr# versus Cr/Fe diagram of spinels in peridotite and massive chromite

    Compositional fields are from Rammlmair (1986), Günay and Çolakoğlu (2016), Compositional fields of Sartohay Zhou et al. (2014); Compositional fields of Luobusha (Zhou E B et al, 2011)

    图  10   扎河坝蛇绿岩及铬铁矿形成演化示意图

    a—扎河坝—阿尔曼泰洋拉张,地幔上涌,形成地幔橄榄岩,铬铁矿预富集,扎河坝洋洋壳俯冲;b—卡拉麦里洋壳俯冲,地幔对流循环和俯冲带上盘块状铬铁矿形成

    Figure  10.   Schematic illustration showing formation and evolution of Zhaheba ophiolite and chromite

    a-Stretching of Zhaheba-Aermantai ocean, followed by mantle upwelling, forming of mantle peridotite, chromite preenrichment, and subduction of Zhaheba Oceanic; b-Subduction of Karamaili ocean, accompanied by mantle convection and recycling, forming of massive chromite in supra-subduction zone (SSZ)

    表  1   块状铬铁矿内铬尖晶石及橄榄岩铬尖晶石副矿物、单斜辉石电子探针数据(%)及参数统计

    Table  1   Electron microprobe analyses of spinels in massive chromite and peridotite and clinopyroxene

    下载: 导出CSV
  • Ahmed A H, Shoji A, Attia A K. 2001. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African ophiolite complexes of Egypt[J]. Mineralium Deposita, 36: 72-84. doi: 10.1007/s001260050287

    Ahmed A H. 2013. Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: A possible recycled upper mantle lithosphere[J]. Precambrian Research, 233: 173-192. doi: 10.1016/j.precamres.2013.05.001

    Ahmed A H, Habtoor A. 2015. Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al'Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia[J]. Ore Geology Reviews, 67: 279-296. doi: 10.1016/j.oregeorev.2014.12.018

    Akmaz R M, Uysalİ, Saka S. 2014. Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications forchromitite genesis[J]. Ore Geology Reviews, 58: 208-224. doi: 10.1016/j.oregeorev.2013.11.007

    Arai S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry[J]. Mineralogical Magazine, 56: 173-184. doi: 10.1180/minmag.1992.056.383.04

    Arai S, Yurimoto H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, Southwest Japan, as mantle-melt interaction products[J]. Economic Geology, 89: 1279-1288. doi: 10.2113/gsecongeo.89.6.1279

    Arai S. 1997. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction[J]. Resource Geology, 47(4): 177-187. http://ci.nii.ac.jp/naid/10002859667

    Arai S, Matsukage K. 1998. Petrology of a chromitite micropod from Hess Deep, equato-rial Pacific: A comparison between abyssal and alpine-type podiform chromitites[J]. Lithos, 43: 1-14. doi: 10.1016/S0024-4937(98)00003-6

    Arai S. 2010. Possible recycled origin for ultrahigh-pressure chromitites in ophiolites[J]. Journal of Mineralogical and Petrological Science, 105(5): 280-285. doi: 10.2465/jmps.100622a

    Arai S. 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromititesby deep recycling: A good inference[J]. Earth and Planetary Science Letters, 379: 81-87. doi: 10.1016/j.epsl.2013.08.006

    Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle[J]. Lithos, 264: 277-295. doi: 10.1016/j.lithos.2016.08.039

    Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-questioning about the rock/melt interaction metallogeny[J]. Geological Bulletin of China, 28(12): 1741-1761 (in Chinese with English abstract). http://www.researchgate.net/publication/285981984_Further_discussion_on_the_genesis_of_the_podiform_chromite_deposits_in_the_ophiolites-questioning_about_the_rock_melt_interaction_metallogeny

    Barnes S J. 2000. Chromite in komatiites. Ⅱ. Modification during greenschist to mid-amphibolite facies metamorphism[J]. Journal of Petrology, 41: 387-409. doi: 10.1093/petrology/41.3.387

    Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 42: 2279-2302. doi: 10.1093/petrology/42.12.2279

    Basch V, Rampone E, Crispini L, Ferrando C, Ildefonse B, Godard M. 2018. From mantle peridotites to hybrid troctolites: Textural and chemical evolution during melt-rock interaction history (Mt. Maggiore, Corsica, France)[J]. Lithos, 323: 4-23. doi: 10.1016/j.lithos.2018.02.025

    Becker H, Shirey S B, Carlson R W. 2001. Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin[J]. Earth and Planetary Science Letters, 188: 107-121. doi: 10.1016/S0012-821X(01)00308-9

    Bonavia F F, Diella V, Ferrario A. 1993. Precambrian podiform chromitites from Kenticha Hill, Southern Ethiopia[J]. Economic Geology, 88: 198-202. doi: 10.2113/gsecongeo.88.1.198

    Choi S H, Shervaıs J W, Mukasa S B. 2008. Supra-subduction and abyssalmantle peridotites of the coast range ophiolite, California[J]. Contributions to Mineralogy and Petrology, 156: 551-576. doi: 10.1007/s00410-008-0300-6

    Daniele B, Monique S, Anna C, Luisa O, Enrico B. 2006. Discontinuous melt extraction and weak refertilization of mantle peridotites at the vema Lithospheric Section (Mid-Atlantic Ridge)[J]. Journal of Petrology, 47: 745-771. doi: 10.1093/petrology/egi092

    Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 86: 54-76. doi: 10.1007/BF00373711

    Duke J M. 1982. Ore deposit model 7: Magma segregation deposits of chromite[J]. Geochimica et Cosmochimica Acta, 39: 1061-1074. http://www.researchgate.net/publication/285839566_Ore_deposit_model_7-Magma_segregation_deposits_of_chromite

    Elthon D. 1992. Chemical trends in abyssal peridotites: Refertilization of depleted suboceanic mantle[J]. Journal of Geophysical Research, 97: 9015-9025. doi: 10.1029/92JB00723

    Eric H, Snow J E, Peter H, Hofmann A W. 2002. Garnet-field melting and late-stage refertilization in 'residual' abyssal peridotites from the Central Indian Ridge[J]. Journal of Petrology, 43: 2305-2338. doi: 10.1093/petrology/43.12.2305

    Erdi A, İbrahim U, Recep M A, Samet S. 2017. Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southernTurkey): Implication for crystallization from a fractionated boninitic melt[J]. Ore Geology Reviews, 90: 166-183. doi: 10.1016/j.oregeorev.2016.08.033

    Evans B, Frost R B. 1975. Chrome spinel in progressive metamorphism: A preliminary analysis[J]. Geochimica et Cosmochimica Acta, 39: 959-972. doi: 10.1016/0016-7037(75)90041-1

    Foley S F. 2011. A reappraisal of redox melting in the earth's mantle as a function of tectonic setting and time[J]. Journal of Petrology, 52: 1363-1391. doi: 10.1093/petrology/egq061

    Gonzalez J J M, Proenza J A, Gervilla F, Melgarejo J C, Blanco M J A, Ruiz S R, Griffin W L. 2011. High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements[J]. Lithos, 125: 101-121. doi: 10.1016/j.lithos.2011.01.016

    Günay K, Çolakoğlu A R. 2016. Spinel compositions of mantle-hosted chromitite from the Eastern Anatolian ophiolite body, Turkey: Implications for deep and shallow magmatic processes[J]. Ore Geology Reviews, 73: 29-41. doi: 10.1016/j.oregeorev.2015.10.021

    Hao Ziguo. 1991. Study on the genesis of ophilites and podiform chromite deposites of the western Junggar area, Xinjiang[J]. Bulletin of the Chinese Academy of Geological Sciences, 23: 73-83(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199102005.htm

    He Guoqi, Li Maosong, Jia Jindou, Zhou Hui. 2001. A discussion on age and tectonic significance of ophiolite in Eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 852-858(in Chinese with English abstract). http://www.researchgate.net/publication/282736819_A_discussion_on_age_and_tectonic_significance_of_ophiolite_in_Eastern_Junggar_Xinjiang

    Huang Qishuai, Shi Rendeng, Ding Binghua, Liu Deliang, Zhang Xiaoran, Fan Shuaiquan, Zhi Xiachen. 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nu jiang Tethys Ocean[J]. Acta Petrologica et Mineralogica, 31(4): 465-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204002.htm

    Irvine T N. 1967. Chromium spinels as a petrogenetic indicator petrologic applications[J]. Canadian Journal of Earth Sciences, 11 (4): 71-103. http://ci.nii.ac.jp/naid/10006454839

    Jian Ping, Liu Dunyi, Zhang Qi, Zhang Fuqin, Shi Yuruo, Shi Guanghai, Zhang Luqiao, Tao Hua. 2003. Shrimp dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 11 (4): 71-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200304018.htm

    Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusionsfrom primitive rocks[J]. Journal of Petrology, 42: 655-671. doi: 10.1093/petrology/42.4.655

    Li D, He D F, Santosh M, Tang J Y. 2014. Petrogenesis of Late Paleozoic volcanics from the Zhaheba depression, East Junggar: Insights into collisional event in an accretionary orogen of Central Asia[J]. Lithos, 184-187, 167-193. doi: 10.1016/j.lithos.2013.10.003

    Luo J, Xiao W J, Wakabayashi W, Han C M, Zhang J E, Wan B, Ao S J, Zhang Z Y, Tian Z H, Song D F, Chen Y C. 2017. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids[J]. Gondwana Research, 43: 17-40. doi: 10.1016/j.gr.2015.04.004

    Leblanc M, Nicolas A. 1992. Ophiolitic chromitites[J]. International Geology Review, 34: 653-686. doi: 10.1080/00206819209465629

    Li Jinyi. 1991. Early Paleozoic evolution of lithosphere plate, east Junggar, Xinjiang[J]. Bulletin of the Chinese Academy of Geological Sciences, 23: 1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199102000.htm

    Li Jinyi. 1995. Main characteristics and emplacement processes of the east Junggar ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 11(Supp. ): 37-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB5S1.005.htm

    Li Rongshe, Ji Wenhua, Xiao Peixi, Ma Zhongping, Cheng Junlu, Pan Shujuan. 2012. The periodical achievement and new cognitions of regional geological survey, northern Xinjiang[J]. Xinjiang Geology, 30(3): 253-257(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201203001.htm

    Liu Ting, Zheng Youye, Wang Pengchong, Yang Weiguang, Guo Tongjun. 2019. Geochemial indicator for podiform chromite mineralization and its formation mechanism[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 176-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201901020.htm

    Liu Wei, Zhang Xiangbing. 1993. The characteristics and geological significance of Ulungur-Zhaisangpo tectonic setting[C]//Tu Guangchi(ed. ). New Progress of Sold Geosciences in Norther Xinjiang. Beijing: Science Press, 217-228(in Chinese with English abstract).

    Luo Zhaohua, Jiang Xiumin, Liu Xiao, Li Zhong, Wu Zongchang, Jing Wenchao. 2019. Imprints of fluid process of shell dunite in ophiolitic chromite deposits: Evidences from geology, petrology and crystal chemistry of olivine found in Luobusha and Zedang ophiolites in the Yarlung Zangbo suture zone, Tibet[J]. Earth Science Frontiers, 26 (1): 272-285 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201901028.htm

    Melcher F, Grum W, Thalhammer T V, Thalhammer O A R. 1999. The giant chromite deposits at Kempirsai, Urals: Constraints from trace element (PGE, REE) and isotope data[J]. Mineralium Deposita, 34: 250-272. doi: 10.1007/s001260050202

    Miura M, Arai S, Ahmed A H, Mizukami T, Okuno M, Yamamoto S. 2012. Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods fromWadi Hilti, northern Oman ophiolite[J]. Journal of Asian Earth Sciences, 59: 52-61. doi: 10.1016/j.jseaes.2012.05.008

    Mohamed Z K, Shoji A. 2017. Peridotite-chromitite complexes in the Eastern Desert of Egypt: Insight into Neoproterozoic sub-arc mantle processes[J]. Gondwana Research, 52: 59-79. doi: 10.1016/j.gr.2017.09.001

    Monnier C, Girardeau J, Maury R, Cotten J. 1995. Back-arc basin origin for the East Su-lawesi ophiolite (eastern Indonesia)[J]. Geology, 23: 851-854. doi: 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2

    Niu Heicai, Shan Qiang, Zhang Haixiang, Yu Xueyuan. 2007. 40Ar/39Ar geochronology of the ultrahigh-pressure metamorphic quartz-magnesitite in Zhaheba, eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 23(7): 1627-1634 (in Chinese with English abstract). http://www.researchgate.net/publication/279589672_40Ar39Ar_geochronology_of_the_ultrahigh-pressure_metamorphic_quartz-magnesitite_in_Zaheba_eastern_Junggar_Xinjiang

    Pan Chengze, Qiu Lin, Ye Xiantao, Dong Yongguan. 2016. Zircon U-Pb ages and Hf-O isotope compositions of the Zhaheba ophiolite in the northern margin of the Junggar terrane and their tectonic implications[J]. East China Geology, 37(2): 106-112(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ201602006.htm

    Pearce J A, Barker P F, Edwards S J, Parkinson I J, Leat P T. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc basin system, south Atlantic[J]. Contributions to Mineralogy and Petrology, 139: 36-53. doi: 10.1007/s004100050572

    Rammlmair D. 1986. Chromite in Philippines: Its relationship to the tectonic setting of the host ophiolites: Examples from Zambales and Palawan, in Chromites. UNESCO's IGCP-197 Project Metallogeny of Ophiolites: Athens, Greece, Theophastus 199-228.

    Rampone E, Piccardo G B, Hofmann A W. 2008. Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: Microstructural and geochemical evidence[J]. Contributions to Mineralogy and Petrology, 156: 453-475. doi: 10.1007/s00410-008-0296-y

    Roberts S. 1988. Ophiolitic chromitite formation: A marginal basin phenomenon?[J]. Economic Geology, 83: 1034-1036. doi: 10.2113/gsecongeo.83.5.1034

    Roberts S, Neary C R. 1993. Petrogenesis of ophiolitic chromitites[C]//Prichard H M, Alabaster T, Harris N B W, Neary C R (eds. ). Magmatic Processes and Plate Tectonics. Geological Society London Special Publications, 76(1): 257-272.

    Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneathmid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite[J]. Lithos, 177: 314-327. doi: 10.1016/j.lithos.2013.07.004

    Saal A E, Takazawa E, Frey F A, Shimizu N, Hart S R. 2001. Re-Os Isotopes in the Horoman Peridotite: Evidence for Refertilization?[J]. Journal of Petrology, 42(1): 25-37. doi: 10.1093/petrology/42.1.25

    Seyler M, Toplis M J, Lorand J P, Luguet A, Cannat M. 2001. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites[J]. Geology, 29: 155-158. doi: 10.1130/0091-7613(2001)029<0155:CMRIEM>2.0.CO;2

    Seyler M, Lorand J P, Dick H J B, Drouin M. 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15 degrees 20'N: ODP Hole 1274A[J]. Contributions to Mineralogy and Petrology, 153: 303-319. doi: 10.1007/s00410-006-0148-6

    Shi R, Griffin W L, Reilly S Y O, Zhou M, Zhao G, Huang Q, Zhang X, Ding B, Ding L. 2012. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J]. Precambrian Research, 216-219: 87-94. doi: 10.1016/j.precamres.2012.06.016

    Shi Rendeng, Huang Qishuai, Liu Deliang, Fan Shuaiquan, Zhang Xiaoran, Ding Lin, William L Griffin, Suzanne Y O'Reilly. 2012. Recycling of ancient subcontinental lithospheric mantle constraints on the genesis of the ophiolitic podiform chromitites[J]. Geological Review, 58(4): 643-652(in Chinese with English abstract). http://www.researchgate.net/publication/282559885_Recycling_of_ancient_sub-continental_lithospheric_mantle_constraints_on_the_genesis_of_the_ophiolitic_podiform_chromitites

    Su Benxun, Bai Yang, Chen Chen, Liu Xai, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits[J]. Bulletin of Mineralogy, Petrology and Geochemitry, 37(6): 1035-1046 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201806005.htm

    Su B X, Zhou M F, Jing J J, Robinson P T, Chen C, Xiao Y, Liu X, Shi R D, Lennaz D, Hu Y. 2019. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: Constraints from trace element compositions of chromite and olivine[J]. Chinese Science Bulletin, 64: 108-121. http://www.sciencedirect.com/science/article/pii/S2095927318305875

    Tian Yazhou, Yang Jingsui. 2016. Study on the mineral inclusions in Sartohay chromitites[J]. Acta Geologica Sinica, 90(11): 3114-3128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201611010.htm

    Trevor J F, David H G, Leonid V D, Andrew W M. 2008. The composition ofnear-solidus partial melts of fertile peridotite at 1 and 1.5 GPa: Implications for thepetrogenesis of MORB[J]. Journal of Petrology, 49: 591-613. doi: 10.1093/petrology/egn009

    Uysal İ, Zaccarini F, Garuti G, Meisel T, Tarkian M, Bernhardt H J, Sadiklar M B. 2007. Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: Their platinum group elements (PGE) geochemistry, mineralogy and Os isotope signature[J]. Ofioliti, 32: 151-161. http://www.researchgate.net/publication/230015802_Ophiolitic_chromitites_from_the_Kahramanmaras_area_southeastern_Turkey_Their_platinum-group_elements_PGE_geochemistry_mineralogy_and_Os-isotope_signature/download

    Uysal İ, Sadiklar M B, Tarkian M, Karsli O, Aydin F. 2005. Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Mugla-SW Turkey): Evidence for ophiolitic chromitite genesis[J]. Mineral. Petrol., 83: 219-242. doi: 10.1007/s00710-004-0063-3

    Uysal İ, Tarkian M, Sadiklar M B, Zaccarini F, Meisel T, Garuti G, Heidrich, S. 2009. Petrology of Al- and Cr-rich ophioliticchromitites from the Muğla, SW Turkey: Implications from composition of chromite, solid inclusions of platinum-group mineral(PGM), silicate, and base-metal mineral(BMM), and Os-isotope geochemistry[J]. Contributions to Mineralogy and Petrology, 158: 659-674 doi: 10.1007/s00410-009-0402-9

    V Le Roux, J L Bodinier, A Tommasi, O Alard, J M Dautria, A Vauchez, A J V Riches. 2007. The Lherz spinel lherzolite: Refertilized rather than pristine mantle[J]. Earth and Planetary Science Letters, 259: 599-612. doi: 10.1016/j.epsl.2007.05.026

    Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits-a case study of the Luobusha chromite deposit, Tibet[J]. Acta Geologica Sinica, (2): 166-181 (in Chinese with English abstract). http://www.researchgate.net/publication/312126372_The_genesis_of_podiform_chromite_deposits-a_case_study_of_the_Lubosa_chromite_deposit_Tibet

    Xiao W J, Windley B F, Badarch G, Sun S, Li J, Qin K, Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia[J]. Journal of the Geological Society, London, 161: 339-342. doi: 10.1144/0016-764903-165

    Xiao W J, Windley B F, Yuan C, Sun M, Han C M, Lin S F, Chen H L, Yan Q R, Liu D Y, Qin K Z, Li J L, Sun S. 2009. Paleozoic multiple subduction accretion processes ofthe southern Altaids[J]. American Journal of Science, 309: 221-270. doi: 10.2475/03.2009.02

    Xiao Xuchang, Tang Yaoqing. 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture Zone[M]. Beijing: Beijing Science and Technology Press, 1-150 (in Chinese with English abstract).

    Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromite[J]. Geology in China, 40(3): 820-839 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201303015.htm

    Xiong Fahui, Yang Jingsui, Ba Dengzhu, Liu Zhao, Xu Xiangzhen, Feng Gaungying, Niu Xiaolu, Xu Jifeng. 2014. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 30(8): 2137-2163 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201408003.htm

    Xiong Fahui, Yang Jingsui, Xu Xiangzhen, Lai Shenming, Zhang Lan, Guo Guoling, Chen Yanhong, Zhao Hui. 2015. The prospects of chromitite in ophiolite of Yarlung Zangbo Suture Zone, Tibet[J]. Geology in China, 42(5): 1535-1558(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201505023.htm

    Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A R, Aiglsperger T, Lewis J. 2011. Chromite and platinum-group-elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica): Geodynamic implications[J]. Geologica Acta, 9: 407-423. http://www.redalyc.org/resumen.oa?id=50522108012

    Zhang Hongfu. 2008. Variation of Re-Os isotopic system during peridotite-melt interaction: Implication for the meaning of Re-Os isotopic age of Cenozoic mantal peridotites from the North China craton[J]. Acta Petrologica Sinica, 24(11): 2457-2467(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200811002.htm

    Zhang Yuanyuan, Guo Zhaojie. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection[J]. Acta Petrologica Sinica, 26(2): 421-430(in Chinese with English abstract). http://www.oalib.com/paper/1473405

    Zeng L J, Niu H C, Bao Z W, Shan Q, Li H, Li N B, Yang W B. 2015. Petrogenesis and tectonic significance of the plagiogranites in the Zhaheba ophiolite, Eastern Junggar orogen, Xinjiang, China[J]. Journal of Asian Earth Sciences, 113: 137-150. doi: 10.1016/j.jseaes.2014.09.031

    Zhou Erbin, Yang Zhusen, Jiang Wan, Hou Zengqian, Guo Fusheng, Hong Jun. 2011. Study on mineralogy of Cr-spinel and genesis of Luobusha chromite deposit in South Tibet[J]. Acta Petrologica Sinica, 27(7): 2060-2072(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252022700.html

    Zhou M F, Bai W J. 1992. Chromite deposits in China and their origin[J]. Mineralium Deposita, 27: 192-199. doi: 10.1007/BF00202542

    Zhou Meifu, Bai Wenji. 1994. The origin of the podiform chromite deposits[J]. Mineral Deposits, 13(3): 242-249(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ403.005.htm

    Zhou M F, Robinson P T. 1994. High-chromium and high-aluminium podiform chromitites, Western China, relationship to partial melting and melt/rockinteractionin the upper mantle[J]. International Geology Review, 36: 678-686. doi: 10.1080/00206819409465481

    Zhou M F, Robinson P T, Malpas J, Li Z. 1996. Podiform chromitites from the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation[J]. Journal of Petrology, 37: 3-21. doi: 10.1093/petrology/37.1.3

    Zhou M F, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits[J]. Economic Geology, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259

    Zhou M F, Sun M, Keays R R, Kerrich R. 1998. Controls on the platinum-group elemental distributions in high-Cr and high-Al chromitites: A case study of the podiform chromitites from the Chinese orogenic belts[J]. Geochimica et Cosmochimica Acta, 62: 677-688. doi: 10.1016/S0016-7037(97)00382-7

    Zhou M F, Robinson P T, Malpas J, Aitchison J, Sun M, Bai W J, Hu X F, Yang J S. 2001. Melt-mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 19: 517-534. doi: 10.1016/S1367-9120(00)00048-1

    Zhou M F, Robinson P T, Malpas J, Edwards S, Qi, L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusha ophiolite, Southern Tibet[J]. Journal of Petrology, 46(3): 615-639. http://petrology.oxfordjournals.org/content/46/3/615.abstract

    Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26: 262-283. doi: 10.1016/j.gr.2013.12.011

    鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J]. 地质通报, 28(12): 1742-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912009.htm
    黄启帅, 史仁灯, 丁炳华, 刘德亮, 张晓冉, 樊帅权, 支霞臣. 2012. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约[J]. 岩石矿物学杂志, 31(4): 465-478. doi: 10.3969/j.issn.1000-6524.2012.04.001
    郝梓国. 1991. 新疆西准噶尔地区蛇绿岩与豆英型铬铁矿床的成因研究[J]. 中国地质科学院院报, 23: 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199102005.htm
    何国琦, 李茂松, 贾进斗, 周辉. 2001. 论新疆东准噶尔蛇绿岩的时代及意义[J]. 北京大学学报(自然科学版), 37(6): 852-858. doi: 10.3321/j.issn:0479-8023.2001.06.017
    简平, 刘敦一, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 蛇绿岩及蛇绿岩中淡色岩的SHRIMP U-Pb测年[J]. 地学前缘, 10(4): 439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012
    李锦轶. 1991. 试论新疆东准噶尔早古生代岩石圈板块构造演化[J]. 中国地质科学院院报, 2 3): 1-1 2. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199102000.htm
    李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 11(增刊): 37-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.005.htm
    李荣社, 计文化, 校培喜, 马中平, 陈隽璐, 潘术娟. 2012. 北疆区域地质调查阶段性成果与新认识[J]. 新疆地质, 30(3): 253-257. doi: 10.3969/j.issn.1000-8845.2012.03.002
    刘婷, 郑有业, 王朋冲, 杨伟光, 郭统军. 2019. 豆荚状铬铁矿床成矿地球化学指标对比和成矿作用讨论[J]. 矿物岩石地球化学通报, 38(1): 176-194. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901020.htm
    刘伟, 张湘炳. 1993. 乌伦古-斋桑泊构造杂岩带特征及其地质意义[C]//涂光炽主编. 新疆北部固体地球科学新进展. 北京: 科学出版社, 217-228.
    罗照华, 江秀敏, 刘晓, 李重, 吴宗昌, 井文超. 2019. 蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记: 来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据[J]. 地学前缘, 26(1): 272-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901028.htm
    牛贺才, 单强, 张海祥, 于学元. 2007. 东准噶尔扎河坝超高压变质成因石英菱镁岩的40Ar/39Ar同位素年代学信息及地质意义[J]. 岩石学报, 23(7): 1627-1634. doi: 10.3969/j.issn.1000-0569.2007.07.008
    潘成泽, 邱林, 叶现韬, 董永观. 2016. 扎河坝蛇绿岩锆石U-Pb年龄、Hf-O同位素组成及其地质意义[J]. 华东地质, 37(2): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201602006.htm
    史仁灯, 黄启帅, 刘德亮, 樊帅权, 张晓冉, 丁林, William L G, Suzanne Y O'Reilly. 2012. 古老大陆岩石圈地幔再循环与蛇绿岩中铬铁矿床成因[J]. 地质论评, 58(4): 643-652. doi: 10.3969/j.issn.0371-5736.2012.04.005
    苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018. 铬铁矿床母岩浆含水性的岩石矿物学探讨[J]. 矿物岩石地球化学通报, 37(6): 1035-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201806005.htm
    田亚洲, 杨经绥. 2016. 萨尔托海铬铁矿中的矿物包体研究[J]. 地质学报, 90(11): 3114-3128. doi: 10.3969/j.issn.0001-5717.2016.11.010
    王希斌, 鲍佩声. 1987. 豆荚状铬铁矿的成因——以西藏自治区罗布莎铬铁矿床为例[J]. 地质学报, (2): 166-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198702005.htm
    肖序常, 汤耀庆. 1991. 古中亚复合巨型缝合带南缘构造演化[M]. 北京: 北京科学技术出版社, 1-150.
    熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论[J]. 中国地质, 40(3): 820-839. doi: 10.3969/j.issn.1000-3657.2013.03.014
    熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 2014. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 30(8): 2137-2163. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408003.htm
    熊发挥, 杨经绥, 徐向珍, 来盛民, 张岚, 郭国林, 陈艳虹, 赵慧. 2015. 雅鲁藏布江缝合带蛇绿岩中铬铁矿的前景讨论[J]. 中国地质, 42(5): 1535-1558. doi: 10.3969/j.issn.1000-3657.2015.05.023
    张宏福. 2008. 橄榄岩-熔体相互作用过程中Re-Os体系的变化趋势: 对华北新生代地幔橄榄岩Re-Os年龄含义的启示[J]. 岩石学报, 24(11): 2457-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811002.htm
    张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 26: 421-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002008.htm
    周二斌, 杨竹森, 江万, 侯增谦, 郭福生, 洪俊. 2011. 藏南罗布莎铬铁矿床铬尖晶石矿物学与矿床成因研究[J]. 岩石学报, 27(7): 2060-2072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107015.htm
    周美付, 白文吉. 1994. 对豆英状铬铁矿床成因的认识[J]. 矿床地质, 13(3): 242-249.
图(10)  /  表(1)
计量
  • 文章访问数:  2753
  • HTML全文浏览量:  929
  • PDF下载量:  4333
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-02-17
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回
x 关闭 永久关闭