• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

松辽盆地北部三肇凹陷升554断块特低渗油气储层流动单元研究

周路路, 刘俊刚, 舒广强, 刘志伟, 陈璋, 王双桃, 汤刚, 黎勤国

周路路, 刘俊刚, 舒广强, 刘志伟, 陈璋, 王双桃, 汤刚, 黎勤国. 松辽盆地北部三肇凹陷升554断块特低渗油气储层流动单元研究[J]. 中国地质, 2021, 48(3): 807-819. DOI: 10.12029/gc20210311
引用本文: 周路路, 刘俊刚, 舒广强, 刘志伟, 陈璋, 王双桃, 汤刚, 黎勤国. 松辽盆地北部三肇凹陷升554断块特低渗油气储层流动单元研究[J]. 中国地质, 2021, 48(3): 807-819. DOI: 10.12029/gc20210311
ZHOU Lulu, LIU Jungang, SHU Guangqiang, LIU Zhiwei, CHEN Zhang, WANG Shuangtao, TANG Gang, LI Qinguo. Research on flow units of ultra-low permeability oil-gas reservoirs in Sheng 554 fault block of Sanzhao depression, northern Songliao Basin[J]. GEOLOGY IN CHINA, 2021, 48(3): 807-819. DOI: 10.12029/gc20210311
Citation: ZHOU Lulu, LIU Jungang, SHU Guangqiang, LIU Zhiwei, CHEN Zhang, WANG Shuangtao, TANG Gang, LI Qinguo. Research on flow units of ultra-low permeability oil-gas reservoirs in Sheng 554 fault block of Sanzhao depression, northern Songliao Basin[J]. GEOLOGY IN CHINA, 2021, 48(3): 807-819. DOI: 10.12029/gc20210311

松辽盆地北部三肇凹陷升554断块特低渗油气储层流动单元研究

基金项目: 

大庆榆树林油田开发有限责任公司《升22区块油藏描述及扩边潜力评价(油藏描述部分)》项目 2010D-5006-0101

详细信息
    作者简介:

    周路路, 男, 1988年生, 工程师, 主要从事矿产调查、地质调查工作; E-mail: lulu6681420@163.com

    通讯作者:

    刘俊刚, 男, 1986年生, 工程师, 主要从事油气勘探开发工作; E-mail: ljgang01_cq@petrochina.com.cn

  • 中图分类号: P618.13

Research on flow units of ultra-low permeability oil-gas reservoirs in Sheng 554 fault block of Sanzhao depression, northern Songliao Basin

Funds: 

Daqing Yulin Oilfield Development Co., Ltd 2010D-5006-0101

More Information
    Author Bio:

    ZHOU Lulu, male, born in 1988, engineer, engaged in mineral and geological investigation; E-mail: lulu6681420@163.com

    Corresponding author:

    LIU Jungang, male, born in 1986, engineer, engaged in petroleum gas exploration and development; E-mail: ljgang01_cq@petrochina.com.cn

  • 摘要:

    油气储层流动单元在高、中、低渗储层表征中已经得到普遍应用,但在特低渗储层研究中仍然很少涉及。以松辽盆地北部三肇凹陷升554断块下白垩统泉头组四段扶余油层特低渗储层为例,划分出E、G、P三种流动单元类型,从E类至P类流动单元,渗流能力逐渐减小。流动单元物性特征、空间分布特征均表明流动单元储层非均质性较强。分析了沉积相及开启型正断层对流动单元发育的控制作用。研究发现,在特低渗储层尺度内,流动单元自身的渗流能力对油藏开发的作用已经很小,而不同流动单元之间的渗流能力差异引起油藏开发效果的不同也已不明显,开发效果主要取决于砂体射开厚度、注水效果等开发因素以及断层渗流通道、泥岩渗流屏障、砂体厚度等地质因素。这与以往储层流动单元研究中普遍认为的“流动单元渗流能力越强,油藏注水开发效果越好”的观点是截然不同的。通过本文以期为特低渗油气储层流动单元研究提供一定借鉴,为特低渗油藏开发提供一定参考依据。

    Abstract:

    The oil-gas reservoir flow units have been widely used in the characterization of high, medium and low permeability reservoirs, but they are still rarely involved in the study of ultra-low permeability reservoirs. As to a case of the ultra-low permeability reservoirs of the Fuyu oil layers in the Fourth Member of the Lower Cretaceous Quantou Formation in Sheng 554 fault block of Sanzhao Sag in northern Songliao Basin, three types of flow units have been classified, including E type, G type and P type. The flow capacity is gradually reduced from E type to P type. The physical and spatial distribution characteristics of the flow units indicate that the flow units reservoirs are highly heterogeneous. The controlling effects of sedimentary facies and open normal faults on the development of flow units are analyzed. It is found that the flow capacity of the flow units themselves has little effect on the reservoir development, and the difference of the reservoir development effect caused by the difference of the flow capacity among different flow units is not obvious in the scale of ultra-low permeability reservoirs. The development effect mainly depends on the development factors such as the thickness of the perforated sandbody and the effect of water injection, and the geological factors such as the fault seepage channel, the mudstone seepage barrier and the thickness of sandbody. This is quite different from the previous view that the more the flow capacity of flow units is, the better the reservoir development effect of water injection is. The result is expected to provide some reference for the study of flow units in ultra-low permeability oil-gas reservoirs and for the development of ultra-low permeability reservoirs.

  • 储层流动单元是指“影响流体流动的、岩性和岩石物理性质在内部相似的、垂向上和横向上连续分布的储集带”(Hearn et al., 1984Ebanks, 1987)。近年来,国内外诸多学者(Amaefule et al., 1993熊琦华等,1994Ti et al., 1995穆龙新等,1996焦养泉等,1998李阳,2003陈程等,2003王京红等,2004Ehrenberg et al., 2005窦松江等,2008董凤娟等,2012于蒙等,2017刘鼎等,2018万琼华等,2019)进行了储层流动单元的研究。储层流动单元已经在高、中、低渗储层表征中得到普遍应用,但在特低渗储层研究中仍然很少涉及。以松辽盆地中央坳陷三肇凹陷升554断块下白垩统泉头组四段扶余油层特低渗储层为例,确定储层流动单元划分标准,划分流动单元类型,表征流动单元非均质性特征及流动单元发育主控因素,讨论流动单元油藏开发效果,以期为特低渗储层流动单元研究提供一定借鉴意义,为特低渗油藏开发提供一定参考依据。

    研究区升554断块位于松辽盆地中央坳陷三肇凹陷东北部(图 1)。在松辽盆地发展演化过程中,三肇凹陷内部保持相对稳定,继承性地发展成为深断陷和坳陷中心(迟元林等,2000),其西接大庆长垣,东临朝阳沟阶地,北连明水阶地、东北隆起,是松辽盆地主要烃源凹陷(殷进垠,2002)。

    图  1  研究区区域构造位置图
    1—研究区范围;2—一级构造单元;3—二级构造单元;4—松辽盆地边界;5—城市
    Figure  1.  Regional geological map showing structural location of studied area
    1- Studied area; 2- Primary building unit; 3- Secondary building unit; 4- Boundary of Songliao Basin; 5- City

    研究区自下而上发育有上侏罗统火石岭组、白垩系沙河子组、营城组、登娄库组、泉头组、青山口组、姚家组、嫩江组、四方台组、明水组以及古近系和新近系。从下白垩统泉头组沉积开始,研究区共经历了3次沉降和3次主要构造反转(陈昭年,2008)。从泉头组至嫩江组沉积晚期,研究区在拉张作用下稳定沉降,表现为稳定的坳陷沉积。

    泉头组四段扶余油层为研究区产油主要接替层位(刘宗堡等,2008),厚约200 m,是在青山口组一段底突然湖侵之前发育起来的陆相充填沉积建造(刘宗堡等,2009),其上覆青山口组暗色泥页岩为生油源岩(侯启军等,2009霍秋立等,2012白静等,2020)。沉积序列整体呈砂泥互层,序列底部为灰绿、灰黑色湖沼泥质沉积,泥岩水平层理发育,含介形虫、轮藻、叶肢介、双壳类等门类化石(叶得泉等,2002刘振文等,2006张智礼等,2014),是较好的标志层。

    归纳前人储层流动单元划分研究成果(熊伟等,2005宋子齐等,2007董凤娟等,2012刘鼎等,2018王伟等,2018徐铮等,2018),发现储层流动单元划分方法分为两类。一是数学方法为主的定量储层参数分析法,二是地质方法为主的定性分析法。定量储层参数分析法主要包括流动层带指标划分法、孔隙度-渗透率划分法、渗透率差异指标法、存储系统-储集系统划分法、概率神经网络(PNN)法、非均质综合指数(IRH)法、熵权TOPSIS法、聚类分析法、灰色系统理论等方法,定性分析法主要包括沉积相划分法、岩性-物性划分法、孔喉几何形状法等方法。

    储层流动单元划分可分为两步(吴胜和,1999),第一步确定连通砂体与渗流屏障的分布(万琼华等,2019),第二步确定连通体内部的渗流差异。渗流屏障主要有3种类型:泥质屏障、胶结带屏障和闭合型断层屏障(窦松江等,2008),其形成主要取决于沉积作用、成岩作用和构造作用,其中沉积作用影响泥质屏障的发育,成岩作用控制胶结带屏障的形成,而构造作用主要决定断层的开启与闭合程度,形成闭合型断层屏障。

    研究区扶余油层埋深大,以泥质胶结为主,泥质含量10%~20%,胶结类型以再生、接触-再生胶结为主,可形成泥质胶结带屏障。由图 2可知,扶余油层渗流屏障主要为(粉砂质)泥岩屏障,分布于河流相韵律层上部,表现为河道间、天然堤、决口扇的泥质沉积。自然伽马曲线(GR)和电阻率曲线(RMN)表现为靠近泥岩基线、低幅微齿特征。扶余油层渗流屏障也多分布于三角洲相韵律层下部分流间湾泥质沉积。

    图  2  扶余油层渗流屏障与连通体识别剖面示意图
    1—渗流屏障;2—连通体;3—泥岩;4—粉砂质泥岩;5—泥质粉砂岩;6—粉砂岩;7—细-粉砂岩;8—细砂岩;9—油浸;10—含油
    Figure  2.  Schematic diagram of seepage barriers and connected bodies identification profile of Fuyu oil layers
    1-Seepage barrier; 2-Inner connected sand; 3-Mudstone; 4-Silty mudstone; 5-Pelitic siltstone; 6-Siltstone; 7-Fine-siltstone; 8-Fine sandstone; 9-Oilimmersion; 10-Oiliness

    储层连通单元受控于稳定的泥岩、泥质隔夹层的分布(陈程等,2003),即连通体受控于流动单元渗流屏障的分布。由图 2可知,扶余油层连通体岩性主要为粉砂岩、细粉砂岩及细砂岩,主要分布于河流相韵律层下部,表现为河道砂质沉积。自然伽马曲线(GR)和电阻率曲线(RMN)表现为远离泥岩基线、高幅、钟形或箱形、底部突变、微齿特征。扶余油层连通体也多分布于三角洲相韵律层上部砂质沉积。

    优选影响储层渗流能力且反映储集能力的岩石物理参数有效孔隙度和渗透率(陈欢庆等,2011)作为划分流动单元类型的主控核心参数。有效孔隙度直接反映储层储集能力,而渗透率则是表征储层渗流能力的首选指标。根据测井解释报告(S53- F1、S532-F1和S104-21井)35个数据点,将声波时差与有效孔隙度进行拟合(图 3a)得到公式(1),将渗透率与有效孔隙度进行拟合(图 3b)得到公式(2)。

    图  3  扶余油层Φ-AC拟合交汇图(a)和K-Φ拟合交汇图(b)
    Figure  3.  Φ-AC fitting intersection diagram (a) and K-Φ fitting intersection diagram (b) of Fuyu oil layers

    (1)

    式中Φ—有效孔隙度,%;AC—声波时差,μs/m。

    (2)

    式中Φ—有效孔隙度,%;K—渗透率,10-3 μm2

    取心井有效孔隙度、渗透率为岩心分析数据,而非取心井则由测井曲线二次数字处理所得。利用康尼—卡曼关系式求出标准孔隙度指数、储层质量指数及流动带指数值(何更生,1994),三者皆是表征储层储集能力、渗流能力的重要参数。相关表达式如式(3)、式(4)、式(5)和式(6)所示。

    (3)

    式中Φz—标准孔隙度系数,无量纲;Φ—有效孔隙度,%。

    (4)

    式中RQI—储层质量指数,µm;Φ—有效孔隙度,%;K—渗透率,10-3 µm2

    (5)

    将式(5)等号两边取对数得:

    (6)

    式中FZI—流动带指数,µm;RQI—储层质量指数,µm;Φz—标准孔隙度系数,无量纲。

    由公式(6)可知,具有相同FZI值的样品点在RQIΦz双对数坐标系上呈直线关系,具有不同FZI值的样品点在RQIΦz双对数坐标系上呈相互平行的直线关系,即在RQIΦz的双对数坐标系上,位于FZI值为常数的直线上的样品点,属于同一流动单元,适用于流动单元的划分(王清辉等,2019)。扶余油层流动单元之间的ΦΦz、和RQI值差异较小(表 1),而KFZI值差异较大,尤以FZI值的差异最为显著,可精确反映储层非均质性特征,因此流动带指数法(FZI值)可作为流动单元的划分依据和标准。

    表  1  扶余油层流动单元属性参数表
    Table  1.  Attribute parametere of flow units of Fuyu oil layers
    下载: 导出CSV 
    | 显示表格

    将95个取心井数据点(S25、S53、S552、S554和S555井)投在RQI-Φz双对数关系图上(图 4a),扶余油层可划分为E类、G类和P类3种类型的流动单元。同样,在FZI值累计概率百分数图上(图 4b),数据点显示出明显的三段式,以FZI值0.5 µm和0.8 µm为界可将扶余油层划分出E类、G类和P类3种类型流动单元,且两者吻合很好。

    图  4  扶余油层储层流动单元类型划分图
    a—RQI-Φz双对数关系图;b—FZI值累计概率百分数图;1—E类流动单元;2—G类流动单元;3—P类流动单元
    Figure  4.  Division of flow unit type for Fuyu reservoir
    a-RQI-Φz double logarithmic relationship diagram; b- FZI value cumulative probability percentage diagram; 1- Type E flow unit; 2- Type G flow unit; 3- Type P flow unit

    表 1可知,Φ值介于5.7%~17.5%,表明扶余油层流动单元为低孔—特低孔储层。K值介于0.01~4.8×10-3 µm2,表明流动单元为特低渗储层。从E类至P类流动单元,KRQIFZI值逐渐减小,表明流动单元渗流能力逐渐减弱,储层非均质性较强。

    E类流动单元流动带指数FZI平均值为1.20 μm,K平均值为3.17×10-3 µm2RQI平均值为0.16 μm,具有相对较强的渗流能力;G类流动单元流动带指数FZI平均值为0.65 μm,K平均值为1.58×10-3 µm2RQI平均值为0.11 μm,渗流能力中等;P类流动单元流动带指数FZI值平均值为0.33 μm,K平均值为0.27× 10-3 µm2RQI平均为0.04 μm,渗流能力较差。

    以扶余油层主力层FⅠ5、FⅠ6和FⅠ7小层为例。在扶余油层主力层流动单元分布和油藏分布平面图(图 5)上,E类流动单元发育不良,主要为G类、P类流动单元分布,不同流动单元之间、流动单元与渗流屏障之间呈不规则带状、片状交错或相间分布,E类流动单元主要分布在西南构造高部位,正断层形成了渗流通道,不同位置又因断层上下盘错动形成泥岩渗流屏障。由流动单元分布和油藏分布剖面示意(图 6)可知,同一油井不同小层可发育不同类型的流动单元,同一小层不同油井可发育不同类型的流动单元。以上均表明主力层流动单元储层非均质性较强。

    图  5  扶余油层主力层流动单元分布和油藏分布平面图
    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—正断层;6—剖面;7—油层;8—差油层;9—油水同层;10—取心井;11—采油井;12—注水井
    Figure  5.  Plane of the main layers flow units showing distribution of reservoirs in Fuyu
    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Normal fault; 6- Profile; 7- Oil layer; 8- Poor oil layer; 9- Water within oil layer; 10- Cored well; 11- Oil production well; 12- Water injection well
    图  6  扶余油层主力层流动单元分布和油藏分布剖面图
    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—油层;6—差油层;7—油水同层;8—分层界线及层号
    Figure  6.  Profile showing distribution of the main layers flow units and reservoirs of Fuyu oil layers
    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Oil layer; 6- Poor oil layer; 7- Water within oil layer; 8- Oil layer boundary and number

    归纳前人“相控”流动单元方面的诸多研究,发现存在两种观点。一是各类流动单元类型与不同的沉积微相具有较好的对应关系(王志章等,2010),二是同一种流动单元往往对应多种沉积微相类型,同一种沉积微相类型也可能存在多种流动单元(于蒙等,2017)。

    松辽盆地中央坳陷扶余油层发育河流—浅水三角洲相(黄薇等,2013),三肇凹陷扶余油层发育大型浅水三角洲(朱筱敏等,2012),研究区扶余油层自下而上发育湖泊相、三角洲相和曲流河相(周路路,2013)。扶余油层主力层发育曲流河相,沉积微相较为单调,主要为河道、河道间及溢岸砂(图 7)。各类流动单元分布于河道、溢岸砂中,河道间形成渗流屏障。对比主力层沉积微相平面分布图(图 7)与流动单元分布和油藏分布平面图(图 5)可知,主力层的沉积微相总体上控制了流动单元分布形态及渗流边界,发育良好的P类、G类流动单元呈不规则片状、线状随机分布于河道、溢岸砂中。少量发育的E类流动单元则有规律地分布于河道中(图 7)。

    图  7  扶余油层主力层沉积微相平面分布图
    1—河道;2—溢岸砂;3—决口扇;4—天然堤;5—河道间;6—正断层;7—取心井;8—采油井;9—注水井;10—E类流动单元
    Figure  7.  4Plane of sedimentary microfacies in the main layers of Fuyu oil layers
    1- Channel; 2- Effusion sand; 3- Splay; 4- Natural levee; 5- Interchannel; 6- Normal fault; 7- Cored well; 8- Oil production well; 9- Water injection well; 10- Type E flow unit

    研究区发育的构造均为开启型正断层,继承性发育的正断层在泉头组沉积时期受稳定的拉张应力作用持续发育。根据主力层流动单元分布和油藏分布平面图(图 5)上西南部断层两侧S50-62井和S54-64井钻遇的流动单元实际发育情况,分析断层对流动单元发育的控制作用。如图 8所示,正断层下盘S50-62井钻遇FⅠ5、FⅠ7小层砂岩,上盘S54-64井钻遇FⅠ5、FⅠ7小层泥岩,断层作为渗流通道,在下盘砂岩中形成E类、P类流动单元,上盘泥岩形成渗流屏障。同样,两井均钻遇FⅠ6小层砂岩,上下盘分别形成G类、P类流动单元。因此,认为研究区开启型正断层控制着储层流动单元的发育和分布。考虑到断层上下盘不断错动,断层开启程度不断变化,上下盘砂、泥接触部位与面积不断变化,认为流动单元的空间分布状态也是动态变化的。

    图  8  扶余油层断层控制流动单元发育模式图
    Figure  8.  Pattern of fault controlling flow units development of Fuyu oil layers

    利用扶余油层流动单元划分标准,对扶余油层各主力层流动单元进行划分,取得很好划分效果(图 9)。由图 9可知,数据点表现出明显的三段式分布,划分出3种流动单元类型,且以G类、P类流动单元为主,E类流动单元较少。认为文中储层流动单元划分标准可为松辽盆地其他地区特低渗储层流动单元划分提供一定参考依据。

    图  9  扶余油层主力层FZI值累计概率百分数图
    1—FⅠ5小层;2—FⅠ6小层;3—FⅠ7小层
    Figure  9.  FZI value cumulative probability percentage of main layers of Fuyu oil layers
    1- FⅠ5 oil layer; 2- FⅠ6 oil layer; 3- FⅠ7 oil layer

    扶余油层油藏具有上生下储的特征(霍秋立等,1999邹才能等,2007),上覆青山口组的油源沿着继承性发育的开启型正断层向下“倒灌”、“注入式”垂向运移至扶余油层(迟元林等,2000刘宗堡等,2009张雷等,2010),并侧向运移赋存在特低渗砂质储层中(连承波等,2011),形成大面积分布的岩性油藏(谭保祥等,1995迟元林等,2000张顺等,2011黄薇等,2013)和构造-岩性油藏,以空间成因单砂体为控制因素形成的单一岩性圈闭为最基本的控油与聚油单元(孙雨等,2009孙雨等,2018),断层与砂体之间的空间配置关系则控制了油气的运移与圈闭。

    研究区扶余油层除主力层油层有效砂厚大、横向连续性较好,而其他小层或多为薄层或横向连续性差。特以主力层油藏为例,讨论储层流动单元油藏的分布及开发效果。

    主力层油藏电测解释为油层、差油层及油水同层(图 5)。由图 5可知,特低渗储层流动单元空间分布对油藏的空间分布控制有限,两者无明显的相关性,表现为油层、差油层及油水同层随机分布于E类至P类各类流动单元中。油藏分布受控于断层,主要沿着正断层两侧分布。

    扶余油层FⅠ5小层流动单元钻遇的S50-76、S46-70、S44-68和S52-60等井(图 5a图 10),注水开发见效(图 10),电测解释为油层。同样,FⅠ7小层流动单元钻遇的大部井,如S50-82、S44-64、S42-86、S48-74、S42-74、S40-82等(图 5c图 11),注水开发效果好(图 11),电测解释为油层。因此,对于特低渗储层而言,认为储层流动单元开发见效范围控制了油藏实际分布范围。

    图  10  扶余油层FⅠ5小层油井生产柱状图
    1—日产液;2—日产油;3—累产油
    Figure  10.  Oil wells production histogram of FI5 layer of Fuyu oil layers
    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production
    图  11  扶余油层FⅠ7小层油井生产柱状图
    1—日产液;2—日产油;3—累产油
    Figure  11.  Oil wells production histogram of FI7 layer of Fuyu oil layers
    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production

    由扶余油层FⅠ5小层油井生产柱状图(图 10)可知,从E类至P类特低渗储层流动单元,油井的日产油量、累产油量总体呈现出逐渐上升的趋势(个别井例外),这与高、中、低渗储层呈现逐渐下降的趋势截然不同。E类流动单元钻遇的3口井(S42- 82、S50-54、S50-62井)或有效砂体厚度(砂体射开厚度)小或紧靠泥岩渗流屏障(图 5),导致注水效果差,油井产量小;G类流动单元钻遇井虽射开厚度大但紧靠泥岩渗流屏障,导致开发效果一般;P类流动单元钻遇的几口井或射开厚度较大或紧靠正断层形成的渗流通道,因而注水效果好,油井产量高。

    由扶余油层FⅠ7小层油井生产柱状图(图 11)可知,注水见效的G类与P类储层流动单元,在相同的生产周期内,油井的日产油量、累产油量近乎相同,而注水开发不见效的E类至P类储层流动单元,油井的产量也近乎相同。可见,对于特低渗储层而言,不同类型的流动单元自身渗流能力的差异对油藏开发效果的影响已不明显。

    普遍认为,储层流动单元渗流能力越强,油藏注水开发效果越好(陈程等,2003石占中等,2003王长发等,2003张振红等,2005吴小斌等,2011李照永,2011),但研究区特低渗储层流动单元却无该趋势甚至表现出相反的趋势。考虑到扶余油层特低渗储层渗流能力极弱,且又为低孔—特低孔储层,认为流动单元自身的渗流能力对油藏开发的作用已经很小,而不同流动单元之间的渗流能力差异所引起油藏开发效果的不同也已不明显,油藏开发效果主要取决于砂体射开厚度、注水效果等开发因素以及砂体厚度、断层渗流通道、泥岩渗流屏障等地质因素。

    (1)扶余油层特低渗油气储层流动单元划分出E、G、P三种类型,其中E类FZI值大于0.8 μm,G类FZI值介于0.5~0.8 μm,P类FZI值小于0.5 μm。从E类至P类流动单元,渗流能力逐渐减小,储层非均质性较强。

    (2)扶余油层特低渗油气储层流动单元发育及分布受沉积相和断层构造双重控制。

    (3)在特低渗尺度内,油气储层流动单元本身渗流能力极弱,其自身的渗流能力对油藏开发效果的影响已经很小,而不同流动单元之间的渗流能力差异所引起油藏开发效果的不同也已不明显,油藏开发效果取决于砂体射开厚度、注水效果等开发因素以及砂体厚度、断层等地质因素。

    致谢: 两位匿名审稿专家和编辑提出了有益意见和建议,成文过程中得到大庆榆树林油田相关专家的指导与帮助,在此一并致以衷心谢忱。
  • 图  1   研究区区域构造位置图

    1—研究区范围;2—一级构造单元;3—二级构造单元;4—松辽盆地边界;5—城市

    Figure  1.   Regional geological map showing structural location of studied area

    1- Studied area; 2- Primary building unit; 3- Secondary building unit; 4- Boundary of Songliao Basin; 5- City

    图  2   扶余油层渗流屏障与连通体识别剖面示意图

    1—渗流屏障;2—连通体;3—泥岩;4—粉砂质泥岩;5—泥质粉砂岩;6—粉砂岩;7—细-粉砂岩;8—细砂岩;9—油浸;10—含油

    Figure  2.   Schematic diagram of seepage barriers and connected bodies identification profile of Fuyu oil layers

    1-Seepage barrier; 2-Inner connected sand; 3-Mudstone; 4-Silty mudstone; 5-Pelitic siltstone; 6-Siltstone; 7-Fine-siltstone; 8-Fine sandstone; 9-Oilimmersion; 10-Oiliness

    图  3   扶余油层Φ-AC拟合交汇图(a)和K-Φ拟合交汇图(b)

    Figure  3.   Φ-AC fitting intersection diagram (a) and K-Φ fitting intersection diagram (b) of Fuyu oil layers

    图  4   扶余油层储层流动单元类型划分图

    a—RQI-Φz双对数关系图;b—FZI值累计概率百分数图;1—E类流动单元;2—G类流动单元;3—P类流动单元

    Figure  4.   Division of flow unit type for Fuyu reservoir

    a-RQI-Φz double logarithmic relationship diagram; b- FZI value cumulative probability percentage diagram; 1- Type E flow unit; 2- Type G flow unit; 3- Type P flow unit

    图  5   扶余油层主力层流动单元分布和油藏分布平面图

    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—正断层;6—剖面;7—油层;8—差油层;9—油水同层;10—取心井;11—采油井;12—注水井

    Figure  5.   Plane of the main layers flow units showing distribution of reservoirs in Fuyu

    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Normal fault; 6- Profile; 7- Oil layer; 8- Poor oil layer; 9- Water within oil layer; 10- Cored well; 11- Oil production well; 12- Water injection well

    图  6   扶余油层主力层流动单元分布和油藏分布剖面图

    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—油层;6—差油层;7—油水同层;8—分层界线及层号

    Figure  6.   Profile showing distribution of the main layers flow units and reservoirs of Fuyu oil layers

    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Oil layer; 6- Poor oil layer; 7- Water within oil layer; 8- Oil layer boundary and number

    图  7   扶余油层主力层沉积微相平面分布图

    1—河道;2—溢岸砂;3—决口扇;4—天然堤;5—河道间;6—正断层;7—取心井;8—采油井;9—注水井;10—E类流动单元

    Figure  7.   4Plane of sedimentary microfacies in the main layers of Fuyu oil layers

    1- Channel; 2- Effusion sand; 3- Splay; 4- Natural levee; 5- Interchannel; 6- Normal fault; 7- Cored well; 8- Oil production well; 9- Water injection well; 10- Type E flow unit

    图  8   扶余油层断层控制流动单元发育模式图

    Figure  8.   Pattern of fault controlling flow units development of Fuyu oil layers

    图  9   扶余油层主力层FZI值累计概率百分数图

    1—FⅠ5小层;2—FⅠ6小层;3—FⅠ7小层

    Figure  9.   FZI value cumulative probability percentage of main layers of Fuyu oil layers

    1- FⅠ5 oil layer; 2- FⅠ6 oil layer; 3- FⅠ7 oil layer

    图  10   扶余油层FⅠ5小层油井生产柱状图

    1—日产液;2—日产油;3—累产油

    Figure  10.   Oil wells production histogram of FI5 layer of Fuyu oil layers

    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production

    图  11   扶余油层FⅠ7小层油井生产柱状图

    1—日产液;2—日产油;3—累产油

    Figure  11.   Oil wells production histogram of FI7 layer of Fuyu oil layers

    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production

    表  1   扶余油层流动单元属性参数表

    Table  1   Attribute parametere of flow units of Fuyu oil layers

    下载: 导出CSV
  • Amaefule J O, Altunbay M, Tiab D. 1993. Enhanced reservoir description: Using core and log data to identify hydraulic (flow)units and predict permeability in uncored interval wells[J]. SPE, 205-220. http://www.researchgate.net/publication/314769929_Enhanced_Reservoir_Description_Using_Core_and_Log_Data_to_Identify_Hydraulic_Flow_Units_and_Predict_Permeability_in_Uncored_IntervalsWells

    Bai Jing, Xu Xingyou, Chen Shan, Liu Weibin, Liu Chang, Zhang Changsheng. 2020. Sedimentary characteristics and paleo-environment restoration of the first member of Qingshankou Formation in Qian'an area, Changling sag, Songliao Basin: A case study of Jiyeyou 1 Well[J]. Geology in China, 47(1): 220-235(in Chinese with English abstract).

    Chen Cheng, Zhang Jianliang, Zhong Siying, Guo Kangliang, Liu Xin. 2003. The reservoir flow units and waterflooded status in the Matouzhuang oil field, Jiangsu Province[J]. Geoscience, 17(3): 331-336(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200303015.htm

    Chen Huanqing, Hu Yongle, Jin Jiuqiang, Ran Qiquan. 2011. Researches on flow unit of the volcanic reservoir in 1st Member of Lower Cretaceous Yingcheng Formation, Xudong area, Songliao Basin[J]. Geology in China, 38(6): 1430-1439(in Chinses with English abstract). http://www.cqvip.com/QK/90050X/201106/40531461.html

    Chen Zhaonian, Wang Xiaomin, Chen Shan, Shen Xuyou. 2008. Structural evolution of fuyu reservoir in the Chaochang area of Songliao Basin[J]. Geoscience, 22(4): 512-519(in Chinese with English abstract). http://www.researchgate.net/publication/309120340_Structural_evolution_of_Fuyu_reservoir_in_the_Chaochang_area_of_Songliao_Basin

    Chi Yuanlin, Xiao Deming, Yin Jinyin. 2000. The injection pattern of oil and gas migration and accumulation in the Sanzhao area of Songliao Basin[J]. Acta Geologica Sinica, 74(4): 371-372(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=4743254

    Dong Fengjuan, Lu Xuefei, Ju Huijiao, Sun Wei. 2012. Division of flow units of the low permeability sandstone reservoir based on entropy-weighting TOPSIS method[J]. Geological Science and Technology Information, 31(6): 124-128(in Chinses with English abstract).

    Dou Songjiang, Ji Ling, Wang Haibo, Zhang Shengbin, Zhou Jie. 2008. Study of intercalations in massive Mesozoic reservoir in Wangguantun oilfield[J]. Petroleum Geology and Engineering, 22(1): 48-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYHN200801018.htm

    Dou Songjiang, Wang Qingkui, Ni Jinzhong, Li Guilin. 2008. Research on flow units of thick sandstone reservoir in fault block Guan 142 of Dagang Oilfield[J]. Geoscience, 22(1): 76-80(in Chinese with English abstract). http://www.cqvip.com/QK/96868X/200801/26493931.html

    Ebanks W J Jr. 1987. Flow unit concept-integrated approach to reservoir description for engineering projects[J]. AAPG Annual Meeting, AAPG Bulletin, 71(5): 551-552. doi: 10.1306/94887168-1704-11d7-8645000102c1865d

    Ehrenberg S N, Nadeau P H. 2005. Sandstone vs carbonate petroleum reservoirs: A global perspective on porosity depth and porosity permeability relationships[J]. AAPG Bulletin, 89(4): 435-445. doi: 10.1306/11230404071

    He Gengsheng. 1994. Physical and Chemical Oil[M]. Beijing: Petroleum Industry Press(in Chinese).

    Hearn C L, Ebanks W J, Tye R S. 1984. Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming[J]. Petrol. Tech., 36(12): 1335-1344. http://www.researchgate.net/publication/270441821_Geological_Factors_Influencing_Reservoir_Performance_of_the_Hartzog_Draw_Field_Wyoming

    Hou Qijun, Feng Zhiqiang, Feng Zihui. 2009. Terrestrial Petroleum Geology of the Songliao Basin[M]. Beijing: Petroleum Industry Press, 65-88(in Chinses).

    Huang Wei, Liang Jiangping, Zhao Bo, Sun Guoxin, Yang Qingjie. 2013. Main controlling factors of tight oil accumulations in the Fuyu Layer of Cretaceous Quantou Formation in northern Songliao Basin[J]. Journal of Palaeogeography, 15(5): 635-644(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gdlxb201305006

    Huo Qiuli, Feng Zihui, Fu Li, Liu Shiyan. 1999. The migration model of oil in Fuyu-Yangdachengzi reservoir of Sanzhao depression, Songliao basin[J]. Petroleum Exploration and Development, 26(3): 45-47(in Chinese with English abstract). http://www.cqvip.com/QK/90664X/199903/3757924.html

    Huo Qiuli, Zeng Huasen, Zhang Xiaochang, Fu Li. 2012. An evalution diagram of effective source rocks in the first member of Qingshankou Formation in northern Songliao Basin and its implication[J]. Acta Petrolei Sinica, 33(3): 379-384(in Chinses with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201203005.htm

    Jiao Yangquan, Li Sitian, Li Zhen, Wen Xianrui. 1998. The stratification of the physical heterogeneity of clastic reservoirs[J]. Oil & Gas Geology, 19(2): 89-92(in Chinese with English abstract).

    Li Yang. 2003. Reservoir flow unit model and residual oil distribution law[J]. Acta Petrolei Sinica, 24(3): 52-55(in Chinese with English abstract).

    Li Zhaoyong. 2011. Flow unit division of Fuyang reservoir with low permeability in Sanzhao Depression[J]. Fault-Block Oil & Gas Field, 18(1): 66-69(in Chinses with English abstract).

    Lian Chengbo, Zhong Jianhua, Qu Fang, Wang Zhikun, Yang Jun. 2011. Main factors controlling hydrocarbon accumulation mode of Quan4 Formation in Longxi area, Songliao Basin[J]. Geology in China, 38(1): 161-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201101018.htm

    Liu Ding, Li Guoxiong, Chen Xiangdong, Ren Yinghui, Niu Jiawei. 2018. Division of flow units in Chang 63 reservoir of J71 area by grey model[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 20(6): 22-25(in Chinses with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CQSG201806006.htm

    Liu Zhenwen, Zhang Zhili, Wang Baichang, Zhang Ming. 2006. Paleoecology and sedimentary environment of ostracods in the Fuyu and Yangdechengzi oil horizons in the Sanzhao area, Songliao basin[J]. Geology in China, 33(5): 1159-1166(in Chinses with English abstract). http://www.researchgate.net/publication/287234264_Paleoecology_and_sedimentary_environment_of_ostracods_in_the_Fuyu_and_Yangdachengzi_oil_horizons_in_the_Sanzhao_area_Songliao_basin

    Liu Zongbao, Lü Yanfang, Fu Xiaofei, Fu Guang, Li Di, Li Xiaowei. 2009. Sedimentary characteristics and hydrocarbon accumulation model of Fuyu reservoir in Sanzhao Depression[J]. Journal of Jilin University (EarthScience Edition), 39(6): 999-1000(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200905011.htm

    Liu Zongbao, Ma Shizhong, Lü Yanfang, Ma Zongzun, Tan Weixiong. 2008. Hydrocarbon accumulation model of big depression ramp area-as Putaohua reservoir in the Sanzhao Depresssion[J]. Journal of Jilin University (Earth Science Edition), 38(6): 937-945(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247974582.html

    Mu Longxin, Huang Shiyan, Jia Ailin. 1996. New advances in reservoir characterization[C]//Proceedings of Oil and Gas Field Development Conference of China National Petroleum Corporation. Beijing: Petroleum Industry Press, 1-10(in Chinese).

    Shi Zhanzhong, Wu Shenghe, Zhao Shiqin, Ma Xiaofen, Xing Weiqi, Guo Mozhen, Zheng Zhenying, Liu Shilin, Jia Yumei. 2003. Flow units of braided river reservoirs of the Kongdian Formation of Paleogene in Faulted Block Guan 104 of Wangguantun Oilfield, Huanghua Depression[J]. Journal of Palaeogeography, 4: 486-496(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200304009.htm

    Song Ziqi, Yang Lilei, Wang Hong, Li Yan, Sun Lina. 2007. Comprehensive evaluation method of reservoir flow unit with grey system[J]. Petroleum Geology & Oilfield Development in Daqing, 26(3): 76-81(in Chinses with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200703017.htm

    Sun Yu, Ma Shizhong, Zhang Xiuli, Liu Guanglin. 2009. Characteristics and main controlling factors for lithologic reservoirs of the Fuyu oil layer in the northern Honggang, Songliao Basin[J]. Acta Sedimentologica Sinica, 27(4): 760-768(in Chinese with English abstract).

    Sun Yu, Yu Limin, Yan Baiquan, Liu Yunyan, Cong Lin, Ma Shizhong. 2018. Oil-water distribution and its major controlling factors of Putaohua reservoir of the Cretaceous Yaojia Formation in syncline area of Sanzhao Sag, Songliao Basin[J]. Oil & Gas Geology, 39(6): 1120-1130(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201270872230.html

    Tan Baoxiang, Hou Deyan, Lin Jinghua. 1995. Hydrocarbon distribution and exploration potential of the Fuyu-Yangdachengzi petroleum pays, Sanzhao Depression, Songliao Basin[J]. Petroleum Exploration and Development, 22(1): 1-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK501.000.htm

    Ti Guangming, Inteq B H, Ogbe D O. 1995. Use of flow units as a tool for reservoir description: A case study[J]. SPE, Formation Evaluation, 10(2): 122-128. doi: 10.2118/26919-PA

    Wan Qionghua, Luo Wei, Liang Jie, Chen Chen, Yang Qiufei. 2019. Reservoir architecture-based classification of seepage barriers of flow unit[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 41(1): 77-84(in Chinses with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY201901007.htm

    Wang Facheng, Jiang Yuqiang. 2003. Study of reservoir flow unit in Wenmi oil field[J]. Journal of Southwest Petroleum University, 25(2): 4-7(in Chinese with English abstract). http://zk.swpuxb.com/CN/abstract/abstract1478.shtml

    Wang Jinghong, Hou Lianhua, Wu Xiling, Lin Chengyan. 2004. Characteristics of flow unit in fluvial reservoir with high water cut[J]. Journal of Petroleum University (Natural Science Edition), 28(4): 25-30(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYDX200404006.htm

    Wang Qinghui, Feng Jin, Guan Yao, Shi Lei, Pan Weiguo, Zhou Kaijin, Yang Qing, Song Wei. 2019. Permeability logging evaluation method of low-porosity low-permeability sandstone reservoirs based on dynamic data: A case study of Paleogene strata in Lufeng sag[J]. Acta Petrolei Sinica, 40(s1): 206-216(in Chinses with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB2019S1018.htm

    Wang Wei, Li Jianwu, Ding Lei. 2018. Division of flow units by Fzi and PNN method——as in Chang 6 reservoir Song 700 area NNW oil field[J]. West-China Exploration Engineering, 30(10): 58-61(in Chinses). http://en.cnki.com.cn/Article_en/CJFDTotal-CQSG201806006.htm

    Wang Zhizhang, He Gang. 2010. Division of reservoir flow unit and its application[J]. Natural Gas Geoscience, 21(3): 362-366(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201003003.htm

    Wu Shenghe, Wang Zhonglin. 1999. A new method of non-marine reservoir flow unit study[J]. Acta Sedimentologica Sinica, 17(2): 252-256(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB902.014.htm

    Wu Xiaobin, Hou Jiagen, Sun Wei, Lei Tian. 2011. Study on flow units based on hierarchical analysis in Jiyuan area, Ordos Basins[J]. Journal of Jilin University (Earth Science Edition), 41(4): 1013-1019(in Chinese with English abstract). http://www.researchgate.net/publication/287637279_Study_on_flow-units_based_on_Hierarchical_analysis_in_Jiyuan_area_Ordos_basins

    Xiong Qihua, Wu Shenghe. 1994. Reservoir Geology[M]. Dongying: Petroleum University Press, 55-60(in Chinese).

    Xiong Wei, Shi Zhiliang, Gao Shusheng, Chang Xuejun, Liu Li. 2005. Experiment study on flow unit in classtic reservoir[J]. Acta Petrolei Sinica, 26(2): 88-91(in Chinses with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200502019.htm

    Xu Zheng, Fu Qiang, Hui Xiao, Li Jing, Ji Shixiang, Li Xiangtong. 2018. Division and distribution of flow units of Chang 631 reservoir in Huaqing area, Ordos Basin[J]. Natural Gas Geoscience, 29(12): 1757-1766(in Chinses with English abstract).

    Ye Dequan, Huang Qinghua, Zhang Ying. 2002. Cretaceous Ostracoda Biostratigraphy in Songliao Basin[M]. Beijing: Petroleum Industry Press, 11-144(in Chinses).

    Yin Jinyin. 2002. Evolution and gas-accumulation of Xujiaweizi Depression in Songliao Basin[J]. Acta Petrolei Sinica, 23(2): 26-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200202008.htm

    Yu Meng, Cheng Rihui, Wang Maoting, Jiang Fei, Wang Anhui. 2017. Flow units and remaining oil analysis by"Facies Control": A case study of C block in Changchun Oilfield[J]. Global Geology, 36(1): 144-154(in Chinese with English abstract).

    Zhang Lei, Lu Shuangfang, Zhang Xuejuan, Fu Guang, Liu Guozhi, He Xin. 2010. Controlling factors and accumulation model of hydrocarbon accumulation of the Fuyang oil units in Sanzhao region of the Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 40(3): 491-502(in Chinese with English abstract). http://www.researchgate.net/publication/288071299_Controlling_factors_and_accumulation_model_of_hydrocarbon_accumulation_of_the_Fuyang_oil_units_in_Sanzhao_region_of_the_Songliao_basin

    Zhang Shun, Cui Kunning, Zhang Chenchen, Jin Mingyu. 2011. Controlling factors and distribution patterns of lithologic pools in the fluvial facies of the 3rd and 4th members of the Quantou Formation in the Songliao Basin[J]. Oil & Gas Geology, 32(3): 411-419(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201103018.htm

    Zhang Zhenhong, Qin Baiping, Lü Xiuxiang, Shi Shuo, Wan Xiaolong. 2005. Classification and geological meaning of the flow unit of the Chang 1 reservoir in Ding 31 well area of Youfanzhuang oil field[J]. Natural Gas Geoscience, 16(1): 40-43(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200501009.htm

    Zhang Zhili, Cai Xiyao, Zhang Ming, Li Jingchang, Zhang Ying. 2014. An analysis of the relationship between types of ostracoda shell ornaments and shell shapes and the environment from Late Cretaceous Qingshankou Formation to 1st Member of Nenjiang Formation in Songliao Basin[J]. Geology in China, 41(1): 135-147(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252103013.html

    Zhou lulu. 2013. Reservoirs Characterization of Sheng 554 Fault Block, Daqing Oilfield[D]. Beijing: China University of Geosciences, 20-50(in Chinese with English abstract).

    Zhu Xiaomin, Liu Yuan, Fang Qing, Li Yang, Liu Yunyan, Wang Rui, Song Jing, Liu Shiqi, Cao Haiyang, Liu Xiangnan. 2012. Formation and sedimentary model of shallow delta in large-scale lake, example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin[J]. Earth Science Frontiers, 19(1): 89-99(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201201012.htm

    Zou Caineng, Tao Shizhen, Zhang Youyu. 2007. Study on the age of reservoir formation in lithologic strata in southern Songliao and its exploration significance[J]. Chinese Science Bulletin, 52(19): 2319-2329(in Chinese). doi: 10.1360/csb2007-52-19-2319

    白静, 徐兴友, 陈珊, 刘卫彬, 刘畅, 张昌盛. 2020. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复——以吉页油1井为例[J]. 中国地质, 47(1): 220-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001019.htm
    陈程, 张建良, 钟思瑛, 郭康良, 刘辛. 2003. 江苏码头庄油田储层流动单元水淹状况分析[J]. 现代地质, 17(3): 331-336. doi: 10.3969/j.issn.1000-8527.2003.03.015
    陈欢庆, 胡永乐, 靳久强, 冉启全. 2011. 松辽盆地徐东地区下白垩统火山岩储层流动单元研究[J]. 中国地质, 38(6): 1430-1439. doi: 10.3969/j.issn.1000-3657.2011.06.003
    陈昭年, 王晓敏, 陈珊, 沈旭友. 2008. 松辽盆地朝长地区扶余油层的构造演化[J]. 现代地质, 22(4): 512-519. doi: 10.3969/j.issn.1000-8527.2008.04.004
    迟元林, 萧德铭, 殷进垠. 2000. 松辽盆地三肇地区上生下储"注入式"成藏机制[J]. 地质学报, 74(4): 371-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200004010.htm
    董凤娟, 卢学飞, 琚惠姣, 孙卫. 2012. 基于熵权TOPSIS法的低渗透砂岩储层流动单元划分[J]. 地质科技情报, 31(6): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201206020.htm
    窦松江, 季玲, 王海波, 张胜斌, 周杰. 2008. 王官屯油田中生界厚油层内隔夹层研究[J]. 石油地质与工程, 22(1): 48-51. doi: 10.3969/j.issn.1673-8217.2008.01.015
    窦松江, 王庆魁, 倪金钟, 李桂林. 2008. 大港油田官142断块巨厚砂岩的储层流动单元[J]. 现代地质, 22(1): 76-80. doi: 10.3969/j.issn.1000-8527.2008.01.010
    何更生. 1994. 油层物理[M]. 北京: 石油工业出版社.
    侯启军, 冯志强, 冯子辉. 2009. 松辽盆地陆相石油地质学[M]. 北京: 石油工业出版社, 65-88.
    黄薇, 梁江平, 赵波, 孙国昕, 杨庆杰. 2013. 松辽盆地北部白垩系泉头组扶余油层致密油成藏主控因素[J]. 古地理学报, 15(5): 635-644. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305010.htm
    霍秋立, 冯子辉, 付丽, 刘世妍. 1999. 松辽盆地三肇凹陷扶杨油层石油运移方式[J]. 石油勘探与开发, 26(3): 45-47. doi: 10.3321/j.issn:1000-0747.1999.03.013
    霍秋立, 曾花森, 张晓畅, 付丽. 2012. 松辽盆地北部青山口组一段有效烃源岩评价图版的建立及意义[J]. 石油学报, 33(3): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203005.htm
    焦养泉, 李思田, 李祯, 温显端. 1998. 碎屑岩储层物性非均质性的层次结构[J]. 石油与天然气地质, 19(2): 89-92. doi: 10.3321/j.issn:0253-9985.1998.02.003
    李阳. 2003. 储层流动单元模式及剩余油分布规律[J]. 石油学报, 24(3): 52-55. doi: 10.3321/j.issn:0253-2697.2003.03.011
    李照永. 2011. 三肇凹陷低渗透扶杨油层流动单元划分[J]. 断块油气田, 18(1): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201101019.htm
    连承波, 钟建华, 渠芳, 王志坤, 杨军. 2011. 松辽盆地龙西地区泉四段油气成藏主控因素及模式[J]. 中国地质, 38(1): 161-169. doi: 10.3969/j.issn.1000-3657.2011.01.017
    刘鼎, 李国雄, 陈向东, 任颖惠, 牛嘉伟. 2018. 基于灰色理论的J71区块长63储层流动单元划分[J]. 重庆科技学院学报(自然科学版), 20(6): 22-25. doi: 10.3969/j.issn.1673-1980.2018.06.005
    刘振文, 张智礼, 王佰长, 张铭. 2006. 松辽盆地三肇地区扶余油层和杨大城子油层介形类古生态及沉积环境探讨[J]. 中国地质, 33(5): 1159-1166. doi: 10.3969/j.issn.1000-3657.2006.05.028
    刘宗堡, 吕延防, 付晓飞, 付广, 李迪, 李晓伟. 2009. 三肇凹陷扶余油层沉积特征及油气成藏模式[J]. 吉林大学学报(自然科学版), 39(6): 999-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906008.htm
    刘宗堡, 马世忠, 吕延防, 马仲尊, 谭伟雄. 2008. 大型凹陷斜坡带油气成藏模式——以三肇凹陷葡萄花油层为例[J]. 吉林大学学报(地球科学版), 38(6): 937-945. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200806005.htm
    穆龙新, 黄石岩, 贾爱林. 油藏描述新进展[C]. 1996. 中国石油天然气总公司油气田开发工作会议文集. 北京: 石油工业出版社, 1-10.
    石占中, 吴胜和, 赵士芹, 马晓芬, 邢维奇, 郭沫贞, 郑振英, 刘卫林, 贾玉梅. 2003. 黄骅坳陷王官屯油田官104断块古近系孔店组辫状河储层流动单元[J]. 古地理学报, 5(4): 486-496. doi: 10.3969/j.issn.1671-1505.2003.04.009
    宋子齐, 杨立雷, 王宏, 李燕, 孙丽娜. 2007. 灰色系统储层流动单元综合评价方法[J]. 大庆石油地质与开发, 26(3): 76-81. doi: 10.3969/j.issn.1000-3754.2007.03.018
    孙雨, 马世忠, 张秀丽, 刘广林. 2009. 松辽盆地红岗北地区扶余油层岩性油藏特征及控制因素分析[J]. 沉积学报, 27(4): 760-768. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200904021.htm
    孙雨, 于利民, 闫百泉, 刘云燕, 丛琳, 马世忠. 2018. 松辽盆地三肇凹陷向斜区白垩系姚家组葡萄花油层油水分布特征及其主控因素[J]. 石油与天然气地质, 39(6): 1120-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806004.htm
    谭保祥, 侯德艳, 林景晔. 1995. 三肇地区扶杨油层油气藏分布规律及勘探前景分析[J]. 石油勘探与开发, 22(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK501.000.htm
    万琼华, 罗伟, 梁杰, 陈晨, 杨秋飞. 2019. 基于储层构型的流动单元渗流屏障级次研究[J]. 西南石油大学学报(自然科学版), 41(1): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201901007.htm
    王发长, 蒋裕强. 2003. 温米油田储层流动单元研究[J]. 西南石油学院学报, 25(2): 4-7. doi: 10.3863/j.issn.1674-5086.2003.02.002
    王京红, 侯连华, 吴锡令, 林承焰. 2004. 注水开发后期河流相储层流动单元特征[J]. 石油大学学报(自然科学版), 28(4): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200404006.htm
    王清辉, 冯进, 管耀, 石磊, 潘卫国, 周开金, 杨清, 宋伟. 2019. 基于动态资料的低孔低渗砂岩储层渗透率测井评价方法——以陆丰凹陷古近系为例[J]. 石油学报, 40(s1): 206-216. doi: 10.7623/syxb2019S1018
    王伟, 蔺建武, 丁磊. 2018. 基于FZI与PNN方法的流动单元划分研究——以NNW油田松700区长6储层为例[J]. 西部探矿工程, 30(10): 58-61. doi: 10.3969/j.issn.1004-5716.2018.10.019
    王志章, 何刚. 2010. 储层流动单元划分方法与应用[J]. 天然气地球科学, 21(3): 362-366. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201003003.htm
    吴胜和, 王仲林. 1999. 陆相储层流动单元研究的新思路[J]. 沉积学报, 17(2): 252-256. doi: 10.3969/j.issn.1000-0550.1999.02.015
    吴小斌, 侯加根, 孙卫, 雷甜. 2011. 基于层次分析方法对姬塬地区流动单元的研究[J]. 吉林大学学报(地球科学版), 41(4): 1013-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104009.htm
    熊琦华, 吴胜和. 储层地质学[M]. 1994. 东营: 石油大学出版社, 55-60.
    熊伟, 石志良, 高树生, 常学军, 刘莉. 2005. 碎屑岩储层流动单元模拟实验研究[J]. 石油学报, 26(2): 88-91. doi: 10.3321/j.issn:0253-2697.2005.02.020
    徐铮, 傅强, 惠萧, 李璟, 李士祥, 李祥同. 2018. 鄂尔多斯盆地华庆地区长631储层流动单元划分与展布[J]. 天然气地球科学, 29(12): 1757-1766. doi: 10.11764/j.issn.1672-1926.2018.09.008
    叶得泉, 黄清华, 张莹. 2002. 松辽盆地白垩系介形类生物地层学[M]. 北京: 石油工业出版社, 11-144.
    殷进垠. 2002. 松辽盆地徐家围子断陷构造演化[J]. 石油学报, 23(2): 26-29. doi: 10.3321/j.issn:0253-2697.2002.02.006
    于蒙, 程日辉, 王茂汀, 蒋飞, 王安辉. 2017. 储层"相控"流动单元及在分析潜在剩余油分布中的应用: 以长春油田C区块为例[J]. 世界地质, 36(1): 144-154. doi: 10.3969/j.issn.1004-5589.2017.01.012
    张雷, 卢双舫, 张学娟, 付广, 刘国志, 何欣. 2010. 松辽盆地三肇地区扶杨油层油气成藏过程主控因素及成藏模式[J]. 吉林大学学报(地球科学版), 40(3): 491-502. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003002.htm
    张顺, 崔坤宁, 张晨晨, 金明玉. 2011. 松辽盆地泉头组三、四段河流相储层岩性油藏控制因素及分布规律[J]. 石油与天然气地质, 32(3): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201103018.htm
    张振红, 秦百平, 吕修祥, 石硕, 万晓龙. 2005. 油房庄油田定31井区长1油层组流动单元的划分及其地质意义[J]. 天然气地球科学, 16(1): 40-43. doi: 10.3969/j.issn.1672-1926.2005.01.009
    张智礼, 蔡习尧, 张铭, 李京昌, 张莹. 2014. 松辽盆地晚白垩世青山口组-嫩江组一段介形类壳饰、壳形类型与环境关系分析[J]. 中国地质, 41(1): 135-147. doi: 10.3969/j.issn.1000-3657.2014.01.010
    周路路. 2013. 大庆油田升554断块油藏描述[D]. 中国地质大学(北京), 20-50.
    朱筱敏, 刘媛, 方庆, 李洋, 刘云燕, 王瑞, 宋静, 刘诗奇, 曹海涛, 刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例[J]. 地学前缘, 19(1): 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201012.htm
    邹才能, 陶士振, 张有瑜. 2007. 松辽南部岩性地层油气藏成藏年代研究及其勘探意义[J]. 科学通报, 52(19): 2319-2329. doi: 10.3321/j.issn:0023-074x.2007.19.018
  • 期刊类型引用(5)

    1. 吴穹螈,王少鹏,张岚,翟上奇,常会江. 浅水三角洲储层流动单元划分. 长江大学学报(自然科学版). 2023(02): 84-95 . 百度学术
    2. 荆锡贵,李凤杰,张达,李宁,苗贺,丁锐. 松辽盆地腰南5井上白垩统嫩江组一段遗迹化石组合及其沉积环境. 中国地质. 2023(06): 1848-1856 . 本站查看
    3. 马永宁,魏龙杰,吴珍珍,何子琼,傅塬,郭艳琴. 靖安油田杨66井区延10储层非均质性及流动单元. 西安石油大学学报(自然科学版). 2022(04): 1-9 . 百度学术
    4. 王春伟,董佑桓,杨勇,杨向东,陈鑫. 辫状河油藏层内非均质性及其对剩余油分布的影响. 地质与资源. 2022(06): 770-775 . 百度学术
    5. 景涛涛,韩宇宁,石雅琨,马永宁,魏龙杰,王美霞,郭艳琴. 靖安油田Y66区延9_1储层流动单元研究. 河北地质大学学报. 2021(03): 32-36 . 百度学术

    其他类型引用(1)

图(11)  /  表(1)
计量
  • 文章访问数:  2874
  • HTML全文浏览量:  827
  • PDF下载量:  3676
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-05-18
  • 修回日期:  2019-08-25
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-06-24

目录

/

返回文章
返回
x 关闭 永久关闭