• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用

舍建忠, 陈刚, 朱志新, 贾健, 邸晓辰, 董国盛, 刘凯旋, 金成

舍建忠, 陈刚, 朱志新, 贾健, 邸晓辰, 董国盛, 刘凯旋, 金成. 东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用[J]. 中国地质, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419
引用本文: 舍建忠, 陈刚, 朱志新, 贾健, 邸晓辰, 董国盛, 刘凯旋, 金成. 东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用[J]. 中国地质, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419
SHE Jianzhong, CHEN Gang, ZHU Zhixin, JIA Jian, DI Xiaochen, DONG Guosheng, LIU Kaixuan, JIN Cheng. Geochemistry, zircon chronology, Sr-Nd-Hf isotopic characteristics and subduction magmatism of Heishidun basic rocks in the East Tianshan[J]. GEOLOGY IN CHINA, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419
Citation: SHE Jianzhong, CHEN Gang, ZHU Zhixin, JIA Jian, DI Xiaochen, DONG Guosheng, LIU Kaixuan, JIN Cheng. Geochemistry, zircon chronology, Sr-Nd-Hf isotopic characteristics and subduction magmatism of Heishidun basic rocks in the East Tianshan[J]. GEOLOGY IN CHINA, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419

东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用

基金项目: 

中国地质调查局项目 12120114059201

详细信息
    作者简介:

    舍建忠, 男, 1982年生, 硕士, 高级工程师, 主要从事区域地质矿产调查研究; E-mail: sjz832@163.com

  • 中图分类号: P597;P588.12+4

Geochemistry, zircon chronology, Sr-Nd-Hf isotopic characteristics and subduction magmatism of Heishidun basic rocks in the East Tianshan

Funds: 

the project of China Geological Survey 12120114059201

More Information
    Author Bio:

    SHE Jianzhong, male, born in 1982, master, senior engineer, engaged in regional geology and mineral investigation; E-mail: sjz832@163.com

  • 摘要:

    在东天山康古尔塔格南黑石墩一带新发现一套基性岩,岩性以辉长岩和橄榄辉长岩为主,岩石具有相对较低SiO2(47.59%~50.79%)、富Na2O(2.72%~4.42%)贫K2O(0.26%~1.15%),低MgO(3.94%~12.55%),中等Mg#(47.6~66.64),高Al2O3(14.75%~19.65%),相对富集轻稀土((La/Yb)N1.83~2.12),Eu弱正异常(1.00~1.25),富集LILE(Ba、U、Sr),亏损HFS(Ta、Nb、Th和Ti),并强烈富集Pb。锆石LA-ICP-MS U-Pb年龄((342.6±3.2)Ma)表明该基性岩属于早石炭世岩浆活动的产物。岩石具有较低的(87Sr/86Sr)i(0.703421~0.704551),正的εNdt)(7.6~8.1)和εHft)(9.82~13.74)。地球化学特征和岩相学显示其来自亏损的岩石圈地幔源区,且源区在较低程度的部分熔融前受到俯冲板片中富含大离子亲石和轻稀土元素的海洋沉积物在俯冲过程中脱水熔融形成流体的交代作用影响,原始岩浆在侵位过程中发生程度不同的橄榄石、辉石和斜长石分离结晶作用,侵位过程中受到地壳物质混染的程度非常低。构造和动力学背景研究表明,黑石墩基性岩为北天山洋在早石炭世沿康古尔塔格—黄山大断裂向北俯冲阶段的产物。

    Abstract:

    A new set of basic rocks was discovered in the Heishidun in South Kangurtag, Eastern Tianshan. Its lithology mainly consists of gabbro and olive gabbro. The rocks are characterized by relatively low contents of SiO2 (47.59%-50.79%), K2O (0.26%-1.15%) and MgO (3.94%-12.55%), high contents of Na2O (2.72% -4.42%) and Al2O3 (14.75% -19.65%), and moderate content of Mg# (47.6-66.64). Light rare earth is enriched ((La/Yb)N of 1.83-2.12) with a bit of Eu positive anomaly (1.00-1.25). LILE (Ba, U, Sr) is enriched, while HFS (Ta, Nb, Th, and Ti) is depleted, and Pb is strongly enriched. LA-ICP-MS zircon U-Pb dating yields 342.6±3.2 Ma, indicating that this basic rock is a product of Early Carboniferous magmatic activity. Rocks have lower Sr ratio (87Sr/86Sr)i (0.703421-0.704551), positive εNd (t) (7.6-8.1) and εHf (t) (9.82-13.74). Geochemical characteristics and petrography show that it is originated from the lithospheric mantle source of the loss, and the source area was affected by the metamorphism of the dehydration and melting fluids resulted from the subduction of marine sediments rich in large ionic lithophile and light rare earth elements. The separation and crystallization of olivine, pyroxene and plagioclase took place during the emplacement of magma, the degree of contamination by the crustal material during the emplacement was very low. The structural and dynamic background shows that the Heishidun basic rock is the product of the Northern Tianshan Ocean's northward subduction along the Kangugtag-Huangshan fault in the Early Carboniferous.

  • 东天山是中亚地区东西走向的天山造山系的主要组成部分,在吐哈盆地南缘,不仅发育高钕低锶同位素初始比值的花岗岩(李锦轶等, 2006),而且从镜儿泉向西,经黄山、土墩、白鑫滩、海豹滩、红岭、康古尔塔格、恰特卡尔、路北,到色尔特能,出露100多个侵入到晚古生代地层的基性超基性岩(图 1), 构成了沿康古尔—黄山断裂长达数百千米的基性超基性岩带(李锦轶等, 2006),其产出受康古尔塔格—黄山大断裂及其次级断裂控制(毛亚晶等, 2014),且很多基性超基性岩有铜镍矿化,构成了恰特卡尔—黄山—镜儿泉铜镍成矿带,铜镍总储量达到百万吨,迄今这些含矿岩体中获得锆石U-Pb年龄为269~285 Ma(邓宇峰等, 2011)。以往该地区基性超基性岩的研究多集中在该带东段含铜镍硫化物矿床的杂岩体(韩宝福等, 2004Zhou et al., 2004李锦轶,2006)。近年来,白鑫滩、路北和海豹滩等杂岩型铜镍矿的相继发现,将东天山沿康古尔—黄山大断裂分布的基性超基性杂岩型铜镍矿,由黄山经土墩向西过沙垄,经土屋延伸到石英滩东北,大大拓宽了东天山基性超基性杂岩型铜镍矿的找矿范围(杨万志等, 2017)。近年来虽然西段杂岩体研究成果明显增多,但集中于二叠纪基性超基性岩的研究,对石炭纪基性超基性岩文献报道较少,发现也很少。2014年新疆地质调查院承担的“新疆东天山成矿带中段1∶5万综合地质调查”项目在该地区新发现石炭纪黑石墩基性岩,并通过系统的岩相学、岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素研究,为进一步探讨东天山地区的构造演化与成矿时代提供新的依据。

    图  1  北天山地区地质简图
    Figure  1.  Geologica map of Northern Tianshan

    东天山处于西伯利亚、准噶尔—哈萨克斯坦和塔里木三大板块的接合处(Windley et al., 1990肖序常等, 1992何国琦等, 1994Qin et al., 2003何国琦和朱永峰, 2006Zhu et al., 2007),属中亚造山带的组成部分。区内蕴藏着丰富的矿产资源,是新疆乃至中国重要的铜、镍、金、铁、铅、锌等大型矿床集中区(王京彬等, 2006)。与铜镍矿相关的基性超基性岩石十分发育,且呈现含矿岩体以规模小、多阶段侵入、岩相分带清楚、成群成带出现的特点,小岩体成大矿是普遍的成矿现象,也是我国铜镍矿床的主要产出特点(顾连兴等, 2007汤中立等, 2007秦克章等, 2007王玉往等, 2010)。对这些基性超基性杂岩的成因分歧较大:一是认为其归属蛇绿岩套的组成,其源区为软流圈地幔;二是认为形成于板块俯冲碰撞阶段,其源区为俯冲交代地幔;三是认为形成于碰撞造山后伸展环境,其源区为俯冲交代地幔或软流圈地幔;四是认为与塔里木地幔柱活动有关(邓宇峰等, 2011)。

    黑石墩基性岩位于东天山中段鄯善县南侧,吐哈盆地南缘,恰特卡尔古火山机构东侧康古尔塔格一带,北距卡拉塔格约15 km,南距康古尔塔格—黄山大断裂约10 km,南邻康古尔韧性剪切带,构造位置属于小热泉子—大南湖岛弧带(舍建忠等, 2018),带内主要出露奥陶纪、志留纪、泥盆纪和石炭纪火山岩、火山沉积碎屑岩,也发育华力西中晚期岛弧型中酸性侵入岩。黑石墩基性岩地表被晚石炭世底坎尔组不整合覆盖,呈透镜体状出露,受断层控制,围岩无明显矿化蚀变。

    黑石墩基性岩岩性以辉长岩和橄榄辉长岩为主,有少量的辉石岩和辉绿岩分布。辉长岩均发生较强的蚀变。

    辉长岩(图 2a)主要矿物为斜长石、蛇纹石、普通辉石,极少量磁铁矿、钛铁矿,斜长石含量约74%,呈半自形—自形长板状杂乱分布,局部黝帘石化、绢云母化,蛇纹石含量约20%,呈鳞片状分布于斜长石间,部分蛇纹石集合体中可见辉石残留,普通辉石含量约为5%,呈半自形—他形柱粒状分布于斜长石间,部分为蚀变残留;橄榄辉长岩(图 2b)主要矿物为普通辉石、斜长石、橄榄石,见少量钛铁矿和磁铁矿,普通辉石含量22%,呈半自形—他形柱粒状分布于斜长石间,粒径较大,部分粒径细小者包裹于粒径粗大者中,斜长石含量约60%,呈半自形长板状、板状、粒状分布,表面干净,未见明显蚀变,橄榄石含量为15%,呈半自形—他形粒状,强蚀变,多已完全被蚀变矿物伊丁石、皂石所取代,保留其外形,分布于辉石中或斜长石间。

    图  2  黑石墩基性岩代表性岩石类型的显微照片
    a—辉长岩;b—橄榄辉长岩;Pl—斜长石; Aug—普通辉石; Ol—橄榄石; Srp—蛇纹石
    Figure  2.  Microphotographs of the representative rocks in the Heishidun basic intrusive
    a-Gabbro; b-Olivine gabbro; Pl-Plagioclase; Aug-Augite; Ol-Olivine; Srp-Serpentine

    样品选取探槽里新鲜的岩石,硅酸盐、稀土-微量元素样品8件。测试单位为新疆维吾尔自治区矿产实验测试中心,主量元素使用X射线荧光光谱仪(XRF)进行测试,精度在0.1%以内;微量元素采用ICP-MS(ElementⅡ)(Agilent7500a)测试。

    锆石U-Pb年龄样品岩性为辉长岩,锆石制靶由河北省区域地质矿产调查研究所完成,阴极发光显微照相由北京锆年领航科技有限公司完成,锆石U-Pb同位素测试由中国科学院广州地球化学研究所实验室完成,采用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)分析,使用标准锆石91500作为外标加以校正,每测6个数值后进行一次91500标样测定,激光束斑直径为30 μm,使用29Si作为内标测定锆石的U、Th、Pb含量。相关数据采用GLITTER和Isoplot软件进行数据处理。

    锆石原位Hf同位素测试由中国地质调查局西安地质调查中心国土资源部岩浆作用成矿与找矿重点实验室完成,使用Neptune型多接收等离子体质谱仪和Geolas Pro型激光剥蚀系统联用的方法完成,详细测试流程见侯可军等(2007)。测试束斑直径为44 μm。测试位置与测年点位相同或靠近。每分析10个样品测点插入一次标样测定(锆石标准GJ-1,GJ-1的测试精准度为0.282030±40(2SE))。

    全岩Sr-Nd同位素化学前处理与质谱测定由南京聚谱检测科技有限公司完成。数据测试及处理流程详见Gao et al.(2004)

    样品的主量元素数据(表 1)表明,黑石墩基性岩体SiO2含量在47.59%~50.79%,相对富Na2O(2.72%~4.42%,平均3.28%),贫K2O(0.26%~1.15%,平均0.48%)及Na2O>K2O的特征,在TAS图解中(图 3a)除H-266外其余落在玄武岩区,在SiO2-K2O相关图解中(图 3b)除H-266为钙碱性系列外,其余为低钾拉斑系列。MgO含量较低(3.94%~12.55%,平均6.87%),Mg#为47.6~66.64,m/f为0.89~1.966,Al2O3含量较高,为14.75%~19.65%。在Harker图中,MgO与SiO2、Al2O3、CaO、P2O5、Na2O、K2O有明显的负相关性,与TiO2具有弱负相关性(图 4ac~g),与T Fe2O3具有正相关关系(图 4b)。

    表  1  黑石墩基性岩岩石地球化学数据(含量单位: 主量元素为%, 微量元素为10-6
    Table  1.  Major elements (%) and trace elements(10-6)data of the Heishidun basic rocks
    下载: 导出CSV 
    | 显示表格
    图  3  黑石墩基性岩TAS图解(a)和SiO2-K2O图解(b)
    Figure  3.  TAS(a) and SiO2 vs. K2O (b)diagram of the Heishidun basic intrusive
    图  4  黑石墩基性岩哈克图解(除εNd(t)值外,其他单位均为%)
    Figure  4.  Harker diagrams of the Heishidun basic rocks(All the other units are % except the εNd(t) value)

    样品稀土总量偏低(∑REE在47.29×10-6~74.19×10-6),(La/Yb)N介于1.83~2.12,说明轻重稀土元素之间分馏程度中等,LREE/HREE为2.59~2.86,轻微的Eu正异常(1.00~1.25),这是岩浆结晶分异成岩过程中,斜长石富集而造成的。在稀土元素球粒陨石标准化配分图中(图 5a),所有样品曲线表现出一致的变化趋势,说明样品应该同源,并呈现出轻稀土略微富集的右倾特征,与E-MORB形态相似。微量元素原始地幔标准化蛛网图(图 5b)中,所有样品都富集大离子亲石元素Ba、U、Sr,富集Pb,亏损高场强元素Ta、Nb、Th、Ti。

    图  5  黑石墩基性岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(据Sun and McDonough, 1989)
    Figure  5.  Chondrite-normalized REE patterns(a)and Primitive mantle-normalized spidergrams(b)of Heishidun basic rocks(after Sun and McDonough, 1989)

    阴极发光图像显示锆石大多呈长柱状,自形晶,晶面整洁光滑,裂纹少,环带构造特征明显(图 6a)。由表 2可知,锆石Th含量为34.33×10-6~753.69×10-6,U含量为51.59×10-6~624.31×10-6,Th/U比值较高(0.56~1.21),多数在0.5~0.9,为岩浆锆石U、Th成分特征(吴元宝, 2004)。锆石年龄数据绝大多数落于谐和线上或其附近,个别数据落于谐和线右侧附近,说明有少量铅丢失,代表有后期热事件的干扰(张志诚等, 2009)。锆石206Pb/U238年龄加权平均值为(342.6 ±3.2)Ma(n=15,MSWD=0.54)(图 6b),代表黑石墩岩体的形成时代为早石炭世。

    图  6  黑石墩辉长岩锆石阴极发光图像及测点点号图(a)和U-Pb谐和图(b)
    Figure  6.  CL images and test point number (a) and U-Pb concordia plots(b) of zircons from Heishidun gabbro
    表  2  黑石墩辉长岩LA-ICP-MS锆石U-Pb同位素数据
    Table  2.  LA-ICP-MS zircon U-Pb dating results of Heishidun gabbro
    下载: 导出CSV 
    | 显示表格

    本次对测年锆石进行了复位Lu-Hf同位素分析,所有测试位置与U-Pb测年点位相同或靠近。由表 3可知锆石176Lu /177Hf比值最大值为0.000939,说明锆石形成后放射成因Hf的积累较少(杨进辉等, 2006b),因此所测定的176Hf /177Hf比值代表了其形成时体系的Hf同位素组成(吴福元等, 2007b)。176Hf /177Hf比值为0.282539~0.282950,εHf(t)为正值(9.82~13.74),平均值为11.93,二阶段Hf模式年龄(tDM2)在473~724 Ma,平均值为587 Ma,与其形成年龄(342.6 ±3.2)Ma相差不大。

    表  3  黑石墩基性岩锆石Lu-Hf同位素组成
    Table  3.  Zircn Lu-Hf isotopic composition of Heishidun basic rocks
    下载: 导出CSV 
    | 显示表格

    全岩Nd、Sr同位素按照t=342.6 Ma计算,由表 4可知,全岩样品Nd、Sr同位素组成基本一致,(87Sr/86Sr)i为0.703421~0.704551,比值较高且变化范围相对较大;εNd(t)值则变化范围较小,在7.6~8.1;147Sm/144Nd比值较大(0.17564~0.18453);二阶段Nd模式年龄(tDM2)范围为436~480 Ma,平均值为461 Ma。

    表  4  黑石墩基性岩的全岩Sr-Nd同位素组成
    Table  4.  Whole-rock Sr-Nd isotopic compositions of Heishidun basic rocks
    下载: 导出CSV 
    | 显示表格

    原始岩浆从源区地幔源经部分熔融作用开始发生、到迁移至岩浆房、再到最终喷出地表,是一个不断结晶分异、物质不断带出或带入、岩浆和矿物间平衡和再平衡的过程(张柳毅等, 2016)。黑石墩岩体与黄山东、黄山、香山等东天山典型含铜镍矿镁铁-超镁铁质岩体处于同一区域,但是这几处为高镁拉斑玄武质母岩浆(唐冬梅等, 2009; 范亚洲等, 2014; 尤敏鑫等, 2017)。黑石墩岩体锆石U-Pb测年所获得的年龄((342.6 ±3.2)Ma) 说明黑石墩岩体形成时间相对早。与黄山等典型含铜镍矿镁铁-超镁铁质岩体不同的是黑石墩基性岩具有较低的Mg(MgO=3.94%~12.55%,Mg#=47.6~66.74)以及较低的相溶元素Cr(80×10-6~220×10-6)、Co(21.8×10-6~60.6×10-6)和Ni(40.6×10-6~128.5×10-6)含量,说明该岩体来源于分异程度相对较高的岩浆(Liu et al., 2008)。在Harker图解中(图 4),MgO与TFe2O3具有正相关性,说明岩浆在上升侵位过程中经历了橄榄石和斜方辉石的分离结晶作用,而MgO与TiO2、P2O5、Al2O3以及CaO之间具有负相关性,暗示富含Ti矿物(金红石、钛铁矿和榍石)、磷灰石和单斜辉石不是主要的结晶相(冯光英等, 2011)。对于橄榄石和辉石而言,Mg与Co、Ni是相溶元素,该岩体Co、Ni与MgO呈正相关性(图 7ab),说明该岩体发生过橄榄石、辉石的结晶作用。综上所述,黑石墩基性岩在岩浆演化过程中经历了橄榄石、辉石和斜长石的分离结晶作用,这与岩相学特征一致。

    图  7  黑石墩基性岩MgO-Co图解(a)和MgO-Ni图解(b)
    Figure  7.  MgO-Co diagram(a) and MgO-Ni diagram(b)of the Heishidun basic rocks

    黑石墩基性岩具有较低的Sr同位素初始比值(0.703421~0.704551),正的εNd(t)值(7.6~8.1),以及模式年龄与岩石形成年龄相近,说明岩体来源于亏损地幔。其Sr同位素显示为亏损,说明该亏损地幔可能为新生,但随后经历了一定程度的不相容元素富集作用(Wu et al., 2004; 冯光英等, 2011)。从稀土元素球粒陨石标准化配分图解中和原始地幔标准化微量元素蛛网图(图 5)可以看出,黑石墩基性岩微量元素组成特征与N-MORB和OIB有明显的差异,与E-MORB较相似。

    前人研究认为REE的含量主要受地幔组成和部分熔融程度的控制,地幔橄榄岩熔融过程中Yb元素来源于残留石榴石,所以,含有石榴石残留的地幔橄榄岩部分熔融熔体具有Yb元素含量低,La/ Yb和Sm/ Yb比值高的特征(Pearce and Peate, 1995; Johnson, 1998; Münker, 2000; Zhao and Zhou, 2007; Liu et al., 2010b; 冯光英等, 2011)。在Sm/Yb-Sm图解中(图 8),黑石墩基性岩的Sm/Yb比值分布于尖晶石二辉橄榄岩和石榴石+尖晶石二辉橄榄岩熔融曲线之间,且接近E-MORB,显示为较低程度的部分熔融(15%~25%)的产物。较低程度的部分熔融会导致La/Sm和La/Yb的强烈分异,且地幔橄榄岩熔融过程中铁优先进人熔体,随着熔融程度的升高,岩浆中的镁含量随之升高(冯光英等, 2011)。而黑石墩基性岩具有较高的La/Sm (1.87~2.1)和(La / Yb)N(2.65~2.96)比值,较低的MgO含量和Mg#值(47.6~66.64)、较高的稀土含量(∑REE=47.29×10-6~74.19×10-6),都暗示原始岩浆经过了较低程度的部分熔融。

    图  8  黑石墩基性岩Sm/Yb-Sm相关图解
    熔融曲线为尖晶石二辉橄榄岩(模式及熔体模式: ol 0.530+opx 0.270+cpx 0.170+spo.030 and ol 0.060+opx 0.280+ cpx 0.670+sp 0.110)(据Kinzler,1997)和石榴子石二辉橄榄岩(模式及熔体模式: ol 0.600+opx 0.200+cpx 0.100+gt 0.100 and ol 0.030+opx 0.160+cpx0.880+gt 0.090)(据Walter,1998); 矿物/基质分配系数以及DMM引自Mc Kenzie and O'Nions(1991, 1995); PM,N-MORB和E-MORB组成引自Sun and Mc Donough(1989); 每条曲线上的数字对应于给定地幔源区的部分熔融程度
    Figure  8.  Sm/Yb vs.Sm diagram of the Heishidun basic rocks
    Melt curves are drawn for spinel-lherzolite(with mode and melt mode of ol 0.530 + opx 0.270 + cpx 0.170 + sp 0.030 and ol 0.060+opx0.280+cpx0.670+ sp 0.110, respectively; after Kinzler, 1997) and for garnet-lherzolite(with mode and melt mode of ol 0.600+opx 0.200+cpx0.100+gt 0.100and ol 0.030+opx0.160+cpx 0.880+gt 0.090, respectively; after Walter, 1998); Mineral/matrix partition coefficients and DMM arefrom the compilation of Mc Kenzie and O'Nions(1991, 1995); PM, N-MORB and E-MORB compositions are from Sun and Mc Donough(1989); Tickmarks on each curve(or line)correspond to degrees of partial melting for a given mantle source

    幔源岩浆在上升或者侵位过程中一般都会受到不同程度地壳混染(Mohr, 1987),黑石墩基性岩亏损高场强元素Ta、Nb、Th和Ti,富集LILE和LREE,且Ta / La比值(0.019~0.034)低于原始地幔(Ta/La=0.06,Wood et al., 1979),说明在上升或者侵位过程中可能存在壳源物质的混染(冯光英等, 2011)。地壳中富集Zr和Hf元素,地壳混染会导致Zr和Hf元素含量显著增高(舍建忠等, 2017),而样品中Zr和Hf元素没有明显异常(图 5b),其较低的含量指示壳源物质的混染程度较低。一般来说地壳混染也会导致MgO和εNd(t)之间具有正相关性,MgO和(87Sr/86Sr)i之间具有负相关性(Liu et al., 2010b),表 1表 4图 4说明黑石墩基性岩不存在这种相关性,故笔者认为黑石墩基性岩原始岩浆在上升或侵位过程中地壳物质的混染程度较低。此外样品具有较低的(87Sr/86Sr)i(0.703421~0.704551),正的εNd(t) (7.6~8.1)和εHf(t) (9.82~13.74)(表 3表 4),同样原始岩浆在上升或侵位过程中地壳混染的程度不大。通常情况下可以用亏损地幔与上地壳作为两端元、亏损地幔与下地壳作为两端元混合计算方式来检验是否存在地壳混染及混染程度(冯光英等, 2011),由图 9可知,黑石墩基性岩成岩过程中几乎没有受到下地壳物质的混染,上地壳物质的混染也不明显(混染程度为1%左右)。所以黑石墩基性岩的地球化学特征可能主要呈现源区岩浆的特征。另外,因为锆石具有封闭温度高、Hf含量高和Lu/Hf比值低等特征,常用于测年、指示岩浆源区性质以及混合过程(Griffin et al., 2002; Kemp and Hawkesworth, 2006; Yang et al., 2006a; 吴福元, 2007b; 胡芳芳等, 2007; Liu et al., 2010a)。黑石墩基性岩体锆石εNd(t) 值较高且变化不大(表 3),也说明原始源区岩浆比较单一。

    图  9  黑石墩基性岩(87Sr/86Sr)i-εNd(t)图解
    其中数字表示地壳物质参与的比例,计算采用的参数Nd(10-6)、εNd(t)、Sr(10-6)和(87Sr/86Sr)i值如下: 软流圈地幔(DM)分别为1.2、+8、20和0.703;玄武岩分别为15、+8、200和0.704; 上地壳(UCC)分别为30、-12、250和0.740(据Jahn et al., 1999); 下地壳(LCC)分别为20、-15、230和0.708(据Wu et al., 2000)
    Figure  9.  (87Sr/86Sr)ivs. εNd(t)diagram of the Heishidun basic rocks
    The numbers indicate the percentages of participation of the crustal materials. The calculated parameters of Nd(10-6), εNd(t), Sr(10-6) and(87Sr/86Sr)iare1.2、+8、20、and 0.703 for asthenospheric mantle(DM); 15、+8、200and 0.704 for basalt; 30、-12、250and 0. 740 for upper continental crust(UCC) (after Jahn et al., 1999); 20、-15、230、0.708 for lower continental crust(LCC). All data derive from Wu et al. (2000a)

    黑石墩基性岩Sr元素含量较高(278×10-6~715×10-6,平均值为432×10-6),明显高于地幔Sr元素含量(17.8×10-6)(Taylor and Mc Lennan, 1985)。Sr元素含量增高可能受围岩混染或者俯冲板片流体交代作用的影响(Mc Culloch and Gamble, 1991; Hawkesworth et al., 1993; 熊富浩等, 2011),而根据前述,黑石墩基性岩受围岩混染程度非常低,那么造成Sr元素含量高的原因可能是受到俯冲板片流体交代作用的影响。

    前人研究认为地幔流体交代作用主要有深部地幔上升过程中的流体、俯冲板片中富含大离子亲石元素和轻稀土元素的深海沉积物在俯冲深部脱水熔融产生的流体和俯冲板片熔融生成的流体等3种形式(Meen et al., 1989Maury et al., 1992Hawkesworth et al., 1993Elliott et al., 1997Ishikawa and Tera, 1999; 熊富浩等, 2011)。深部地幔源区的岩浆一般具有洋岛构造环境背景的岩石地球化学特征(熊富浩等, 2011),而俯冲板片中富含大离子亲石元素和轻稀土元素的深海沉积物在俯冲深部脱水熔融产生的流体一般则与地幔交代从而形成富含钾和高场强元素的岩浆(Sajona et al., 2000; Defant and Kepezhinskas, 2001; 熊富浩等, 2011),俯冲板片熔融生成的流体则会影响亲湿岩浆元素的含量,高场强元素又因在水中的溶解度较小呈现出相对亏损(Regelous, 1997; Johnson and Plank, 1999; 冯光英, 2011)。而黑石墩基性岩具有中等的Mg#、相对富集Ba、U、Sr等大离子亲石元素和轻稀土元素,强烈富集Pb元素,亏损Ta、Nb、Th、Ti等高场强元素。因此,笔者认为研究区地幔流体交代作用主要是通过俯冲板片中富含LILE和LREE的海洋沉积物脱水形成的流体完成的。

    分析表明黑石墩基性岩岩浆源区受到俯冲作用影响。高场强元素Nb、Ta、Zr和Hf在岩石蚀变和变质等过程中一般具有很好的稳定性,可以作为岩石成因和源区性质的示踪剂,并且一般岛弧玄武岩和部分亏损型洋中脊玄武岩(N-MORB)的Ta、Nb丰度分别不大于0.7×10-6和12×10-6,Nb/La < 1,Hf/Ta>5,La/Ta>15,板内玄武岩(WPB)、过渡型洋中脊玄武岩(T-MORB)和富集型洋中脊玄武岩(E-MORB)则正好相反(Condie et al., 1989)。黑石墩样品中玄武岩的Ta元素含量(平均0.18×10-6)和Nb元素含量(平均2.4×10-6)较低,Nb/La比值为0.36,Hf/Ta比值15.17,La/Ta比值37.22,表明该玄武岩形成环境与WPB、T-MORB、E-MORB构造环境无关,类似于岛弧玄武岩或N-MORB的构造环境。笔者采用不同构造环境判别图来进一步分析黑石墩岩体形成的环境,在2Nb- Nb /4-Y构造判别图解中(图 10a),样品投影点落入火山弧玄武岩区;在Ti- Zr-Sr构造判别图解中(图 10b),样品投影点落入岛弧拉斑玄武岩区和钙碱性玄武岩区界线上;在TiO2-MnO-P2O5构造判别图解中(图 10c),样品投影点落入洋中脊玄武岩区和岛弧拉斑玄武岩区界线上;在Zr/117-Th-Nb构造判别图解中(图 10d),样品投影点落入破坏板块边缘玄武岩区。投图样品具有与俯冲有关的环境特征。

    图  10  主量及微量元素构造环境判别图解(a, 据Meschede, 1986;b, 据Pearce and Cann, 1973;c, 据Mullen, 1983;d, 据Wood et al., 1979)
    Figure  10.  Tectonic discriminative diagrams by major-and trace-elements (a, after Meschede, 1986;b, after Pearce and Cann, 1973;c, after Mullen, 1983;d, after Wood et al., 1979)

    长期以来对东天山造山带内觉罗塔格地区的大地构造背景及演化存在争议,归纳起来主要有3种认识:一是为晚古生代裂陷槽(肖序常等, 1992; 成守德等, 2001; 冯益民等, 2002; 秦克章等, 2002; 潘桂棠等, 2009);二是为晚古生代被动大陆边缘(何国琦等, 1994; 侯广顺等, 2006);三是为塔里木板块和哈萨克斯他—准噶尔板块的缝合带(姬金生等, 1994; 李锦轶等, 2004; 肖文交等, 2006; 左国超等, 2006; 舍建忠等, 2018)。笔者同意第三种认识,综合该地区岩浆岩地球化学特征,认为北天山洋从奥陶纪开始沿康古尔塔格—黄山大断裂向北俯冲(李锦轶等, 2004; 舍建忠等, 2018),并在志留纪显示出洋盆闭合的特征(舍建忠等, 2017),在早石炭世开始双向俯冲(舍建忠等, 2018),在晚石炭世晚期闭合(李锦轶等, 2004; 舍建忠等, 2018)。

    综合岩石地球化学、矿物学、同位素等方面的研究,笔者认为黑石墩基性岩岩浆为北天山洋在早石炭世沿康古尔塔格—黄山大断裂向北俯冲,富含大离子亲石元素和轻稀土元素的海洋沉积物在俯冲过程中脱水形成的流体,改造先存亏损的岩石圈地幔发生较低程度部分熔融形成原始岩浆,且上升或者侵位过程中经历了程度不同的橄榄石、辉石和斜长石分离结晶作用,最后形成了研究区早石炭世基性岩。

    (1) 锆石U-Pb年龄表明黑石墩基性岩形成于(342.6 ±3.2)Ma(n=15,MSWD=0.54)(图 6b),代表其结晶年龄为早石炭世,佐证东天山秋格明塔什—黄山断裂带不仅有二叠纪基性超基性杂岩,还有华里西中期基性岩浆活动。

    (2) 黑石墩基性岩主体属于低钾拉斑系列,具有中等的Mg#值、大离子亲石元素富集,轻稀土元素相对富集,Pb元素强烈富集,高场强元素亏损,具有较低的(87Sr/86Sr)i,正的εNd(t)和εHf(t),为亏损地幔较低程度的部分熔融(15%~25%)的产物。

    (3) 岩石具有俯冲环境特征,结合区域构造演化特征,认为黑石墩基性岩岩浆为北天山洋在早石炭世沿康古尔塔格—黄山大断裂向北俯冲,造成俯冲板片流体,交代亏损地幔发生较低程度部分熔融形成原始岩浆,在上升或者侵位过程中经历了程度不同的橄榄石、辉石和斜长石分离结晶作用。

    致谢:感谢新疆地质调查院杨万志教授级高级工程师在本次研究工作中给予的指导和帮助;感谢李永军教授对论文提供的建设性意见;感谢编辑老师和匿名评审专家提供的宝贵意见。

  • 图  1   北天山地区地质简图

    Figure  1.   Geologica map of Northern Tianshan

    图  2   黑石墩基性岩代表性岩石类型的显微照片

    a—辉长岩;b—橄榄辉长岩;Pl—斜长石; Aug—普通辉石; Ol—橄榄石; Srp—蛇纹石

    Figure  2.   Microphotographs of the representative rocks in the Heishidun basic intrusive

    a-Gabbro; b-Olivine gabbro; Pl-Plagioclase; Aug-Augite; Ol-Olivine; Srp-Serpentine

    图  3   黑石墩基性岩TAS图解(a)和SiO2-K2O图解(b)

    Figure  3.   TAS(a) and SiO2 vs. K2O (b)diagram of the Heishidun basic intrusive

    图  4   黑石墩基性岩哈克图解(除εNd(t)值外,其他单位均为%)

    Figure  4.   Harker diagrams of the Heishidun basic rocks(All the other units are % except the εNd(t) value)

    图  5   黑石墩基性岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(据Sun and McDonough, 1989)

    Figure  5.   Chondrite-normalized REE patterns(a)and Primitive mantle-normalized spidergrams(b)of Heishidun basic rocks(after Sun and McDonough, 1989)

    图  6   黑石墩辉长岩锆石阴极发光图像及测点点号图(a)和U-Pb谐和图(b)

    Figure  6.   CL images and test point number (a) and U-Pb concordia plots(b) of zircons from Heishidun gabbro

    图  7   黑石墩基性岩MgO-Co图解(a)和MgO-Ni图解(b)

    Figure  7.   MgO-Co diagram(a) and MgO-Ni diagram(b)of the Heishidun basic rocks

    图  8   黑石墩基性岩Sm/Yb-Sm相关图解

    熔融曲线为尖晶石二辉橄榄岩(模式及熔体模式: ol 0.530+opx 0.270+cpx 0.170+spo.030 and ol 0.060+opx 0.280+ cpx 0.670+sp 0.110)(据Kinzler,1997)和石榴子石二辉橄榄岩(模式及熔体模式: ol 0.600+opx 0.200+cpx 0.100+gt 0.100 and ol 0.030+opx 0.160+cpx0.880+gt 0.090)(据Walter,1998); 矿物/基质分配系数以及DMM引自Mc Kenzie and O'Nions(1991, 1995); PM,N-MORB和E-MORB组成引自Sun and Mc Donough(1989); 每条曲线上的数字对应于给定地幔源区的部分熔融程度

    Figure  8.   Sm/Yb vs.Sm diagram of the Heishidun basic rocks

    Melt curves are drawn for spinel-lherzolite(with mode and melt mode of ol 0.530 + opx 0.270 + cpx 0.170 + sp 0.030 and ol 0.060+opx0.280+cpx0.670+ sp 0.110, respectively; after Kinzler, 1997) and for garnet-lherzolite(with mode and melt mode of ol 0.600+opx 0.200+cpx0.100+gt 0.100and ol 0.030+opx0.160+cpx 0.880+gt 0.090, respectively; after Walter, 1998); Mineral/matrix partition coefficients and DMM arefrom the compilation of Mc Kenzie and O'Nions(1991, 1995); PM, N-MORB and E-MORB compositions are from Sun and Mc Donough(1989); Tickmarks on each curve(or line)correspond to degrees of partial melting for a given mantle source

    图  9   黑石墩基性岩(87Sr/86Sr)i-εNd(t)图解

    其中数字表示地壳物质参与的比例,计算采用的参数Nd(10-6)、εNd(t)、Sr(10-6)和(87Sr/86Sr)i值如下: 软流圈地幔(DM)分别为1.2、+8、20和0.703;玄武岩分别为15、+8、200和0.704; 上地壳(UCC)分别为30、-12、250和0.740(据Jahn et al., 1999); 下地壳(LCC)分别为20、-15、230和0.708(据Wu et al., 2000)

    Figure  9.   (87Sr/86Sr)ivs. εNd(t)diagram of the Heishidun basic rocks

    The numbers indicate the percentages of participation of the crustal materials. The calculated parameters of Nd(10-6), εNd(t), Sr(10-6) and(87Sr/86Sr)iare1.2、+8、20、and 0.703 for asthenospheric mantle(DM); 15、+8、200and 0.704 for basalt; 30、-12、250and 0. 740 for upper continental crust(UCC) (after Jahn et al., 1999); 20、-15、230、0.708 for lower continental crust(LCC). All data derive from Wu et al. (2000a)

    图  10   主量及微量元素构造环境判别图解(a, 据Meschede, 1986;b, 据Pearce and Cann, 1973;c, 据Mullen, 1983;d, 据Wood et al., 1979)

    Figure  10.   Tectonic discriminative diagrams by major-and trace-elements (a, after Meschede, 1986;b, after Pearce and Cann, 1973;c, after Mullen, 1983;d, after Wood et al., 1979)

    表  1   黑石墩基性岩岩石地球化学数据(含量单位: 主量元素为%, 微量元素为10-6

    Table  1   Major elements (%) and trace elements(10-6)data of the Heishidun basic rocks

    下载: 导出CSV

    表  2   黑石墩辉长岩LA-ICP-MS锆石U-Pb同位素数据

    Table  2   LA-ICP-MS zircon U-Pb dating results of Heishidun gabbro

    下载: 导出CSV

    表  3   黑石墩基性岩锆石Lu-Hf同位素组成

    Table  3   Zircn Lu-Hf isotopic composition of Heishidun basic rocks

    下载: 导出CSV

    表  4   黑石墩基性岩的全岩Sr-Nd同位素组成

    Table  4   Whole-rock Sr-Nd isotopic compositions of Heishidun basic rocks

    下载: 导出CSV
  • Blichert-Toft J, Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X

    Bai Yunlai. 2000. Tectonic setting of the Ni-Cu mineralization system in Huangshan and Jingerquan, Xinjiang[J]. Acta Geologica Guansu, 9(2): 1-7(in Chinese with English abstract).

    Chen Shoude, Xu Xing. 2001. Study on the tectonic mapping of Xinjiang and its adjacent areas[J]. Xinjiang Geology, (1): 33-37(in Chinese with English abstract).

    Defant M J, Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6): 65-65.

    Deng Yufeng, Song Xieyan, Jie Wei, Cheng Songlin, Li Jun. 2011. Petrogenesis of the Huangshandong Ni-Cu sulfide-bearing mafic-ultramafic intrusion, northern Tianshan, Xinjiang: Evidence from major and trace elements and Sr-Nd isotope[J]. Acta Geologica Sinica, 85(9): 1435-1451. http://www.researchgate.net/publication/285455862_Petrogenesis_of_the_huangshandong_Ni-Cu_sulfide-bearing_mafic-ultramafic_intrusion_northern_tianshan_xinjiang_Evidence_from_major_and_trace_elements_and_Sr-Nd_isotope

    Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research, 102(B7): 14991-15019. doi: 10.1029/97JB00788

    Feng Guangyin, Liu Shen, Feng Caixia, Jia Dacheng, Zhong Hong, Yu Xiaofei, Qi Youqiang, Wang Tiao. 2011. Zircon U-Pb age, Sr-Nd-Hf isotope geochemistry and the petrogenesis of the ultramafic pluton in Hongqiling, Jiling Province[J]. Acta Petrologica Sinica, 27(6): 1594-1606(in Chinese with English abstract). http://www.ams.org/mathscinet-getitem?mr=175358

    Feng Yiming, Zhu Baoqing, Yang Junlu, Zhang Kaichun. 2002. Geotectonics and evolution of the eastern Tianshan Mountains: A brief description of the tectonic map of the eastern Tianshan Mountains at 1: 500000[J]. Xinjiang Geology, (4): 309-314(in Chinese with English abstract).

    Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton[J]. Nature, 432(7019): 892-897. doi: 10.1038/nature03162

    Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 4: 133-147. http://www.sciencedirect.com/science/article/pii/s0016703799003439

    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y. 2002. Zircon geochemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8

    Gu Lianxing, Zhang Zunzhong, Wu Changzhi. 2007. Permian geology-metallogenic thermal events in Huangshan-Jingerquan area, East Tianshan: Mantle-derived magmatic intramagmatic invasion and its crustal effect[J]. Acta Petrologica Sinica, 23(11): 2869-2880(in Chinese with English abstract).

    Gu Liangxing, Zhang Zunzhong, Wu Changzhi, Wang Yinxi, Tang Junhua, Wang Chuansheng, Xi Aihua, Zheng Yuanchuan. 2006. Some problems on granites and verical growth of the contimental crast in the eastern Tianshan Mountains, UW China[J]. Acta Petrologica Sinica, 22(5): 1103-1120(in Chinese with English abstract). http://www.researchgate.net/publication/235353475_Some_problems_on_granites_and_vertical_growth_of_the_continental_crust_in_the_eastern_Tianshan_Mountains_NW_China

    Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Li Zonghuai. 2004. Age and geological significance of zircon SHRIMP U-Pb in the Mafic-ultramafic complex of Kalatongke and Huangshan, Xinjiang[J]. Chinese Science Bulletin, 49(22): 2324-2328(in Chinese). doi: 10.1360/csb2004-49-22-2324

    Hawkesworth C J, Gallagher K, Hergt J M, Mc Dermott F. 1993. Mantle and slab contribution in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 21: 175-204. doi: 10.1146/annurev.ea.21.050193.001135

    He Guoqi, Li Maosong, Liu Dequan. 1994. Palaeozoic Crustal Evolution and Mineralization in Xinjiang of China[M]. Urumchi: Xinjiang People's Publishing House(in Chinese).

    He Guoqi, Zhu Yongfeng. 2006. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions[J]. Geology in China, 33(3): 451-460(in Chinese with English abstract). http://www.researchgate.net/publication/285722400_Comparative_study_of_the_geology_and_mineral_resources_in_Xinjiang_China_and_its_adjacent_regions

    Hou Guangchun, Tang Hongfeng, Liu Congqiang. 2006. Geochemical characteristics and significance of Late Paleozoic volcanic rocks in the Jeluotage tectonic belt, East Tianshan[J]. Acta Petrologica Sinica, (5): 1167-1177(in Chinese with English abstract).

    Hou Kejun, Li Yanhe, Zhou Tianren, Qu Xiaonming, Shi Yuruo, Xie Guiqing. 2007. LA-MC-ICP-MS zircon Hf isotope analysis method and its geological application[J]. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). http://www.researchgate.net/publication/279905849_LA-MC-ICP-MS_technique_for_Hf_isotope_microanalysis_of_zircon_and_its_geological_applications_in_Chinese

    Hu Fangfang, Fan Hongrui, Yang Jinhui, Zhai Mingguo, Xie Liewen, Yang Yueheng, Liu Xioaming. 2007. Pentrogenesis of Gongjia gabbros-diorite in the Kunyushan area, Jiaodong Peninsula: Constraints from petro-geochemistry, zircon U-Pb dating and Hf isotopes[J]. Acta Petrologica Sinica, 23(2): 369-380(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702017.htm

    Hu Shixi, Guo Jichun, Gu Lianxing. 1990. Important position and geological characteristics of caledonian orogenic belt in the tectonic framework of the East Tianshan Mountains (E85-E95)[C]//Xinjiang Geological Sciences. Vol. 1. Beijing: Geological Publishing House, 32-45(in Chinese).

    Ishikawa T, Tera F. 1999. Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematic[J]. Geology, 27(1): 83-86. doi: 10.1130/0091-7613(1999)027<0083:TIDFCI>2.3.CO;2

    Jahn B M, Wu F Y, Hong D W. 1999. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from East Central Asia[C]//Kumar A, Bhaskar S(eds. ). Indian Academy of Science(Gopalan Festschrif Volume), 108.

    Ji Jinsheng, Tao Hongxiang, Yang Xingke. 1994. Geochemical characteristics of volcanic rocks in different tectonic settings in the eastern Tianshan Mountains[J]. Acta Petrologica et Mineralogica, 36(1): 1-16, 255, 17-28.

    Johnson K T M. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures[J]. Contributions to Mineralogy and Petrology, 133: 60-68. doi: 10.1007/s004100050437

    Johnson M C, Plank T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments[J]. Geochem. Geophys. Geosys., l: paper no. 1999GC000014.

    Kemp A I S, Hawkesworth C J. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 226: 144-162. doi: 10.1016/j.chemgeo.2005.09.018

    Kinzler R J. 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to midocean ridge basalt petrogenesis[J]. Journal of Geophysics Research, 102: 853-874. doi: 10.1029/96JB00988

    Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of Eastern Xinjiang, NW China[J]. Geological Review. (3): 304-322(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539163

    Li Jinyi, Song Biao, Wang Kezhuo, Li Yaping, Sun Guihua, Qi Deyi. 2006. Permian mafic-ultramafic complexes on the southern margin of the Tu-Ha Basin, East Tianshan Mountains: Geological records of vertical crustal growth in Central Asia[J]. Acta Geoscientica Sinica, (5): 424-446(in Chinese with English abstract). http://www.oalib.com/paper/1558770

    Liu Dequan. 1983. Plate tectonics and mineral distribution in Xinjiang[J]. Northwest Geology, 4(2): 1-12(in Chinese with English abstract).

    Liu Dequan, Tang Yanling, Zhou Ruhong. 2005. Copper and nickel deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 1-360(in Chinese).

    Liu S, Hu R Z, Gao S, Feng C X, Qi L, Zhong H, Xiao T F, Qi Y Q, Wang T, Coulson I M. 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance[J]. Chemical Geology, 255: 329-345. doi: 10.1016/j.chemgeo.2008.07.006

    Liu S, Hu R Z, Gao S, Feng C X, Feng G Y, Coulson I M, Li C, Wang C, Qi Y Q. 2010a. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Permian granodiorites and associated gabbros in the Songliao Block, NE China and implications for growth of juvenile crust[J]. Lithos, 114: 423-436. doi: 10.1016/j.lithos.2009.10.009

    Liu S, Su W C, Hu R Z, Feng C X, Gao S, Coulson I M, Wang T, Feng G Y, Tao Y, Xia Y. 2010b. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China[J]. Lithos, 114: 253-264. doi: 10.1016/j.lithos.2009.08.012

    Ma Ruishi, Shu Liangshu, Sun Jiaqi. 1997. Tectonic Evolution and Mineralization of the East Tianshan Mountains[M]. Beijing: Geological Publishing House, 1-202(in Chinese).

    Mao Yajing, Qin Kezhang, Tang Dongmei, Xue Shengchao, Feng Hongye, Tian Ye. 2014. The multistage magmatic emplacement and mineralization of the magma copper nickel sulfide deposit in the East Tianshan Mountains——Taking Mount Huangshan copper nickel deposit as an example[J]. Acta Petrologica Sinica, 30(6): 1575-1594(in Chinese with English abstract).

    Mao J W, Pirajno F, Zhang Z H, Chai F M, Wu H, Chen S P, Chen L S, Yang J M, Zhang C Q. 2008. Areview of t he Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens(Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 32(2/4): 184-203.

    Maury R C, Defant M J, Joron J L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths[J]. Nature, 360(6405): 661-663. doi: 10.1038/360661a0

    Mc Culloch M T, Gamble JA. 1991. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 102(3/4): 358-374.

    Mc Kenzie D P, O'Nions R K. 1995. The source regions of ocean island basalts. Journal of Petrology, 36: 133-159. doi: 10.1093/petrology/36.1.133

    Meen J K, Eggler D H, Ayers J C. 1989. Experimental evidence for very low solubility of rare-earth elements in CO2-rich fluids at mantle conditions[J]. Nature, 340(6231): 301-303. doi: 10.1038/340301a0

    Meng En, Liu Fulai, Liu Pinghua, Liu Chaohui, Yang Hong, Wang Fang, Shi Jianrong, Cai Jia. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidencefrom zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry[J]. Precambrian Research, 247: 92-109. doi: 10.1016/j.precamres.2014.03.017

    Mohr PA. 1987. Crustal Contamination in mafic Sheets: A summary[C]//Halls H C, Fahrig W C (eds. ). Mafic dyke Swarms. Special Publication-Geological Association of Canada, 34: 75-80.

    Münker C. 2000. The isotope and trace element budget of the Cambrian Devil River Arc System, New Zealand: Identification of four source components[J]. Journal of Petrology, 41: 759-788. doi: 10.1093/petrology/41.6.759

    Pan Guitang, Xiao Qinhui, Lu Songnian, Deng Jinfu, Feng Yiming, Zhang Kexing, Zhang Zhiyong, Wang Fangguo. 2009. Subdivision of tectonic units in China[J]. Geogogy in China, 36(1): 1-28(in Chinese with English abstract). http://www.researchgate.net/publication/284700316_Subdivision_of_tectonic_units_in_China

    Pearce J W, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343

    Pirajno F, Mao J, Zhang Z, Chai F. 2008. The association of mafic http://www.sciencedirect.com/science/article/pii/S1367912007001733

    ultram aficint rusions and A-t ypemagm atism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of newore deposits[J]. Journal of Asian Earth Sciences, 32(2/4): 165-183.

    Qin Kezhang, Ding Kuaishou, Xu Yingxia. 2007. Oer potential of protolishs and modes of Co-Ni occurrence in Tulaegen and Baishiquan Cu-Ni-Co deposits[J]. Mineral Deposits, 26(1): 1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200701000.htm

    Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifeng, Xiu Qunye. 2002. Geological background research on plate tectonic subdivision, evolution and mineralization of the East Tianshan Mountains[J]. Xinjiang Geology, (4): 302-307(in Chinese with English abstract).

    Qin K Z, Zhang L C, Xiao W J. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan mountains, north-western China[C]//Mao J W, Goldfarb R J, Selt-mann R(eds. ). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan: Proceedings Volume of the international Symposium of the IGCP-473 project in Urumqi, IAGOD Guidebook Series, 227-248.

    Qin K Z, Zhang L C, Xiao W J, Xu X W, Yan Z, Mao J W. 2003. Overview of major A u, Cu, Ni and Fe deposits and met allogenic evolution of the eastern Tiansh an Mount ains, Nort hwestern China[C]//Mao J W, Goldfarb R, Seltmann R, Wang D H, XiaoW J, Hart C(ed. ). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London: IAGODG Uidebook Series, 10: 227-248.

    Regelous M, Collerson, K D, Ewart A, Wendt J I. 1997. Trace element transport rates in subduction zones: Evidence from Th, Sr and Pb isotope data for Tonga-Kermadec arc lavas[J]. Earth Planetary Science Letter, 150: 291-302. doi: 10.1016/S0012-821X(97)00107-6

    Sajona F G, Maury R C, Pubellier M, Leterrier J, Bellon H, Cotten J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines)[J]. Lithos, 54(3/4): 173-206. http://www.sciencedirect.com/science/article/pii/S0024493700000190

    She Jianzhong, Yang Wanzhi, Feng Changli, Tian Jiangtao, Yang Zhen. 2016. Geochemical characteristics and tectonic significance of north magnesium-ironite magnesium rock in the west of east Tianshan Section, Xinjiang[J]. Xinjiang Geology, 34(3): 325-330(in Chinese with English abstract).

    She Jianzhong, Yang Wanzhi, Qu Xun, Jia Jian, Di Xiaochen. 2017. U-Pb ages, geochemical characteristics and geological significance of zircon from magnesiumiron magmatite in North Dacaotan, Eastern Tianshan Mountains[J]. Bulletion of Mineralogy, Petrology and Geochemistry, 36(1): 82-91(in Chinese with English abstract).

    Soderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3

    Sun S S, Mc Donough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. Geological Society Special Publication, London, 313-345.

    Tang Dongmei, Qin Kezhang, Sun He, Qi Liang, Xiao Qinhua, Su Benxun. 2009. PGE geochemical characteristics of the Tianyu magmatic Cu-Ni deposit in eastern Xinjiang and its indication for magmatic evolution and sulfide segregation[J]. Acta Geological Sinica, 83(5): 680-697(in Chinese with English abstract). http://www.researchgate.net/publication/285794259_PGE_geochemical_characteristics_of_Tianyu_magmatic_Cu-Ni_deposit_Implications_for_magma_evolution_and_sulfide_segregation

    Tang Zhongli, Yan Haiqing, Jiao Jiangang. 2007. Regional metallogemic control of small-intrusion-host Ni-Cu(PGE)ore deposits in China[J]. Earth Science Frontiers, 14(5): 92-102(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60038-4

    Taylor S R, Mc Lennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1-328.

    Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J]. Journal of Petrology, 39: 29-60. doi: 10.1093/petroj/39.1.29

    Wang Jingbin, Wang Yuwang, He Zhijun. 2006. Ore deposits as aguide to the tectonic evolution in the East Tianshan mountains, NW China[J]. Geology in China, 33(3): 461-469(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi200603002

    Wang Yuwang, Wang Jinbing, Wang Lijuan. 2010. Petrographical and lithogeochemical characteristics of the mafic-ultra-mafic complex related to Cu Ni-V Ti Fe composite mineralization[J]. Acta Petrologica Sinica, 26(2): 401-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201002006.htm

    Windley B F, Allen M B, Zhang C. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia[J]. Geology, 18: 128-131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2

    Wood D A, Tarneu J, Varet J, Saunders A N, Bouhault H, Joron J L, Treuil M, Cann J R. 1979. Geochemistry of basalts drills in the North Atlantic by IPOD Leg 49: Implications for mantle heterogeneity[J]. Earth Planetary Science Letters, 42: 77-97. doi: 10.1016/0012-821X(79)90192-4

    Wu F Y, Jahn B M, Wilde S A, Sun D Y. 2000. Phanerozoic continental crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 328: 89-113. doi: 10.1016/S0040-1951(00)00179-7

    Wu F Y, Simon A W, Zhang G L, Sun D Y. 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, (23): 781-797. http://www.sciencedirect.com/science/article/pii/S1367912003001147

    Wu F Y, Li X H, Zheng Y F, Gao S. 2007b. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).

    Wu Yuanbao, Zheng Yunfei. 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, (16): 1589-1604(in Chinese). doi: 10.1007/BF03184122

    Xiao Xuchang. 1995. Classification of ophiolite from the perspective of expansion rate[J]. Acta Petrologica Sinica, 11(supp. ): 10-23(in Chinese).

    Xiao Xuchang, Tang Yaoqing, Feng Yiming. 1992. Tectonics in the North Xinjiang and its Adjacent Area[M]. Beijing: Geological Publishing House(in Chinese).

    Xiao Wenjiao, Han Chunming, Yuan Chao, Chen Hanling, Sun Ming, Lin Shoufa, Li Zilong, Mao Qigui, Zhang Jien, Sun Shu, Li Jiliang. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleosslan Domain[J]. Acta Petrologica Sinica, 22(5): 1062-1076(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539172

    Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L, Sun S. 2008. Middle Cambrian to Permian subduction related accret ionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia[J]. Journal of Asian Earth Sciences, 32(2/4): 102-117.

    Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin. 2011. Zircon LA-ICP-MS U-Pb dating, elements, and Sr-Nd-Hf isotope geochemistry of the early Mesozoic mafic rock wall group in the East Kunlun orogenic belt[J]. Acta Petrolatica Sinica, 27(11): 3350-3364. http://d.old.wanfangdata.com.cn/Periodical_ysxb98201111016.aspx

    Yang Jinhui, Wu Fuyuan, Shao Jiyuan, Xie Liewen, Liu Xiaoming. 2006b. In-situ U-Pb dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou Formations in the Zhang-Xuan area, Northeast China[J]. Earth Science, 31(1): 71-80(in Chinese with English abstract).

    Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006a. A hybrid origin for the Qianshan A-type granite, northeast China Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89: 89-106. doi: 10.1016/j.lithos.2005.10.002

    You MinXin, Zhao Weizhang, Wang Yalei, Qian Bing, Jiang weizhang. 2017. East tianshan mountain huangshan south magnesium iron-super mafic intrusions zircon U-Pb age and magma evolution study[J]. Geology and Prospecting, 2017 does (5): 903-914. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201705007.htm

    Yang Wanzhi, Ren Yan, Tian Jiangtao, She Jianzhong, Yang Ganggang. 2017. The discovery of LuBei Cu-Ni sulfide Deposit in Eastern Tianshan, NW China and its significant[J]. Billetion of Mineralogy, Petrology and Geochemistry. 36(1): 112-120(in Chinese with English abstract).

    Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan District, eastern Xin jiang, northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 209(3/4): 233-257.

    Zhu Y F, Zhou J, Zeng, Y S, 2007. The Tianger(Bingd-aban)shear zone hosted gold deposit, West Tianshan, NW China: Petrographic and geochemical characteristics[J]. Ore Geology Reviews, 32(1/2): 337-365. http://www.sciencedirect.com/science/article/pii/S0169136806001302

    Zhang Z C, Guo S J. 2009. Zircon SHRIMP U-Pb dating of gabbro in the ophiolitic melange on the northern margin of Altun Mountains and its geological significance[J]. Journal of Petrology, 432(7019): 892-897.

    Zhang Zhicheng, Guo Zhaojie. 2007. Dating of gababi zircon U-PB from ophiolites in the northern margin of the Aljinshan Mountain and its geological significance[J]. Acta Petrosica Sinica, 23(7): 1683-1695.

    Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan District, eastern Xinjiang, northwest China: Implications for the tectonice volution of the Central Asian orogenic belt[J]. Chemical Geology, 209(3/4): 233-257.

    Zhao J H, Zhou M F. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 152: 27-47. doi: 10.1016/j.precamres.2006.09.002

    Zuo Guochao, Liang Guanglin, Chen Jun, Zheng Yong, Gao JunBao, Xing Dechao, Li Shaoxiong. 2006. Tectonic pattern and Evolution of late Paleozoic in Jeluotag area, East Tianshan, China[J]. Geological Bulletin of China, (supp. ): 48-57(in Chinese).

    白云来. 2000. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 9(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200002000.htm
    成守德, 徐新. 新疆及邻区大地构造编图研究[J]. 新疆地质, 2001, (1): 33-37. doi: 10.3969/j.issn.1000-8845.2001.01.006
    范亚洲, 王垚, 陈丹丽, 王子玺, 夏明哲. 2014. 新疆东天山黄山南基性-超基性岩体岩石学、矿物学研究[J]. 新疆地质, 32(3): 310-315. doi: 10.3969/j.issn.1000-8845.2014.03.005
    冯光英, 刘燊, 冯彩霞, 贾大成, 钟宏, 于晓飞, 齐有强, 王涛. 2011. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报, 27(6): 1594-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106003.htm
    冯益民, 朱宝清, 杨军录, 张开春. 2002. 东天山大地构造及演化——1: 50万东天山大地构造图简要说明[J]. 新疆地质, (4): 309-314. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204004.htm
    顾连兴, 张遵忠, 吴昌志. 2007. 东天山黄山-镜儿泉地区二叠纪地质-成矿热事件: 幔源岩浆内侵及其地壳效应[J]. 岩石学报, 23(11): 2869-2880. doi: 10.3969/j.issn.1000-0569.2007.11.017
    顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识[J]. 岩石学报, 22(5): 1103-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605005.htm
    韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 49(22): 2324-2328. doi: 10.3321/j.issn:0023-074X.2004.22.012
    何国琦, 李茂松, 刘德权. 1994. 中国新疆古生代地壳演化与成矿[M]. 乌鲁木齐: 新疆人民出版社.
    何国琦, 朱永峰. 2006. 中国新疆及其邻区地质矿产对比研究[J]. 中国地质, 33(3): 451-460. doi: 10.3969/j.issn.1000-3657.2006.03.001
    侯广顺, 唐红峰, 刘丛强. 2006. 东天山觉罗塔格构造带晚古生代火山岩地球化学特征及意义[J]. 岩石学报, 22(5): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605009.htm
    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
    胡芳芳, 范宏瑞, 杨进辉, 翟明国, 谢烈文, 杨岳衡, 柳小明. 2007. 鲁东昆嵛山地区宫家辉长闪长岩成因: 岩石地球化学、锆石U-Pb年代学与Hf同位素制约[J]. 岩石学报, (2): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702017.htm
    胡受奚, 郭继春, 顾连兴. 1990. 加里东造山带在东天山(E85-E95)构造格架中的重要地位及其地质特征[C]//新疆地质科学. 第一辑, 北京: 地质出版社, 32-45.
    姬金生, 陶洪祥, 杨兴科. 1994. 东天山中段不同构造环境火山岩地球化学特征[J]. 岩石矿物学杂志, (4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.001.htm
    李锦轶. 2004. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, (3): 304-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm
    李锦轶, 宋彪, 王克卓, 李亚萍, 孙桂华, 齐得义. 2006. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩: 中亚地区陆壳垂向生长的地质记录[J]. 地球学报, 27(5): 424-446. doi: 10.3321/j.issn:1006-3021.2006.05.006
    刘德权. 1983. 新疆板块构造与矿产分布[J]. 西北地质, 4(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198302000.htm
    刘德权, 唐延龄, 周汝洪. 2005. 中国新疆铜矿床和镍矿床[M]. 北京: 地质出版社, 1-360.
    马瑞士, 舒良树, 孙家齐. 1997. 东天山构造演化与成矿[M]. 北京: 地质出版社, 1-202.
    毛亚晶, 秦克章, 唐冬梅, 薛胜超, 冯宏业, 田野. 2014. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用——以黄山铜镍矿床为例[J]. 岩石学报, 30(6): 1575-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406005.htm
    潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20090101&flag=1
    秦克章, 丁奎首, 许英霞. 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 26(1): 1-11. doi: 10.3969/j.issn.0258-7106.2007.01.001
    秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区、演化与成矿地质背景研究[J]. 新疆地质, (4): 302-307. doi: 10.3969/j.issn.1000-8845.2002.04.002
    舍建忠, 杨万志, 冯长丽, 田江涛, 杨震. 2016. 新疆东天山西段路北镁铁-超镁铁岩地球化学特征及构造意义[J]. 新疆地质, 34(3): 325-330. doi: 10.3969/j.issn.1000-8845.2016.03.005
    舍建忠, 杨万志, 屈迅, 贾健, 邸晓辰. 2017. 东天山大草滩北镁铁超镁铁岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 36(1): 82-91. doi: 10.3969/j.issn.1007-2802.2017.01.010
    唐冬梅, 秦克章, 孙赫, 漆亮, 肖庆华, 苏本勋. 2009. 东疆天宇岩浆Cu-Ni矿床的铂族元素地球化学特征及其对岩浆演化、硫化物熔离的指示[J]. 地质学报, 83(5): 680-697. doi: 10.3321/j.issn:0001-5717.2009.05.009
    汤中立, 闫海卿, 焦建刚. 2007. 中国小岩体镍铜(铂族)矿床的区域成矿规律[J]. 地学前缘, 14(5): 92-102. doi: 10.3321/j.issn:1005-2321.2007.05.010
    王京彬, 王玉往, 何志军. 2006. 东天山大地构造演化的成矿示踪[J]. 中国地质, 33(3): 461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
    王玉往, 王京彬, 王莉娟. 2010. CuNi-VTiFe复合型矿化镁铁-超镁铁杂岩体岩相学及岩石地球化学特征: 以新疆北部为例[J]. 岩石学报, 26(2): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002006.htm
    吴福元, 李献华, 郑永飞, 高山. 2007b. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    肖序常, 汤耀庆, 冯益民, 1992. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社.
    肖序常. 1995. 从扩张速率试论蛇绿岩的类型划分[J]. 岩石学报, 11(增刊): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.001.htm
    肖文交, 韩春明, 袁超, 陈汉林, 孙敏, 林寿发, 厉子龙, 毛启贵, 张继恩, 孙枢, 李继亮. 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, (5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm
    熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm
    杨进辉, 吴福元, 邵济安, 谢烈文, 柳小明. 2006. 冀北张-宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素[J]. 地球科学, (1): 71-80. doi: 10.3321/j.issn:1000-2383.2006.01.010
    杨万志, 任燕, 田江涛, 舍建忠, 杨刚刚. 2017. 东天山路北铜镍矿的发现及其意义[J]. 矿物岩石地球化学通报, 36(1): 112-120. doi: 10.3969/j.issn.1007-2802.2017.01.013
    尤敏鑫, 张照伟, 王亚磊, 钱兵, 张江伟. 2017. 东天山黄山南镁铁-超镁铁质岩体锆石U-Pb年龄及岩浆演化过程探讨[J]. 地质与勘探, 53(5): 903-914. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201705007.htm
    张志诚, 郭召杰. 2007. 阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 23(7): 1683-1695. doi: 10.3969/j.issn.1000-0569.2007.07.014
    张柳毅, 李霓, Dejan PRELEVI. 2016. 橄榄石微量元素原位分析的现状及其应用[J]. 岩石学报, 32(6): 1877-1890. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201606020.htm
    左国朝, 梁广林, 陈俊, 郑勇, 高俊宝, 邢德超, 李绍雄. 2006. 东天山觉罗塔格地区夹白山一带晚古生代构造格局及演化[J]. 地质通报, (增刊): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1009.htm
  • 期刊类型引用(13)

    1. 马庆,王元伟,高永宝,刘明. 青海省玛多县夺儿贡玛地区地球化学特征与找矿方向. 西北地质. 2025(01): 178-185 . 百度学术
    2. 杨海涛,刘新伟,汪超,牛亮,胡西顺,门文辉,杨文刚. 蠎西寺沟斑岩-矽卡岩型钨钼矿物化探异常特征及找矿模型. 地质与勘探. 2022(05): 929-939 . 百度学术
    3. 白德胜,李水平,纵瑞,程华,齐勇攀,张爱玲,孙进,赵华奇. 豫西董家埝构造蚀变岩型银矿物化探异常特征及找矿模型. 地质与勘探. 2021(02): 241-253 . 百度学术
    4. 刘亮,王超,孙占营,张杰,马运超,赵相国,杨宇东. 青海多尔娘地区地层和岩体含矿性研究. 河南理工大学学报(自然科学版). 2021(06): 64-76 . 百度学术
    5. 王占彬,宋贺民,马庆,谢志远,李保飞,王凯. 河北省怀安县朱家洼矿区地球化学特征与找矿方向. 地质与勘探. 2020(01): 102-112 . 百度学术
    6. 刘亮,王超,孙占营,余长荣,赵相国. 综合物化探方法在青海珊旗根玛金锑矿点的运用. 科学技术与工程. 2020(04): 1337-1343 . 百度学术
    7. 李菲. 蟒西地区中酸性岩体地质特征及找矿潜力. 科学技术与工程. 2020(18): 7176-7182 . 百度学术
    8. 丁吉顺,陈伟,周恒,郭奇奇,孙渺,张祎. 西藏雄梅地区1:5万水系沉积物地球化学特征及找矿远景. 地质与勘探. 2019(01): 48-63 . 百度学术
    9. 张翔,戴霜,黄万堂,赵振斌,李鸿睿,王玉玺,刘博,吴茂先. 甘肃省玛曲县大水金矿原生金矿石的发现及意义. 地质与勘探. 2019(02): 484-495 . 百度学术
    10. 段吉学,刘江. 综合物化探在内蒙萤石多金属矿普查中的应用研究. 西北地质. 2019(03): 265-274 . 百度学术
    11. 王伟. 新疆托克逊县阿热塔格山Ⅱ区的物化探异常特征. 黑龙江科技大学学报. 2019(05): 546-551 . 百度学术
    12. 缪宇,宋文婷,何茂源,徐乐. 云南弥渡县云景地区多元地学信息集成及找矿模型. 地质与勘探. 2019(06): 1367-1378 . 百度学术
    13. Shi-hong Zhang,Ke-yan Xiao,Jian-ping Chen,Jie Xiang,Ning Cui,Xiao-nan Wang. Development and future prospects of quantitative mineral assessment in China. China Geology. 2019(02): 198-210 . 必应学术

    其他类型引用(0)

图(10)  /  表(4)
计量
  • 文章访问数:  2134
  • HTML全文浏览量:  837
  • PDF下载量:  3534
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2020-05-05
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-08-24

目录

/

返回文章
返回
x 关闭 永久关闭