Discussion on the sinistral strike-slip age and tectonic background of north-east fault in southern Anhui Province
-
摘要:
皖南地区北东向断裂左行走滑时代及构造背景讨论提要:皖南地区地处扬子板块的东部,晚中生代发育多期与古太平洋板块俯冲有关的岩浆活动及构造变形。其中北东向断裂作为控制构造格架的重要断裂,自印支期以来经历了多期演化。前人多集中于探讨断裂的活动期次,对于各期活动时限的研究存在争论,这恰恰是制约深入研究皖南地区乃至中国东部中生代以来构造演化的关键。本文通过野外调查发现北东向断裂的左行走滑表现为高角度平移断层,古构造应力场反演指示其形成于NNE-SSW向挤压环境,锆石U-Pb年代学及地层切割关系指示皖南地区左行走滑时代为早白垩世末期。结合前人古生物、地层等方面研究,认为皖南地区左行走滑活动时限应在121~110 Ma。该期活动或与早白垩世末期伊泽奈崎板块运动方向的改变有关。
Abstract:Lying in the east of the Yangtze plate, southern Anhui experienced multiple periods of magmatic activity and tectonic deformation related to the subduction of the Paleo-Pacific Plate during the late Mesozoic. As an important structure controlling the tectonic framework, the NE-trending fault has undergone multiple stages of evolution since the Indosinian period. Previous studies mainly focused on the active stages of faults, and there were disputes on the active periods of each stage, which restricted the in-depth study of tectonic evolution in southern Anhui and even eastern China since Mesozoic. The field investigation reveals that sinistral strike-slip deformation of the NE-trending fault in southern Anhui is actually a high-angle translational fault. The inversion of the paleo-tectonic stress field indicates that it was formed in the NNE-SSW compression environment. Zircon U-Pb geochronology and stratigraphic cutting relationship indicate that its sinistral strike-slip age is at the end of Early Cretaceous. Combined with previous studies on paleontology and stratigraphy, it is believed that its sinistral strike slipping was formed in 121-110Ma, and may be related to the movement direction change of the Izenizaki Plate at the end of the Early Cretaceous.
-
Keywords:
- Late Mesozoic /
- sinistral strike-slip /
- chronology /
- geological survey engineering /
- southern Anhui
-
1. 引言
稀土(Rare earth)是元素周期表中镧系元素和钪、钇共17种金属元素的总称。稀土是重要的自然资源,更是宝贵且关键的战略资源,在民用和军事方面用途十分广泛,同时也是先进装备制造业、新能源、新兴产业等高新技术产业不可或缺的原材料。在全球范围内,稀土资源分布不均,其主要分布于美国、俄罗斯、中国、印度、巴西等国家。中国稀土储量约占世界总储量的23%,却承担了世界90%以上的市场供应(中华人民共和国国务院新闻办公室, 2012)。经半个多世纪的过度开采,中国稀土资源保有储量及保障年限不断下降,鉴于此,发现和利用新类型稀土矿,可有效提高中国稀土资源储量,有力保障国家稀土资源供给安全。
稀土矿床按成因分类主要有碱性岩—碱性超基性岩型、碳酸岩型、花岗岩型、砂矿型以及风化壳型(徐光宪, 1995);按工业类型分类主要有稀土-磁铁矿矿床、含稀土碳酸岩矿床、花岗岩风化壳型稀土矿床、含稀土伟晶岩矿床、含稀土磷块岩矿床以及独居石砂矿床(矿产资源工业要求手册, 2014)。近年来,多位学者报道在贵州威宁地区二叠系宣威组一段黏土岩中富含稀土元素,但是由于该稀土资源的综合利用技术多年来未取得突破(黄训华, 1997; 张震和戴朝辉, 2010; 周灵洁, 2012),稀土元素的赋存状态、富集机理以及稀土矿床成因类型等方面存在较大争议。2018年以来,笔者在滇东—黔西地区开展地质调查,发现研究区内广泛发育的二叠系宣威组富稀土黏土岩系属沉积成因,有别于Wang et al.(2018)提及的南方离子吸附型稀土矿,而类似于文俊等(2021)报道的川南沐川地区宣威组底部古风化壳-沉积型铌、稀土矿,该新类型稀土矿具有矿石禀赋好、矿层厚度大且较连续、“关键稀土元素(Critical rare earth element; Pr, Nd, Tb, Dy)”占比较高等特点,并伴生有铌、锆、镓等有价元素,其中镓的平均品位高达70.5×10-6,高于工业品位(Zhang et al., 2010)。另外,在稀土资源开发利用方面取得了重大突破,针对该稀土资源研发了“选择性浸出”新工艺(徐璐等, 2020),使稀土回收率可达90%以上,该新类型稀土资源有望实现规模化工业利用。滇东—黔西地区沉积型稀土资源的发现与利用,将有力支撑国家关键稀土资源战略储备。
2. 区域地质背景
滇东—黔西地区大地构造位置位于扬子板块西缘(潘桂棠等, 2009),以北西向康定—水城断裂、北东向弥勒—师宗深大断裂带以及近南北向小江断裂所挟持的三角形地带(图 1)。区内地层属华南地层大区的扬子地层区之上扬子地层分区,主体位于黔西北地层小区,部分涉及到云南的昭通地层小区及曲靖地层小区。晚中生代以前主要是海相碳酸盐岩及陆源硅质碎屑岩,以后则主要为陆相沉积。火成岩主要为海西晚期陆相溢流的峨眉山玄武岩及同源异相的浅成侵入岩。
①—怒江断裂;②—金沙江—红河断裂;③—鲜水河断裂;④—龙门山山前断裂;⑤—小金河断裂;⑥—箐河—程海断裂;⑦—安宁河—绿汁江断裂;⑧—小江断裂;⑨—康定—水城断裂;⑩—弥勒—师宗断裂Figure 1. Sketch map showing geotectonic position of the research area (after Luo Yaonan, 1985; Zhang Zhibin et al., 2006)①-Nujiang fault; ②-Jinsha River—Red River fault; ③-Xian Shui River fault; ④-Longmen Mountain piedmont fault; ⑤-Xiao Jian River fault; ⑥-Jing River—Chenghai fault; ⑦-Anning River—Lü zhi River fault; ⑧-Xiao River fault; ⑨-Kang ding—Shui cheng fault; ⑩-Mile—Shizong fault3. 测试分析方法
在研究区内采集了186件宣威组一段沉积型稀土矿石样品,正样经破碎研磨至200目,取缩分样50 g/件,送至中国地质科学院矿产综合利用研究所分析测试中心,利用电感耦合等离子体质谱仪(Perkinelmer Optima Nexion 350X)测得稀土配分数据;再取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点缩分样20 g/件,送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用X射线衍射仪(日本理学Ultima Ⅳ)测得主要矿物成分。选取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点矿石副样,块样用切割机(MecatomeT330)切成3 cm×1 cm×2 cm样品,用环氧树脂镶嵌制光片坯样;松散样经研磨至40目,用环氧树脂镶嵌制砂片坯样。以上坯样用自动磨抛机(EcomeT300)制得直径为3.5 cm圆柱形待测样品,将待测样品送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用英国蔡司(ZEISS)Sigma 500型场发射扫描电镜及配套的德国布鲁克能谱仪(EDS)获取数据,并应用矿物特征自动定量分析软件(AMICS)进行矿物参数全自动定量分析。
4. 稀土资源特征
4.1 富稀土岩系特征
研究区内富稀土岩系发育于二叠系宣威组一段(P3x1)。宣威组出露面积较广(图 2),北至昭通金阳—大关一带,向南经昭通、威宁一直延伸至宣威—六盘水等地,呈北窄南宽的形态展布。宣威组平行不整合于二叠系峨眉山玄武岩组(P2-3em)之上、整合于三叠系东川组(T1dc)之下,是一套乐平世滨岸及湖沼相与同期曲流河相伴生产出的沉积地层,并且多出现在河泛平原背景上,无独立的大型湖泊沉积体系(戴传固, 2017)。
据笔者对威宁县哲觉镇小箐沟(东经103°59′ 08″,北纬26°36′37″)二叠系宣威组一段典型地层剖面(Pm201)研究,查明宣威组一段富稀土岩系主要为灰白色铝土质黏土岩与粉砂质黏土岩互层(图 3a、b),偶见植物碎屑,中部夹砾屑砂岩(图 3f),砾屑呈次圆状,粒度2~4 mm不等,由下往上砾屑粒度表现出粗—细—粗的渐变特征;岩石碎裂呈砂状、松散片状(图 3c),局部可见层理构造;稀土含量较高的岩石主要为铝土质黏土岩(图 3d、e)、粉砂质黏土岩(⑨~⑪层,⑬~⑮层)。
图 3 贵州威宁哲觉镇宣威组一段(P3x1)剖面-柱状图a—宣威组一段典型剖面;b—宣威组一段柱状图;c、d、e—铝土质黏土岩;f—砾屑砂岩Figure 3. Typical profile and histogram of the first part of Xuanwei Group (P3x1) in the Zhejue town of Weining area, Guizhou Provincea-Typical section of the first part of Xuanwei Group; b-Histogram of the first passage of Xuanwei Group; c, d, e-Bauxitic clay rock; f-Gravel sandstone4.2 矿石特征
研究区沉积型稀土矿石主要为深灰—灰白色铝土质黏土岩(图 3c、d、e),具微细粒—隐晶质结构、鳞片状、块状构造。据偏光显微镜、X射线衍射仪、扫描电镜(图 4a)、AMICS矿物分析系统等仪器综合测试分析,结果显示矿石由黏土矿物(高岭石≈83%、埃洛石≈2%、伊利石 < 1%、绿泥石 < 1%)、金属氧化物(锐钛矿≈5%、褐铁矿≈1%、磁铁矿 < 1%、水铝石 < 1%)、硅酸盐矿物(石英+蛋白石 < 4%、火山玻璃≈2%)、金属硫化物(黄铁矿≈0.2%)以及其他方解石、针铁矿等微量矿物组成(徐莺等, 2018)。另外,偶见极少量的氟碳铈矿(图 4b)、方铈矿、磷铝铈矿等独立稀土矿物,其总含量 < 0.1%;以及少量锆石、磷灰石、金红石等含稀土元素的非独立稀土矿物,其总含量 < 1%。
4.3 稀土资源潜力
本文作者在研究区内优选二叠系宣威组(P3x)出露较好的区域,通过32个探槽工程、6个剥土工程地表控制及22个钻探工程深部验证,初步查明研究区二叠系宣威组(P3x)一段稀土矿层厚度2~18 m不等,单个矿石样品TREO含量最高为1.6%,圈定三处稀土矿找矿靶区(图 5):
(1)Ⅰ号找矿靶区:该靶区矿体形态呈层状、似层状,圈定一个矿体,矿体倾角26°~31°,矿体厚度2.96~18.92 m,矿体在地表出露较连续,沿走向延伸可达8 km,矿体TREO加权平均品位为0.21%(边界品位:0.18%,下同),该找矿靶区内推断资源量约4万t,矿床规模达小型。
(2)Ⅱ号矿找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、三个矿体,矿体倾角12° ~17°,矿体TREO加权平均品位0.23% ~ 0.39%,矿体厚度5.85~9.23 m,其中主矿体沿倾向延伸可达1.6 km,该找矿靶区内推断资源量约25万t,矿床规模达中型,并具有达大型的潜力。
(3)Ⅲ号找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、十个矿体,矿体倾角4° ~10°不等,矿体TREO加权平均品位0.18% ~ 0.46%,矿体厚度1.29~2.99 m。其中主矿体在地表出露连续,深部钻探控制也较稳定,沿倾向延伸可达2 km,该找矿靶区内推断资源量约2万t,矿床规模为小型。
综上所述,该区稀土资源规模大,矿体埋藏浅,产状较缓且连续,有利于大规模露天开采。
笔者在研究区内、找矿靶区以外的昭通、鲁甸、威宁炉山—东风—二塘、六盘水大湾、宣威大井等地(图 2),采集了宣威组一段铝土质黏土岩样品,分析结果显示均有稀土矿化异常,十余处稀土TREO品位超0.1%,最高品位0.42%,算数平均品位0.2%,矿体出露厚度2~6 m不等,推测滇东—黔西地区沉积型稀土资源找矿潜力巨大,远景资源量超100万t。
4.4 稀土配分及资源对比
物源区岩石经风化剥蚀形成的碎屑物质再搬运至沉积区沉积成岩,通常沉积岩继承了物源区岩石的稀土配分特征,风化和成岩作用对沉积岩中稀土元素再分配影响不大(Mclennan, 1993),所以稀土可作为一种有效的示踪物质。
在研究区内优选4条宣威组典型剖面(Pm101、Pm104、Pm205、Pm207),逐层采集岩石样品,分别按玄武岩、铁质黏土岩、铝土质黏土岩、黏土质粉砂岩、炭质黏土岩和砾岩进行稀土元素球粒陨石标准化,从稀土配分模式(图 6)可以看出宣威组富稀土岩系中所有样品均与峨眉山玄武岩均具有相对富集轻稀土元素、亏损重稀土元素、呈现右倾模式的特征;不同的是,大部分铁质黏土岩、黏土质粉砂岩与玄武岩具有更加相近的配分模式,即都只表现出轻微的负Eu异常;而铝土质黏土岩层作为主要的含矿层却表现为明显的负Eu异常(田恩源等, 2020)。
1—玄武岩;2—铁质粉砂质黏土岩;3—铝土质黏土岩;4—炭质粘土岩;5—黏土质粉砂岩;6—砂质砾岩Figure 6. Chondrite-normalized REE patterns of the samples (modifiled from Tian Enyuan et al., 2020; standardized values modifiled from Sun and McDonough, 1989)1-Basalt; 2-Fe-Silty clay rock; 3-Bauxitic clay rock; 4-Carbonaceous clay rock; 5-Clayey siltstone; 6-Sandy conglomerate滇东—黔西地区沉积型稀土矿石中关键稀土元素(CREO)高于国内正在开发利用的四川冕宁碳酸岩型、白云鄂博碳酸岩型、山东微山碳酸岩型以及部分南方离子吸附型等大型、超大型稀土矿床,同样也高于国外即将开发利用的美国芒廷帕斯碳酸岩型、格陵兰岛碱性岩型等超大型稀土矿床。另外,该沉积型稀土资源与离子吸附型、古砂矿型稀土矿对比,在矿石品位、资源规模、集中程度、开采方式、环境影响等方面具有较大的优势,其开发前景巨大(图 7a、b)。
表 1 世界典型稀土矿床对比表Table 1. Comparison table of typical rare earth deposits in the world5. 开发利用潜力
笔者开展该沉积型稀土矿原矿铵盐浸出对比实验,结果表明稀土原矿中仅有少量(< 5%)稀土元素以离子吸附状态赋存于矿石中。通过多轮技术攻关,利用选择性浸出技术控制焙烧温度和焙烧时间,准确破坏稀土矿中高岭石的特定结构,脱去其层状结构中的羟基,变为高活性的偏高岭石,但偏高岭石仍保持了片状的结构特征。焙烧温度低于550℃,高岭石未转化为偏高岭石,稀土无法有效浸出,焙烧温度高于850℃,高岭石结构被完全破坏,硅和铝晶型会发生变化,对稀土元素进行重新包裹,导致稀土元素无法有效浸出,焙烧过程中不使用添加剂避免产生额外的有害废气。该技术通过协同控制焙烧和浸出条件,选择性浸出偏高岭石中的稀土元素,稀土元素浸出率高于90%,同时主要杂质铝、铁、钛和硅浸出率均<5%,有效抑制杂质大量进入富稀土料液。该技术申请了国家发明专利(徐璐等, 2020)。该技术的推广应用,有望使研究区内的稀土资源实现规模化工业利用。
6. 讨论
6.1 成因探讨
滇东—黔西地区稀土矿的成因研究程度不高,且存在较大争议,目前主要有三种观点:一是风化淋滤型,杨瑞东等(2006)、王伟(2008)以及Yang et al.(2008)通过分析稀土含矿层的地球化学特征,认为该矿床属与峨眉山玄武岩有关的风化壳型,峨眉山玄武岩及凝灰岩被强烈风化淋漓形成高岭石黏土岩,母岩中辉石的稀土元素被解析出来,被高岭石颗粒吸附,使稀土富集,形成稀土矿床;葛枝华(2018)同样赞同风化淋滤型稀土的观点,认为玄武岩风化过程实质就是一种脱硅富铝的过程,辉石、长石类矿物强烈分解,铁铝钛等氧化物明显增加,Ca、Na、Mg、K强烈迅速淋失,SiO2的含量不断降低,元素的迁移活动顺序是CaO>MgO>Na2O>SiO2,认为稀土元素通过风化淋滤作用在风化壳中不断富集起来。二是沉积-改造型,张海(2014)认为稀土矿床的形成与母岩的风化作用、沉积成岩作用以及地下流体作用有关,是沉积-再造型稀土矿床;黄训华(1997)、周灵洁(2012)、张海(2014)、吴承泉等(2019)通过稀土物源、地球化学特征分析,认为稀土矿物源不仅是峨眉山玄武岩,还应包括后期喷发的中酸性火成岩,经风化剥蚀后形成富集稀土的玄武岩质、凝灰质及少量长英质碎屑,经水介质搬运至沉积盆地形成高岭石硬质黏土岩,成岩过程中遭受一定程度的热液蚀变,促进稀土元素再富集;三是部分学者通过对比研究二叠纪峨眉山玄武岩及其同期长英质凝灰岩的地球化学特征,认为稀土异常富集与峨眉山玄武岩同期的碱性岩浆活动产生的凝灰岩有关,并接受了后期低温热液改造(Xu et al., 2001; Zhou et al., 2002; Long et al., 2004; Dai et al., 2010; Zhao et al., 2016)。
笔者研究发现,区域上宣威组富稀土岩系整体呈层状产出,从滇东到黔西横向演化和相变特征清晰;富稀土岩系底部常见河道相砾岩,辫状河沉积体系发育,层内偶见植物碎屑化石,层间发育水平层理等典型沉积构造;稀土含量较高的岩石主要为灰白色铝土质黏土岩,矿物组成主要为高岭石以及少量来自玄武岩及凝灰岩的典型矿物;由稀土配分模式看出铁质黏土岩和黏土质粉砂岩与玄武岩相比具有继承性,而铝土质黏土岩呈现出有别于玄武岩的明显负Eu异常特征(田恩源等, 2020);滇东—黔西地区位于上扬子陆块西缘,晚震旦世以来,长期处于相对稳定的台地沉积环境,区内无岩浆活动,不具备热液型稀土及南方离子吸附型稀土的成矿条件。基于以上认识,本文认为峨眉山玄武岩及同期的凝灰岩为富稀土岩系提供了主要的物质来源,而富稀土岩系中铝土质黏土岩很可能在沉积成岩过程中混入了大量上地壳富稀土物源区的物质,使得铝土质黏土岩中稀土异常富集。综上所述,本文认为滇东—黔西地区稀土资源成因类型为沉积型,是一种新类型的稀土资源。
6.2 稀土元素赋存状态
该稀土矿中稀土元素的赋存状态存在较大争议,前人分析矿石中稀土元素含量的高低可能与矿物组分有密切关系(周灵洁, 2012; Zhou et al., 2013; Zhang et al., 2016; Zhao et al., 2016, 2017; He et al., 2018)。在风化过程中,如果含稀土元素的副矿物抗风化能力弱,稀土元素则容易从副矿物中释放出来,以离子形式迁移富集于黏土矿物中,黏土矿物含量越高,稀土含量往往也相应比较高,稀土含量与黏土矿物含量就有较高的正相关性,据此推测认为稀土元素极有可能以离子吸附相和富含稀土元素的残余独立矿物相组成,与高岭石等黏土矿物含量密切相关;徐莺等(2018)利用电子探针、X射线衍射等现代分析测试手段并结合矿石选冶试验,认为稀土元素以类质同象为主、离子吸附相为辅的形式赋存于高岭石质黏土岩中;黄训华(1997)、吴承泉等(2019)通过分析在强烈风化条件下母岩被解析形成的稀土元素可能存在的赋存状态,认为稀土元素可能以离子吸附态、胶体吸附态等的混合态赋存于高岭石硬质黏土岩中。以上研究并未提供确凿证据证明稀土元素赋存状态。本文作者开展多组原矿铵盐浸出对比实验,稀土元素浸出率不超过20%,间接说明了稀土原矿中以离子吸附态赋存的稀土元素占比很低;据矿石岩矿鉴定,查明以独立稀土矿物形式赋存的稀土元素占比<0.1%,以类质同像(非独立稀土矿物)形式赋存的稀土元素占比也很低;而通过550℃~850℃焙烧选择性浸出技术,准确破坏稀土元素载体矿物——高岭石的特定结构,稀土元素浸出率高于90%。基于以上研究,推测稀土元素极有可能以某种形态赋存于高岭石矿物晶体层间间隙中。
6.3 关键稀土元素及其价值
随着全球新材料、新技术、新能源、高新电子、高端装备制造、先进军事装备等战略性产业迅猛发展,加快了对原材料的结构性调整,一批新兴战略性关键矿产成为各国竞相争夺的资源。根据稀土各元素特有的性质,轻稀土中的Pr、Nd,重稀土中的Tb、Dy等元素由于其在高强度永磁行业、新能源汽车产业、高端声光电材料等方面具备不可替代的地位,这些制约着全球新兴产业、高新科技健康发展的稀土元素称之为“关键稀土元素(CREE)”。据上海有色网公布的2020年6月稀土氧化物实时交易均价(据上海有色网未公布Tm2O3、Yb2O3、Lu2O3成交均价)显示(图 8),Pr、Nd、Tb、Dy关键稀土氧化物价格分别29.5万元/t、28.0万元/t、419万元/t、194万元/t,合计约占所有单一稀土氧化物价格总和的88%,可见关键稀土元素具有极高的经济价值和重要的战略地位。
滇东—黔西地区发现的沉积型稀土矿具有矿层厚、矿石品位高、资源潜力大、矿石中关键稀土元素(CREE)占比高等特点,特别是矿石选冶新工艺取得重大突破,使该类型稀土矿可能实现规模化工业利用。该沉积型稀土矿的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。
7. 结论
(1)滇东—黔西地区发育于二叠系宣威组的稀土矿,其成因类型属沉积型。
(2)稀土元素极有可能以某种形式赋存于高岭石矿物晶体层间间隙中。
(3)该沉积型稀土矿具有矿体厚度大、矿石品位高、资源潜力大、开采成本低、矿石中关键稀土元素(CREO)占比高等优点,其开发利用前景较好。
(4)该沉积型稀土资源的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。
-
图 1 研究区大地构造位置图
1—燕山—喜山构造层; 2—加里东—印支构造层; 3—四堡—晋宁构造层; 4—早白垩世晚期火山岩; 5—早白垩世晚期花岗岩; 6—早白垩世早期花岗岩; 7—新远古代花岗岩; 8—断层; 9—采样位置; 10—野外观察点位置
Figure 1. Geotectonic map of the study area
1-Yanshan-Himalayan structure layer; 2-Caledonian-Indosinian structure layer; 3-Sibao-Jinning structure layer; 4-Late Early cretaceous volcanic rocks; 5-Late Early cretaceous granites; 6-Early period of Early Cretaceous granite; 7-Neoproterozoic granite; 8-Faults; 9-Sample locations; 10-Field observation position
图 2 皖南地区北东向断裂左行走滑断面照片
a—早白垩世中晚期花岗斑岩左行平移擦痕; b—早白垩世杨湾组左行平移擦痕; c—早白垩世花岗闪长岩左行平移擦痕; d—早白垩世中分村组左行平移擦痕; e—中志留世唐家坞组断面左行平移擦痕; f—早志留世康山组断面左行平移擦痕; g—奥陶纪长坞组左行平移擦痕; h—南华纪休宁组左行平移擦痕; i—早白垩世中晚期花岗斑岩右行正断擦痕切割早期左行平移擦痕; j—早志留世坟头组内部左行平移断裂; k—左行走滑断裂旁侧倾竖褶皱; l—晚白垩世赤山组覆盖于左行走滑破碎带
Figure 2. Photographs showing the section of the sinistral strike-slip NE-trending fault in southern Anhui
a-Sinistral translational scratches of granitic porphyry in Middle and late Early Cretaceous; b-Sinistral translational scratches of Yangwan Formation in Early Cretaceous; c- Sinistral translational scratches of granodiorite in Early Cretaceous; d- Sinistral translational scratches of Zhongfencun Formation in Early Cretaceous; e-Sinistral translational scratches of Tangjiawu Formation in Middle Silurian; f-Sinistral translational scratches of Kangshan Formation in Early Silurian; g-Sinistral translational scratches of Changwu Formation in Ordovician; h-Sinistral translational scratches of Xiuning Formation in Nanhua period; i-Dextral normal fault scratches cutting sinistral translational scratches of granitic porphyry in middle and late Early Cretaceous; j-Sinistral translational scratches of Fentou formation in Early Silurian; k-Sinistral strike-slip fault lateral to a vertical fold; l-Chishan Formation of the Late Cretaceous covering the sinistral strike-slip fracture zone
表 1 皖南地区左行走滑断层实测滑移矢量数据
Table 1 Strike-slip vector data of sinistral faults in southern Anhui
表 2 杨湾组凝灰质砂岩LA-ICP-MS锆石U-Pb年代学分析结果
Table 2 LA-ICP-MS U-Pb dating result of zircon from sandstone of Yangwan Formation
-
Angelier J. 1989. From orientation to magnitudes in paleostress determinations using fault slip data[J]. Journal of Structural Geology, 11(1/2): 37-50. http://www.sciencedirect.com/science/article/pii/0191814189900345
Angelier J. 1994. Fault-slip analysis and paleostress reconstruction[C]//Continental Deformation. Oxford: Pergamon Press, 53-100.
Beaman M, Sager W W, Acton G D, Lanci L. Pares J. 2007. Improved Late Cretaceous and Early Cenozoic paleomagnetic apparent polar wander path for the Pacific plate[J]. Earth and Planetary Science Letters, 262(1/2): 1-20. http://www.sciencedirect.com/science/article/pii/S0012821X07003433
Chang Yinfo, Zhou Taofa, Fanyu. 2012. Polygenetic compound mineralization and tectonic evolution: Study in the Middle-Lower Yangtze River Valley metallogenic belt[J]. Acta Petrologica Sinica, 28(10): 3067-3075(in Chinese with English abstract). http://www.researchgate.net/publication/285631833_Polygenetic_compound_mineralization_and_tectonic_evolution_Study_in_the_Middle-Lower_Yangtze_River_Valley_metallogenic_belt
Cottrel R D, Tarduno J A. 2003. A Late Cretaceous pole for the Pacific plate: Implications for apparent and true polar wander and the drift of hotspots[J]. Tectonophysics, 363(1/4): 321-333. http://www.sciencedirect.com/science/article/pii/S0040195102006431
Cox S F, Ruming K. 2004. The St Ives mesothermal gold system, Western Australia——A case of golden aftershock?[J]. Journal of Structural Geology, 26(6/7): 1109-1125.
Dai Shengqian, Zhou Cunting, Chu Dongru, Liu Jiayun, Lu Xiaosan, Guan Yuncai. 2006. New information of Caledonian tectonic features in the northern part of the southeastern margin of the Lower Yangtze valley[J]. Geological Bulletin of China, 25(6): 670-672 (in Chinese with English abstract). http://www.researchgate.net/publication/285744152_New_Information_of_Caledonian_tectonic_features_in_the_northern_part_of_the_southeastern_margin_of_the_Lower_Yangtze_valley
Delvaux D, Sperner B. 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: The tensor program[C]//Nieuwland D(ed.). New Insights into Structural Interpretation and Modelling. London: Geological Society, Special Publications.
Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 288(1): 115-125. http://www.sciencedirect.com/science/article/pii/S0012821X09005469
Dong Shuwen, Zhang Yueqiao, Long Changxing, Yang Zhenyu, Ji Qiang, Wang Tao, Hu Jianmin, Chen Xuanhua. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement[J]. Acta Geologica Sinica, 81(11): 1449-1461 (in Chinese with English abstract).
Dong Shuwen, Zhang Yueqiao, Li Hailong, Shi Wei, Xue Huaimin, Li Jianhua, Huang Shiqi, Wang Yongchao. 2018. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia-Commemorating 90th years of the "Yanshan Orogeny"[J]. Science China Earth Sciences, 61(12): 1888-1909. doi: 10.1007/s11430-017-9297-y
Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific Bason[J]. Geol. Soc. Amspec. Paper, 206: 1-60
Fan Yu, Zhou Taofa, Yuan Feng, Qian Cunchao, Lu Sanming, David Cooke. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances[J]. Acta Petrologica Sinica, 24(8): 1715-1724(in Chinese with English abstract). http://www.researchgate.net/publication/258516323_LA-ICP-MS_zircon_U-Pb_ages_of_the_A-type_granites_in_the_Lu-Zong_Lujiang-Zongyang_area_and_their_geological_significances
Faure M, Monie P, Scharer U, Panis D. 2008. Mesozoic extensional tectonics in eastern Asia: the south Liaodong peninsula metamorphic core complex(NE China)[J]. The Journal of Geology, 116: 134-154. doi: 10.1086/527456
Han Yu, Niu Manlan, Zhu Guang, Wu Qi, Li Xiucai, Wang Ting. 2015. Geochronological evidence for the middle Early Cretaceous strike-slip movement from the Feidong segment of the Tan-Lu fault zone[J]. Advances in Earth Science, 30(8): 922-939 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201508010.htm
He Jiangqi, Ding Ruxin, Liang Shiyou, Zhang Lei, Shan Xinjian. 2014. Study of thermal evolution of the North Yellow Sea basin based on apatite fission track data[J]. Chinese Journal of Geophysics, 57(10): 3347-3353 (in Chinese with English abstract). http://www.researchgate.net/publication/288423286_Study_of_thermal_evolution_of_the_North_Yellow_Sea_basin_based_on_apatite_fission_track_data
He Junde, Yang Hengren, Yuan Peixin. 1981. Some ostracods from the Chishan Formation (Upper Cretaceous) of Jurong southern Jiangsu[J]. Acta Palaeontologica Sinica, 20(4): 341-348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX198104006.htm
Hu Z C, Liu Y S, Chen L, Zhou L, Li M, Zong L Y, Gao S. 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J]. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. doi: 10.1039/C0JA00145G
Huang L, Liu C Y, Kusky T M. 2015. Cenozoic evolution of the Tan-Lu Fault Zone (East China)——Constrains from seismic data[J]. Gondwana Res., 28: 1079-1095. doi: 10.1016/j.gr.2014.09.005
Jiang Laili, Hu Zhaoqi, Zhu Qiang, Huang Dezhi, Wang Deen. 2016. Late Mesozoic multi-stage structural deformations feature in the adjacent region among Anhui, Zhejiang, and Jiangxi Provinces[J]. Earth Science Frontiers, 23(4): 137-147 (in Chinese with English abstract). http://www.researchgate.net/publication/305243839_Late_Mesozoic_multi-stage_structural_deformations_feature_in_the_adjacent_region_among_Anhui_Zhejiang_and_Jiangxi_Provinces
Kadarusman A, Miyashita S, Maruyama S, Parkinson C D, Ishikawa A. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia[J]. Tectonophysics, 392: 55-83. doi: 10.1016/j.tecto.2004.04.008
Li H, Zhang H, Ling M X, Wang F Y, Ding X, Zhou J B, Yang X Y, Tu X L, Sun W D. 2010. Geochemical and zircon U-Pb study of the Huangmeijian A-type granite: Implications for geological evolution of the Lower Yangtze River belt[J]. International Geology Review, 53(5/6): 499-525. doi: 10.1080/00206814.2010.496202
Li Sanzhong, Suo Yanhui, Li Xiyao, Wang Yongming, Cao Xianzhi, Wang Pengcheng, Guo Lingli, Yu Shengyao, Lan Haoyuan, Li Shaojun, Zhao Shujuan, Zhou Zaizheng, Zhang Zhen, Zhang Guowei. 2018. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chinese Science Bulletin, 63(16): 1550-1593(in Chinese). doi: 10.1360/N972017-01113
Li Sanzhong, Zang Yibo, Wang Pengcheng, Suo Yanhui, Li Xiyao, Liu Xin, Zhou Zaizheng, Liu Xiaoguang, Wang Qian. 2017. Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction[J]. Earth Science Frontiers, 24(4): 213-225(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201704028.htm
Li Sanzhong, Zhang Guowei, Dong Shuwen, Liu Xiaochun, Wang Yuejun, Liu Bo, Qian Cunchao, Liu Enshan. 2010. Relation between exhumation of HP-UHP metamorphic rocks and deformation in the northern margin of the Yangtze Block[J]. Acta Petrologica Sinica, 26(12): 3549-3562(in Chinese with English abstract). http://www.oalib.com/paper/1474268
Li S Z, Zhang G C, Zhang G W, Liu X C, Dong S W, Wang Y J, Liu X, Suo Y H, Dai L M, Jin C, Liu L P, Hao Y, Liu E S, Wang J, Wang T. 2010. Not all folds and thrusts in the Yangtze foreland thrust belt are related to the Dabie Orogen: Insights from Mesozoic deformation south of the Yangtze River[J]. Geological Journal, 45(5/6): 650-663. doi: 10.1002/gj.1214
Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of the Asian Earth Sciences, 18(3): 293-305. doi: 10.1016/S1367-9120(99)00060-7
Li Xianhua, Li Zhengxiang, Zhou Hanwen, Liu Yin. 2002. SHRIMP U-Pb zircon geochronological, geochemical and Nd isotopic study of the Neoproterozoic granitoids in Southern Anhui[J]. Geological Review, 48(S1): 8-16(in Chinese with English abstract). http://www.researchgate.net/publication/284515332_shrimp_u-pb_zircon_geochronological_geochemical_and_nd_isotopic_study_of_the_neoproterozoic_granitoids_in_southern_anhui
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction Model[J]. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1
Liu Guosheng. 1997. Deform action characteristics and evolution of the Jiangnan Fault zone(segment of Southern Anhui)[J]. Journal of Hefei University of Technology(Natural Science), 20(3): 100-105(in Chinese with English abstract). http://www.researchgate.net/publication/303325868_Deformation_characteristics_and_evolution_of_the_Jiangnan_Fault_Zone_segment_of_southern_Anhui_since_Simian_Period
Liu Q, Yu J H, Wang Q, Su B, Zhou M F, Xu H, Cui X. 2012. Ages and geochemistry of granites in the Pingtan-Dongshan metamorphic belt, coastal South China: New constraints on Late Mesozoic magmatic evolution[J]. Lithos, 150: 268-286. doi: 10.1016/j.lithos.2012.06.031
Liu Wei, Xu Chunhua, Song Mingshui, Li Xuetian, Lei Min, Xu Youde, Qiu Liangui, Jiang Laili, Du Senguan, Chu Dongru. 2004. The Gucheng episode of Yanshan movement in Hefei basin and it's petrogeologic significance[J]. Geology of Anhui, 14(1): 1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ200401000.htm
Liu Wenhao, Zhang Jun, Li Wanting, Sun Teng, Jiang Manrong, Wang Jian, Wu Jiangyang, Chen Caojun. 2012. Metallogenic depth, post-mineralization uplift and denudation of porphyry-like type iron deposits in Ningwu, Luzong basins: Evidences from apatite fission track[J]. Earth Science(Journal of China University of Geosciences), 37(5): 966-980(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201205012.htm
Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010a. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.
Lü Chengxun, Maerz N H, Boyko K J, Lü Guxian, Shao Hesen. 2017. The alteration age of fracture zone and its implication for the formation of gold deposits in Jiaodong area[J]. Earth Scinece Frontiers, 24(2): 140-150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201702020.htm
Lü Qingtian, Liu Zhengdong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015. The nature of Yangtze River deep fault zone: Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58(12): 4344-4359(in Chinese with English abstract). http://www.researchgate.net/publication/292293475_The_nature_of_Yangtze_River_deep_fault_zone_Evidence_from_deep_seismic_data
Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tectono-magmatic activities in South China: Retrospect[J]. Science China: Earth Sciences, 44(12): 2593-2617(in Chinese with English abstract). doi: 10.1007%2Fs11430-014-5006-1
Maruyama S, Isozaki Y, Kimura G, Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J]. The Island Arc, 6(1): 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
Miao Qiaoyin, Chen Huogen, Li Xiangqian, Zhang Ping. 2016. A reconsideration of age of the basement rocks beneath loose fluvial sediments in the Zhenjiang area along the Yangtze River[J]. Journal of Stratigraphy, 40(1): 107-112(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201601014.htm
Nelson D R. 2001. Anassessment of the determination of depositional ages for Precambrain clastic sedimentary rocks by U-Pb dating of detrital zircons[J]. Sedimentary Geology, 141/142: 37-60. doi: 10.1016/S0037-0738(01)00067-7
Niu Yaoling. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China[J]. Geological Journal of China Universities, 11(1): 9-46 (in Chinese). http://d.wanfangdata.com.cn/Periodical/gxdzxb200501002
Petit J P. 1987. Criteria for the sense of movement on fault surfaces in brittle rocks[J]. Journal of Structural Geology, 9(5/6): 597-608. http://www.sciencedirect.com/science/article/pii/0191814187901453
Sager W W. 2006. Cretaceous paleomagnetic apparent polar wander path for the Pacific plate calculated from Deep Sea Drilling Project and Ocean Drilling Program basalt cores[J]. Physics of the Earth and Planetary Interiors, 156(3/4): 329-349. http://www.sciencedirect.com/science/article/pii/S0031920106000434
Shu Liangshu, Yu Jinhai, Wang Dezi. 2000. Late Mesozoic granitic magmatism and its relation to metamorphism-ductile deformation in the change-Nan'ao Fault zone, Fujian Provinve[J]. Geological Journal of China Universities, 6(3): 368-378(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253568680.html
Shu Liangshu. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.researchgate.net/publication/279561053_An_analysis_of_principal_features_of_tectonic_evolution_in_South_China_Block
Song Chuanzhong, Zhou Taofa, Yan Jun, Ren Shenglian, Li Jiahao, Tu Wenchuan, Zhang Yan. 2010. Mesozoic tectonic regime transition of the middle and lower reaches of the Yangtze River and its adjacent area[J]. Acta Petrologica Sinica, 26(9): 2835-2849(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201009026.htm
Song Chuanzhong, Li Jiahao, Ren Shenglian, Lin Shoufa, Liu Huan, Huang Peng, Wang Wei, Yang Fan. 2014. Mesozoic intracontinental tectonism and its genesis analysis of the middle-lower reaches of the Yangtze River[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 49(2): 339-354(in Chinese with English abstract). http://www.researchgate.net/publication/287575959_Mesozoic_intracontinental_tectonism_and_its_genesis_analysis_of_the_middle-lower_reaches_of_the_Yangtze_River
Song Chuanzhong, Li Jiahao, Yan Jiayong, Wang Yangyang, Liu Zhendong, Yuan Fang, Li Zhenwei. 2019. A tentative iscussion on some tectonicproblems in the east of South China continent[J]. Geology in China, 46(4): 704-722(in Chinese with English abstract).
Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3/4): 533-542. http://www.sciencedirect.com/science/article/pii/S0012821X07005134
Sun Weidong, Ling Mingxing, Wang Fangyue, Ding Xing, Hu Yanhua, Zhou Jibin, Yang Xiaoyong. 2008. Pacific Plate subduction and Mesozoic geological event in the Eastern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 218-225(in Chinese with English abstract). http://www.researchgate.net/publication/283874577_Pacific_plate_subduction_and_Mesozoic_geological_event_in_eastern_China
Suo Yanhui, Li Sanzong, Liu Xin, Dai Liming, Xu Liqing, Wang Pengcheng, Zhao Shujuan, Zhang Bingkun. 2013. Structural characteristics of NWW-trending active fault zones in East China: A case study of the Zhangjiakou-Penglai Fault zone[J]. Acta Petrologica Sinica, 29(3): 953-966(in Chinese with English abstract). http://www.researchgate.net/publication/283774300_Structural_characteristics_of_NWW-trending_active_fault_zones_in_East_China_A_case_study_of_the_Zhangjiakou-Penglai_Fault_Zone
Tian Pengfei, Yang Xiaoyong, Yuan Wanming, Liu Haitao, Xue Bin. 2012. Fission track dating on the Paodaoling gold deposit in the Middle-Lower Yangtze River mtallogenic belt: Its significance to tectonic setting[J]. Acta Geologica Sinica, 86(3): 400-409(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201203006.htm
Tucker R T, Roberts E M, Hu Y, Kemp A I S, Salisbury S W. 2013. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas[J]. Gondwana Research, 24(2): 767-779. doi: 10.1016/j.gr.2012.12.009
Wan Tianfeng, Zhao Qingle. 2012. The genesis of tectono-magmatism in eastern China[J]. Science China Earth Science, 42(2): 155-163(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201203002.htm
Wang Danping, Zhan Xianghui, Wang Jian. 2014. Evidence of fission track data for thermotectonic evolution history of the Lower Yangtze area[J]. Offshore Oil, 34(3): 55-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY201403016.htm
Wang Qiang, Zhao Zhenhua, Jian Ping, Xiong Xiaolin, Bao Zhiwei, Dai Tongmo, Xu Jifeng, Ma Jinlong. 2005. Geochronology of Creataceous A-type granitoids or alkaline intrusive rocks in the hinterland, South China: Constraints for Late-Mesozoic tectonic evolution[J]. Acta Petrologica Sinica, 31(3): 795-808(in Chinese with English abstract). http://www.oalib.com/paper/1472202
Wang Wei, Song Chuanzhong, Li Jiahao, Ren Shenglian, Zhang Yan, Liu Huan, Yang Fan. 2015. Zircon U-Pb dating for shearing movement on the Feidong segment of the Tan-Lu fault zone[J]. Chinese Journal of Geology, 50(3): 800-809(in Chinese with English abstract). http://www.researchgate.net/publication/282301369_Zircon_U-Pb_dating_for_shearing_movement_on_the_Feidong_segment_of_the_Tan-Lu_fault_zone
Wang X L, Shu X J, Xu X S, Tang M, Gaschnig R. 2012. Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic and esites in the eastern Jiangnan orogeny, southern China[J]. Journal of Asian Earth Sciences, 61: 243-25. doi: 10.1016/j.jseaes.2012.10.017
Wang X J, Zhou J G, Griffin W L, Wang R C, Qiu J S, O'Reilly S Y, Xu X, Liu X M, Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Res., 159: 117-131. doi: 10.1016/j.precamres.2007.06.005
Wang Zhen. 1981. Mesozoic charophytes from Anhui and Zhejiang with its stratigraphic significance[J]. Acta Palaeontologica Sinica, 20(4): 311-324(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10020877297
Wong J, Sun M, Xing G F, Li X H, Zhao G C, Wong K, Wu F Y. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125-100 Ma and its tectonic significance for South China[J]. Lithos, 112(3/4): 289-305.
Wu Fuyuan, Ge Wenchun, Sun Deyou, Guo Chunli. 2003. Discussion on the lithospheric thinning in eastern China[J]. Earth Science Frontiers, 10(3): 51-60(in Chinese with English abstract).
Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233(1/2): 103-119. http://www.researchgate.net/publication/222992706_nature_and_significance_of_the_early_cretaceous_giant_igneous_event_in_eastern_china
Wu F Y, Ji W Q, Sun D H, Yang Y H, Li X H. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 150: 6-25. doi: 10.1016/j.lithos.2012.03.020
Wu Genyao, Ma Li, Chen Huanjiang, Xu Keding. 2003. Tectonic evolution of the Su-Wan block, creation of the Su-Lu orogen and orogenesis-coupled basin developing[J]. Geotectonica et Metallogenia, 28(4): 337-353(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DGYK200304004&dbcode=CJFD&year=2003&dflag=pdfdown
Wu Rongxin, Zhen Yongfei, Wu Yuanbao. 2005. Zircon U-Pb age, element and oxygen isotope geochemisty of Neoproterozoic granodiorites in South Anhui[J]. Acta Petrologica Sinica, 21(3): 587-606(in Chinese with English abstract). http://www.oalib.com/paper/1472135
Wu Rongxin, Zheng Yongfei, Wu Yuanbao. 2007. Zircon U-Pb age and isotope geochemistry of neoproterozoic Jingtan volcanics in south Anhui[J]. Geological Journal of China Universities, 13(2): 282-296(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200702011.htm
Wu Yuedong, Jiang Laili, Chu Dongru, Wu Weiping, Wu Haiquan, Wang Dehua. 2003. Basin-range coupling between the Dabie orogeny and the Meso-Cenozoic basins along the Yangtze River in Anhui province[J]. Geology in China, 30(3): 286-292(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200303009.htm
Xie Jiancheng, Chen Si, Rong Wei, Li Quanzhong, Yang Xiaoyong, Sun Weidong. 2012. Geochronology, geochemistry and tectonic significance of Guniujiang A-type granite in Anhui Province[J]. Acta Petrologica Sinica, 28(12): 4007-4020(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252021700.html
Xing Fengming, Xu Xiang, Chen Jiangfeng, Zhou Taixi, K. A. Foland. 1992. The late Proterozoic continental accretionary history of the southeastern margin of the Yangtze platform[J]. Acta Geologica Sinica, 66(1): 59-72(in Chinese with English abstract). http://www.cqvip.com/QK/86253X/199203/1005200684.html
Xing Guangfu, Chen Rong, Yang Zhuliang, Zhou Yuzhang, Li Longming, Jiang Yang, Chen Zhihong. 2009. Characteristics and tectonic setting of Late Cretaceous volcanic magmatism in the coastal Southeast China[J]. Acta Petrologica Sinica, 25(1): 77-91(in Chinese with English abstract). http://www.oalib.com/paper/1472957
Xing Guangfu, Hong Wentao, Zhang Xuehui, Zhang Xuehui, Zhao Xilin, Ban Yizhong, Xiao Fan. 2017. Yanshanian granitic magmatisms and mineralizations in East China[J]. Acta Petrologica Sinica, 33(5): 1571-1590(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705014.htm
Xu Wenliang, Wang Qinghai, Wang Dongyan, Pei Fuping, Gao Shan. 2004. Processes and mechanism of Mesozoic lithospheric thinning in eastern North China Craton: Evidence from Mesozoic igneous rocks and deep-seated xenoliths[J]. Earth Science Frontiers, 11(3): 309-317(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403040.htm
Xu Wenliang, Wang Feng, Pei Fuping, Meng En, Tang Jie, Xu Meijun, Wang Wei. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volvanic rock associations[J]. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract). http://www.researchgate.net/publication/282382991_Mesozoic_tectonic_regimes_and_regional_ore-forming_background_in_NE_China_Constraints_from_spatial_and_temporal_variations_of_Mesozoic_volcanic_rock_associations_Acta_Petrologica_Sinica_292
Xue Huaimin, Ma Fang, Song Yongqin, Xie Yaping. 2010. Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogeny China: Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 26(11): 3215-3244(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201011006.htm
Xue Huaiming, Wang Yinggeng, Ma Fang, Wang Cheng, Wang Deen, Zuo Yanlong. 2009. Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusive: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton, China[J]. Science in China (Series D: Earth Sciences), 39(7): 979-993(in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=31087250
Yan Jun, Hou Tianjie, Wang Aiguo, Wang Deen, Zhang Dingyuan, Wen Wangfei, Liu Jianmin, Liu Xiaoqiang, Li Quanzhong. 2017. Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province[J]. Science China Earth Sciences, 47(11): 1269-1291(in Chinese with English abstract). doi: 10.1007/s11430-016-9070-4
Yang Minggui, Xu Meigui, Hu Qinghua, Wang Guanghui, Zhu Pingjun. 2016. The structural composite metallogenic characteristics of Hubei-Anhui-Jiangxi giant ore concentration area[J]. Earth Science Frontiers, 23(4): 129-136(in Chinese with English abstract). http://www.researchgate.net/publication/305245049_The_structural_composite_metallogenic_characteristics_of_Hubei-Anhui-Jiangxi_giant_ore_concentration_area
Yu Xinqi, Wu Ganguo, Zhang Da, Di Yongjun, Zang Wenshuan, Zhang Xiangxin, Wang Qunfeng. 2005. Research progress of Mesozoic tectonic system transformation in southeast China[J]. Progress in Natural Science, 15(10): 17-24(in Chinese with English abstract).
Yu Xinqi, Zhang Da, Wang Longwu, Yan Tiezeng, Deng Guohui. 2006. Features of Caledonian tectonic deformation in the Zhejiang-Anhui-Jiangxi border region, China[J]. Geological Bulletin of China, 25(6): 676-684(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200606005.htm
Yuan Feng, Zhou Taofa, Fan Yu, Yue Shucang, Zhu Guang, Hou Mingjin. 2006. Characteristics of Nd-Sr isotopes of the Yanshannian magmatic rocks in the Jiangnan rise bordering Anhui and Jiangxi Provinces[J]. Chinese Journal of Geology, 41(1): 133-142(in Chinese with English abstract). http://www.cqvip.com/QK/84219X/20062/22361687.html
Zhang Pei, Zhou Zuyi, Xu Changhai. 2009. Thermo-tectonic of the Lower Yangtze area since Late Cretaceous: Evidence from apatite fission track analysis of sandstones from Pukou Formation[J]. Offshore Oil, 29(4): 26-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY200904006.htm
Zhang Qi, Jin Weijun, Li Chengdong, Wang Yuanlong. 2009. Yanshanian large-scale magmatism and lithosphere thinning in Eastern China: Relation to large igneous province[J]. Earth Science Frontiers, 16(2): 21-51(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200902003.htm
Zhang S B, Wu R X, Zheng Y F. 2012. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogeny[J]. Precambrian Res., 220-221: 445-64. http://www.sciencedirect.com/science/article/pii/S0301926812001933
Zhang Yiyong, Li Jianguo. 2000. Cretaceous palynofloral succession of the Jiangsu area[J]. Journal of Stratigraphy, 24(1): 65-71(in Chinese with English abstract).
Zhang Yonghong. 1991. Huangqiao transform event in tectonic evolution of Lower Yangtze region and the meso-paleozoci hydrocarbon exploration target[J]. Oil & Gas Geology, 12(4): 439-448(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT199104009.htm
Zhang Yueqiao, Dong Shuwen, Zhao Yue, Zhang Tian. 2007. Jurassic tectonics of North China: a synthetic view[J]. Acta Geologica Sinica, 81(11): 1462-1480(in Chinese with English abstract).
Zhang Yueqiao, Dong Shuwen, Li Jianhua, Cui Jianjun, Shi Wei, Su Jinbao, Li Yong. 2012. The new progress in the study of Mesozoic tectonics of South China[J]. Acta Geoscientica Sinica, 33(3): 257-279(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQXB201203001.htm
Zhang Y Q, Dong S W, Shi W. 2003. Cretaceous deformation history of the middle Tan-Lu Fault Zone in Shandong Province, eastern China[J]. Tectonophysics, 363(3/4): 243-258. http://www.sciencedirect.com/science/article/pii/S0040195103000398
Zhou Taofa, Yuan Feng, Hou Mingjin, Du Jianguo, Fan Yu, Zhu Guang, Yue Shucang. 2004. Genesis and grodynamic background of Yanshanian granitoids in the Eastern Jiangnan uplift in the adjecent area of Anhui and Jiangxi Provinces, China[J]. Journal of Mineralogy and Petrology, 24(3): 65-71(in Chinese with English abstract). http://www.researchgate.net/publication/291976155_Genesis_and_geodynamic_background_of_Yanshanian_granitoids_in_the_eastern_Jiangnan_uplift_and_the_adjecent_areas_of_Anhui_and_Jiangxi_provinces_China
Zhou Taofa, Fan Yu, Wang Shiwei, Noel C WHITE. 2017. Metallogenic regularity and metallogenic model of the Yangtze River Valley Metallogenic Belt[J]. Acta Petrologica Sinica, 33(11): 3353-3372(in Chinese with English abstract).
Zhou Xiang, Yu Xinqi, Wang Deen, Zhang Dehui, Li Chunlin, Fu Jianzhen, Dong Huiming. 2011. Characteristics and geochronology of the W, Mo-bearing granodiorite porphyry in Dongyuan, Southern Anhui[J]. Geoscience, 25(2): 201-210(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201102003.htm
Zhou Xiang, Yu Xinqi, Yang Heming, Wang Deen, Du Yudiao, Ke Hongbiao. 2012. Petrogenesis and geochronology of the high Ba-Sr Kaobeijian granodiorite porphyry, Jixi County, South Anhui Province[J]. Acta Petrologica Sinica, 28(10): 3403-3417(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=43795865
Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of Mafic Magmas[J]. Tectonophysics, 326(3/4): 269-287. http://www.sciencedirect.com/science/article/pii/S0040195100001207
Zhu Guang, Xu Jiawei, Liu Guosheng, Li Shuangying, Yu Peiyu. 1998. Tectonic contral on development of the foreland basin along the Yangtze River in the Lower Yangtze River region[J]. Geological Review, 44(2): 120-129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199802001.htm
Zhu Guang, Liu Guosheng. 2000. Basic characteristics and Mesozoic orogenic process of the Jiangnan intracontinental orogenic belt in Southern Anhui[J]. Geotectonica et Metallogenia, 24(2): 103-111(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geotectonica-metallogenia_thesis/0201251887571.html
Zhu G, Jiang D Z, Zhang B L, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005
Zhu G, Chen Y, Jiang D Z, Lin S Z. 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex[J]. Tectonophysics, 656: 91-110. doi: 10.1016/j.tecto.2015.06.009
Zhu Guang, Wang Wei, Gu Chengchuan, Zhang Shuai, Liu Cheng. 2016. Late Mesozoic evolution history of the Tan-Lu Fault Zone and its indication to destruction processes of the North China Craton[J]. Acta Petrologica Sinica, 32(4): 935-949(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=668562145
Zhu Guang, Liu Cheng, Gu Chengchuan, Zhang Shuai, Li Yunjian, Su Nan, Xiao Shiye. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone[J]. Science China Earth Sciences, 48(4): 415-435(in Chinese with English abstract). doi: 10.1007/s11430-017-9136-4
常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换——以长江中下游成矿带为例[J]. 岩石学报, 28(10): 3067-3075. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210004.htm 戴圣潜, 周存亭, 储东如, 刘家云, 陆小三, 管运财. 2006. 下扬子东南缘北段加里东期构造形迹新资料[J]. 地质通报, 25(6): 670-672. doi: 10.3969/j.issn.1671-2552.2006.06.003 董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001 董树文, 张岳桥, 李海龙, 施炜, 薛怀民, 李建华, 黄始琪, 王永超. 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造——纪念"燕山运动"90周年[J]. 中国科学: 地球科学, 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm 范裕, 周涛发, 袁峰, 钱存超, 陆三明, David Cooke. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义[J]. 岩石学报, 24(8): 1715-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808005.htm 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 2015. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 30(8): 922-939. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201508010.htm 何将启, 丁汝鑫, 梁世友, 张蕾, 单新建. 2014. 基于磷灰石裂变径迹约束的北黄海盆地热演化研究[J]. 地球物理学报, 57(10): 3347-3353. doi: 10.6038/cjg20141021 何俊德, 杨恒仁, 袁佩鑫. 1981. 江苏句容赤山赤山组的介形类[J]. 古生物学报, 20(4): 341-348. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198104006.htm 江来利, 胡召齐, 朱强, 黄德志, 王德恩. 2016. 皖浙赣相邻区晚中生代多期构造变形特征及其动力学背景[J]. 地学前缘, 23(4): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604015.htm 李三忠, 索艳慧, 李玺瑶, 王永明, 曹现志, 王鹏程, 郭玲莉, 于胜尧, 兰浩圆, 李少俊, 赵淑娟, 周在征, 张臻, 张国伟. 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报, 63(16): 1550-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201816006.htm 李三忠, 臧艺博, 王鹏程, 索艳慧, 李玺瑶, 刘鑫, 周在征, 刘晓光, 王倩. 2017. 华南中生代构造转换和古太平洋俯冲启动[J]. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm 李三忠, 张国伟, 董树文, 刘晓春, 王岳军, 刘博, 钱存超, 刘恩山. 2010. 大别山高压-超高压岩石折返与扬子北缘构造变形的关系[J]. 岩石学报, 26(12): 3549-3562. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012009.htm 李献华, 李正祥, 周汉文, 刘颖. 2002. 皖南新元古代花岗岩的SHRIMP锆石U-Pb年代学、元素地球化学和Nd同位素研究[J]. 地质论评, 48(S1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1003.htm 刘国生. 1997. 江南断裂带(皖南段)的变形特征及震旦纪以来的构造演化[J]. 合肥工业大学学报(自然科学版), 20(3): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE703.017.htm 刘伟, 徐春华, 宋明水, 李学田, 雷敏, 徐佑德, 邱连贵, 江来利, 杜森官, 储东如. 2004. 试论合肥盆地燕山运动古城幕及其石油地质意义[J]. 安徽地质, (1): 1-5. doi: 10.3969/j.issn.1005-6157.2004.01.001 刘文浩, 张均, 李婉婷, 孙腾, 江满容, 王健, 吴建阳, 陈曹军. 2012. 宁芜、庐枞盆地玢岩铁矿成矿深度及成矿后抬升、剥蚀情况: 来自磷灰石裂变径迹的证据[J]. 地球科学(中国地质大学学报), 37(5): 966-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205012.htm 吕承训, Norbert H. MAERZ, Kenneth J. BOYKO, 吕古贤, 邵鹤森. 2017. 胶东区域成矿断裂带蚀变年龄研究及其矿床学意义[J]. 地学前缘, 24(2): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702020.htm 吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015. "长江深断裂带"的构造性质: 深地震反射证据[J]. 地球物理学报, 58(12): 4344-4359. doi: 10.6038/cjg20151202 毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景[J]. 中国科学: 地球科学, 44(12): 2593-2617. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412001.htm 苗巧银, 陈火根, 李向前, 张平. 2016. 镇江沿江区域松散层下基岩时代的厘定[J]. 地层学杂志, 40(1): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201601014.htm 牛耀龄. 2005. 玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路(英文)[J]. 高校地质学报, 11(1): 9-46. doi: 10.3969/j.issn.1006-7493.2005.01.002 舒良树, 于津海, 王德滋. 2000. 长乐-南澳断裂带晚中生代岩浆活动与变质-变形关系[J]. 高校地质学报, 6(3): 368-378. doi: 10.3969/j.issn.1006-7493.2000.03.001 舒良树. 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 宋传中, 周涛发, 闫峻, 任升莲, 李加好, 涂文传, 张妍. 2010. 长江中下游及其邻区中生代构造体制转换[J]. 岩石学报, 26(9): 2835-2849. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009026.htm 宋传中, 李加好, 任升莲, Lin Shoufa, 刘欢, 黄鹏, 王薇, 杨帆. 2014. 长江中下游地区中生代陆内构造作用与成因分析[J]. 地质科学, 49(2): 339-354. doi: 10.3969/j.issn.0563-5020.2014.02.001 宋传中, 李加好, 严加永, 王阳阳, 刘振东, 袁芳, 李振伟. 2019. 华南大陆东部若干构造问题的思考[J]. 中国地质, 46(4): 704-722. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190403&flag=1 孙卫东, 凌明星, 汪方跃, 丁兴, 胡艳华, 周继彬, 杨晓勇. 2008. 太平洋板块俯冲与中国东部中生代地质事件[J]. 矿物岩石地球化学通报, 27(3): 218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002 索艳慧, 李三忠, 刘鑫, 戴黎明, 许立青, 王鹏程, 赵淑娟, 张丙坤. 2013. 中国东部NWW向活动断裂带构造特征: 以张家口-蓬莱断裂带为例[J]. 岩石学报, 29(3): 953-966. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303018.htm 田朋飞, 杨晓勇, 袁万明, 刘海涛, 薛斌. 2012. 长江中下游成矿带抛刀岭金矿裂变径迹研究及大地构造意义[J]. 地质学报, 86(3): 400-409. doi: 10.3969/j.issn.0001-5717.2012.03.005 万天丰, 赵庆乐. 2012. 中国东部构造-岩浆作用的成因[J]. 中国科学: 地球科学, 42(2): 155-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202003.htm 王丹萍, 湛祥惠, 王剑. 2014. 苏皖下扬子区构造热演化史的裂变径迹证据[J]. 海洋石油, 34(3): 55-60. doi: 10.3969/j.issn.1008-2336.2014.03.055 王强, 赵振华, 简平, 熊小林, 包志伟, 戴橦谟, 许继峰, 马金龙. 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J]. 岩石学报, 21(3): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm 王微, 宋传中, 李加好, 任升莲, 张妍, 刘欢, 杨帆. 2015. 郯庐断裂带肥东段剪切活动锆石U-Pb测年[J]. 地质科学, 50(3): 800-809. doi: 10.3969/j.issn.0563-5020.2015.03.009 王振. 1981. 浙、皖中生代轮藻化石及其地层意义[J]. 古生物学报, 20(4): 311-324. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198104003.htm 吴福元, 葛文春, 孙德有, 郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 10 (3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004 吴根耀, 马力, 陈焕疆, 徐克定. 2003. 苏皖地块构造演化、苏鲁造山带形成及其耦合的盆地发育[J]. 大地构造与成矿学, 27(4): 337-353. doi: 10.3969/j.issn.1001-1552.2003.04.005 吴荣新, 郑永飞, 吴元保. 2005. 皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究[J]. 岩石学报, 21(3): 587-606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503004.htm 吴荣新, 郑永飞, 吴元保. 2007. 皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究[J]. 高校地质学报, 13(2): 282-296. doi: 10.3969/j.issn.1006-7493.2007.02.012 吴跃东, 江来利, 储东如, 吴维平, 吴海权, 汪德华. 2003. 大别山造山带与安徽沿江中新生代盆地的盆山耦合关系[J]. 中国地质, (3): 286-292. doi: 10.3969/j.issn.1000-3657.2003.03.010 谢建成, 陈思, 荣伟, 李全忠, 杨晓勇. 孙卫东. 2012. 安徽牯牛降A型花岗岩的年代学、地球化学和构造意义[J]. 岩石学报, 28(12): 4007-4020. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212017.htm 邢凤鸣, 徐祥, 陈江峰, 周泰禧, K A Foland. 1992. 江南古陆东南缘晚元古代大陆增生史[J]. 地质学报, 66(1): 59-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199201004.htm 邢光福, 陈荣, 杨祝良, 周宇章, 李龙明, 姜杨, 陈志洪. 2009. 东南沿海晚白垩世火山岩浆活动特征及其构造背景[J]. 岩石学报, 25(1): 77-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901008.htm 邢光福, 洪文涛, 张雪辉, 赵希林, 班宜忠, 肖凡. 2017. 华东地区燕山期花岗质岩浆与成矿作用关系研究[J]. 岩石学报, 33(5): 1571-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705014.htm 许文良, 王清海, 王冬艳, 裴福萍, 高山. 2004. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据[J]. 地学前缘, 11(3): 309-317. doi: 10.3321/j.issn:1005-2321.2004.03.029 许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm 薛怀民, 汪应庚, 马芳, 汪诚, 王德恩, 左延龙. 2009. 皖南太平-黄山复合岩体的SHRIMP年代学: 由钙碱性向碱性转变对扬子克拉通东南部中生代岩石圈减薄时间的约束[J]. 中国科学(D辑: 地球科学), 39(7): 979-993. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907010.htm 薛怀民, 马芳, 宋永勤, 谢亚平. 2010. 江南造山带东段新元古代花岗岩组合的年代学和地球化学: 对扬子与华夏地块拼合时间与过程的约束[J]. 岩石学报, 26(11): 3215-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011006.htm 闫峻, 后田结, 王爱国, 王德恩, 张定源, 翁望飞, 刘建敏, 刘晓强, 李全忠. 2017. 皖南中生代早期成矿和晚期非成矿花岗岩成因对比[J]. 中国科学: 地球科学, 47(11): 1269-1291. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711002.htm 杨明桂, 徐梅桂, 胡青华, 王光辉, 祝平俊. 2016. 鄂皖赣巨型矿集区的构造复合成矿特征[J]. 地学前缘, 23(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604013.htm 余心起, 吴淦国, 张达, 狄永军, 臧文拴, 张祥信, 汪群峰. 2005. 中国东南部中生代构造体制转换作用研究进展[J]. 自然科学进展, 15(10): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200510005.htm 余心起, 张达, 汪隆武, 颜铁增, 邓国辉. 2006. 浙皖赣相邻区加里东期构造变形特征[J]. 地质通报, 25(6): 676-684. doi: 10.3969/j.issn.1671-2552.2006.06.005 袁峰, 周涛发, 范裕, 岳书仓, 朱光, 侯明金. 2006. 江南隆起带皖赣相邻区燕山期岩浆岩Nd-Sr同位素特征[J]. 地质科学, 41(1): 133-142. doi: 10.3321/j.issn:0563-5020.2006.01.011 张沛, 周祖翼, 许长海. 2009. 苏皖下扬子区晚白垩世以来的构造-热历史: 浦口组砂岩磷灰石裂变径迹证据[J]. 海洋石油, 29(4): 26-32. doi: 10.3969/j.issn.1008-2336.2009.04.026 张旗, 金惟俊, 李承东, 王元龙. 2009. 中国东部燕山期大规模岩浆活动与岩石圈减薄: 与大火成岩省的关系[J]. 地学前缘, 16(2): 21-51. doi: 10.3321/j.issn:1005-2321.2009.02.002 张一勇, 李建国. 2000. 江苏白垩纪孢粉组合序列[J]. 地层学杂志, 24(1): 65-71. doi: 10.3969/j.issn.0253-4959.2000.01.010 张永鸿. 1991. 下扬子区构造演化中的黄桥转换事件与中、古生界油气勘探方向[J]. 石油与天然气地质, 12(4): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199104009.htm 张岳桥, 董树文, 赵越, 张田. 2007. 华北侏罗纪大地构造: 综评与新认识[J]. 地质学报, 81(11): 1462-1480. doi: 10.3321/j.issn:0001-5717.2007.11.002 张岳桥, 董树文, 李建华, 崔建军, 施炜, 苏金宝, 李勇. 2012. 华南中生代大地构造研究新进展[J]. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm 周涛发, 袁峰, 侯明金, 杜建国, 范裕, 朱光, 岳书仓. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景[J]. 矿物岩石, 24(3): 65-71. doi: 10.3969/j.issn.1001-6872.2004.03.008 周涛发, 范裕, 王世伟, Noel C WHITE. 2017. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 33(11): 3353-3372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711002.htm 周翔, 余心起, 王德恩, 张德会, 李春麟, 傅建真, 董会明. 2011. 皖南东源含W、Mo花岗闪长斑岩及成矿年代学研究[J]. 现代地质, 25(2): 201-210. doi: 10.3969/j.issn.1000-8527.2011.02.002 周翔, 余心起, 杨赫鸣, 王德恩, 杜玉雕, 柯宏飙. 2012. 皖南绩溪县靠背尖高Ba-Sr花岗闪长斑岩年代学及其成因[J]. 岩石学报, 28(10): 3403-3417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210027.htm 朱光, 徐嘉炜, 刘国生, 李双应, 虞培玉. 1998. 下扬子地区沿江前陆盆地形成的构造控制[J]. 地质论评, 44(2): 120-129. doi: 10.3321/j.issn:0371-5736.1998.02.002 朱光, 刘国生. 2000. 皖南江南陆内造山带的基本特征与中生代造山过程[J]. 大地构造与成矿学, 24(2): 103-111. doi: 10.3969/j.issn.1001-1552.2000.02.002 朱光, 王薇, 顾承串, 张帅, 刘程. 2016. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示[J]. 岩石学报, 32(4): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htm 朱光, 刘程, 顾承串, 张帅, 李云剑, 苏楠, 肖世业. 2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学: 地球科学, 48(4): 415-435. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804003.htm -
期刊类型引用(9)
1. 孔祥科,李义,王平,韩占涛,刘圣华,张兆吉,王妍妍. 制革污泥渗滤液中特征污染物对土壤氨氮转化及微生物群落结构的影响. 中国地质. 2024(05): 1676-1685 . 本站查看
2. 谷培科,陆海建,梁小阳,王俊,邓一荣. 华南地区某地块地下水污染特征与成因分析. 农业与技术. 2024(22): 96-99 . 百度学术
3. 李晓源,程庆禧,张宇霆,陆海建,邓一荣. 华南典型工业地块地下水污染特征与成因分析. 生物化工. 2024(06): 114-117 . 百度学术
4. 陈秀梅. 基于因子-聚类分析的地下水中阳离子来源研究. 环境监控与预警. 2023(02): 15-21 . 百度学术
5. 陈秀梅. 南通市深层地下水中氨氮的影响因素研究. 环境监测管理与技术. 2023(04): 72-75 . 百度学术
6. 吕晓立,郑跃军,韩占涛,李海军,杨明楠,张若琳,刘丹丹. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因. 地学前缘. 2022(03): 88-98 . 百度学术
7. 吕晓立,刘景涛,韩占涛,朱亮,李海军. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因. 环境科学. 2022(10): 4449-4458 . 百度学术
8. 郑艺文,李福杰,刘晓煌,常铭,赵宏慧,赖明,张子凡. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应. 中国地质. 2022(05): 1361-1373 . 本站查看
9. 曹建文,夏日元,唐仲华,赵良杰,王喆,栾崧,王松. 粤港澳大湾区地下水资源特征及开发潜力. 中国地质. 2021(04): 1075-1093 . 本站查看
其他类型引用(0)