高级检索

    东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用

    舍建忠, 陈刚, 朱志新, 贾健, 邸晓辰, 董国盛, 刘凯旋, 金成

    舍建忠, 陈刚, 朱志新, 贾健, 邸晓辰, 董国盛, 刘凯旋, 金成. 东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用[J]. 中国地质, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419
    引用本文: 舍建忠, 陈刚, 朱志新, 贾健, 邸晓辰, 董国盛, 刘凯旋, 金成. 东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用[J]. 中国地质, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419
    SHE Jianzhong, CHEN Gang, ZHU Zhixin, JIA Jian, DI Xiaochen, DONG Guosheng, LIU Kaixuan, JIN Cheng. Geochemistry, zircon chronology, Sr-Nd-Hf isotopic characteristics and subduction magmatism of Heishidun basic rocks in the East Tianshan[J]. GEOLOGY IN CHINA, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419
    Citation: SHE Jianzhong, CHEN Gang, ZHU Zhixin, JIA Jian, DI Xiaochen, DONG Guosheng, LIU Kaixuan, JIN Cheng. Geochemistry, zircon chronology, Sr-Nd-Hf isotopic characteristics and subduction magmatism of Heishidun basic rocks in the East Tianshan[J]. GEOLOGY IN CHINA, 2021, 48(4): 1239-1254. DOI: 10.12029/gc20210419

    东天山黑石墩基性岩地球化学、锆石年代学、Sr-Nd-Hf同位素特征及其俯冲岩浆作用

    基金项目: 

    中国地质调查局项目 12120114059201

    详细信息
      作者简介:

      舍建忠, 男, 1982年生, 硕士, 高级工程师, 主要从事区域地质矿产调查研究; E-mail: sjz832@163.com

    • 中图分类号: P597;P588.12+4

    Geochemistry, zircon chronology, Sr-Nd-Hf isotopic characteristics and subduction magmatism of Heishidun basic rocks in the East Tianshan

    Funds: 

    the project of China Geological Survey 12120114059201

    More Information
      Author Bio:

      SHE Jianzhong, male, born in 1982, master, senior engineer, engaged in regional geology and mineral investigation; E-mail: sjz832@163.com

    • 摘要:

      在东天山康古尔塔格南黑石墩一带新发现一套基性岩,岩性以辉长岩和橄榄辉长岩为主,岩石具有相对较低SiO2(47.59%~50.79%)、富Na2O(2.72%~4.42%)贫K2O(0.26%~1.15%),低MgO(3.94%~12.55%),中等Mg#(47.6~66.64),高Al2O3(14.75%~19.65%),相对富集轻稀土((La/Yb)N1.83~2.12),Eu弱正异常(1.00~1.25),富集LILE(Ba、U、Sr),亏损HFS(Ta、Nb、Th和Ti),并强烈富集Pb。锆石LA-ICP-MS U-Pb年龄((342.6±3.2)Ma)表明该基性岩属于早石炭世岩浆活动的产物。岩石具有较低的(87Sr/86Sr)i(0.703421~0.704551),正的εNdt)(7.6~8.1)和εHft)(9.82~13.74)。地球化学特征和岩相学显示其来自亏损的岩石圈地幔源区,且源区在较低程度的部分熔融前受到俯冲板片中富含大离子亲石和轻稀土元素的海洋沉积物在俯冲过程中脱水熔融形成流体的交代作用影响,原始岩浆在侵位过程中发生程度不同的橄榄石、辉石和斜长石分离结晶作用,侵位过程中受到地壳物质混染的程度非常低。构造和动力学背景研究表明,黑石墩基性岩为北天山洋在早石炭世沿康古尔塔格—黄山大断裂向北俯冲阶段的产物。

      Abstract:

      A new set of basic rocks was discovered in the Heishidun in South Kangurtag, Eastern Tianshan. Its lithology mainly consists of gabbro and olive gabbro. The rocks are characterized by relatively low contents of SiO2 (47.59%-50.79%), K2O (0.26%-1.15%) and MgO (3.94%-12.55%), high contents of Na2O (2.72% -4.42%) and Al2O3 (14.75% -19.65%), and moderate content of Mg# (47.6-66.64). Light rare earth is enriched ((La/Yb)N of 1.83-2.12) with a bit of Eu positive anomaly (1.00-1.25). LILE (Ba, U, Sr) is enriched, while HFS (Ta, Nb, Th, and Ti) is depleted, and Pb is strongly enriched. LA-ICP-MS zircon U-Pb dating yields 342.6±3.2 Ma, indicating that this basic rock is a product of Early Carboniferous magmatic activity. Rocks have lower Sr ratio (87Sr/86Sr)i (0.703421-0.704551), positive εNd (t) (7.6-8.1) and εHf (t) (9.82-13.74). Geochemical characteristics and petrography show that it is originated from the lithospheric mantle source of the loss, and the source area was affected by the metamorphism of the dehydration and melting fluids resulted from the subduction of marine sediments rich in large ionic lithophile and light rare earth elements. The separation and crystallization of olivine, pyroxene and plagioclase took place during the emplacement of magma, the degree of contamination by the crustal material during the emplacement was very low. The structural and dynamic background shows that the Heishidun basic rock is the product of the Northern Tianshan Ocean's northward subduction along the Kangugtag-Huangshan fault in the Early Carboniferous.

    • 遥感地质找矿是遥感信息获取、含矿信息提取以及含矿信息成矿分析与应用的过程, 近年来, 被广泛应用于地质、矿产资源及相关环境的调查中(刘燕君等, 1993; 朱振海, 1994; 郭德方, 1995; Sabins, 1999; Everett et al., 2002; 廖崇高等, 2002; 连长云等, 2005; 刘颖璠等, 2012; 钱建平等, 2012; 谭克龙等, 2012; 杜小弟等, 2015)。航空高光谱是当前遥感的前沿技术, 通过高光谱成像所获取的地球表面的图像包含光谱维信息融合为一体, 即“图谱合一” (束炯等, 2006), 具有波段数多, 波带窄, 对地物能定量分析等优点, 是20世纪末期以来遥感领域最大的技术进展(Campbell et al., 2011)。航空高光谱遥感技术相对于星载高光谱遥感技术, 可以获取高空间分辨率的高光谱遥感数据, 因而对微小地物具有更强的识别能力(刘德长等, 2015)。通过高光谱矿物填图, 可以大面积、快速提取蚀变矿物(Clack et al., 1990)。王润生等(2010)系统总结了高光谱矿物填图技术流程、工作方法和技术体系。中国国土资源航空物探遥感中心在新疆土屋东—三岔口地区, 应用HyMap航空成像光谱数据填绘出了白云母、绿泥石、绿帘石、绿泥石和绿帘石组合、高岭石、蒙脱石、透辉石、透闪石、蛇纹石、褐铁矿、方解石等矿物或矿物组合种类(王润生等, 2011)。

      本文以新疆卡拉塔格地区获取的HyMap航空高光谱数据、地面准同步定标数据、地面高光谱数据为例, 提取并筛选了基于HyMap航空高光谱影像的成矿有利蚀变信息, 在此基础上对红山铜金矿床航空-地面高光谱提取的蚀变信息进行了综合剖析, 并结合矿区地质背景, 建立了红山铜金矿床高光谱遥感地空综合找矿模型, 圈定了2处找矿有利地段。

      研究区大地构造位于东天山吐哈盆地南缘、大南湖—头苏泉晚古生代岛弧带(图 1)。

      图  1  新疆卡拉塔格地区地质矿产图
      1—全新统:砂石及砾石沉积; 2—下侏罗统三工河组:粉砂质泥岩、泥质砂岩夹钙质砂岩; 3—上二叠统库莱组:砾岩、中粗粒岩屑砂岩; 4—中二叠统阿尔巴萨依组:凝灰岩、橄榄玄武岩; 5—上石炭统脐山组:玄武岩、安山岩; 6—下泥盆统大南湖组:安山岩、英安岩、熔结凝灰岩、火山角砾岩; 7—中—上志留统红柳峡组:凝灰质砾岩、晶屑岩屑凝灰岩; 8—中奥陶统荒草坡群大柳沟组:玄武岩、安山岩、英安岩; 9—志留纪二长花岗岩; 10—志留纪花岗闪长岩; 11—志留纪英云闪长岩; 12—花岗岩体; 13—地质界线; 14—角度不整合界线; 15—岩相界线; 16—逆断层; 17—性质不明断层; 18—推测断层; 19—铜金矿; 20—铜锌矿; 21—铜锌金矿; 22—铜铁矿
      Figure  1.  Geological map of Kalatag area in Xinjiang
      1-Holocene, sand and gravel deposits; 2-Lower Jurassic Sangonghe Formation: river silty mudstone, argillaceous sandstone intercalated with calcareous sandstone; 3-Permian Kulai Formation: breccia, coarse grained lithic sandstone; 4-Middle Permian Aebasayi Formation: tuff, olivine basalt; 5-Carboniferous Qishan Formation: basalt, andesite; 6-Lower Devonian Dananhu Formation: andesite, dacite, welded tuff and volcanic breccia; 7-Middle-upper Silurian Hongliuxia Formation: tuffaceous conglomerate, wafer crumbs debris tuff; 8-Daliugou Formation of Ordovician Huangcaopo Group: basalt, andesite, dacite; 9-Silurian monzonitic granite; 10-Silurian granite diorite; 11-Silurian tonalite; 12-Granite rock mass; 13-Geological boundary; 14-Angular unconformity; 15-Petrofacies boundary; 16-Thrust; 17-Unknown fault; 18-Inferred fault; 19-Copper and gold deposit; 20-Copper and zinc deposit; 21-Copper zinc deposit; 22-copper deposit

      区内地层整体呈北西向产出, 由中奥陶统荒草坡群大柳沟组(O2Hd)、中—上志留统红柳峡组(S2-3h)、下泥盆统大南湖组(D1d)、上石炭统脐山组(C2qs)、中二叠统阿尔巴萨依组(P2a)、上二叠统库莱组(P3k)、下侏罗统三工河组(J1s)、全新统(Qh)组成。

      该区经历了多期次的构造变动, 区域构造形成类型多样、特征复杂, 褶皱、断裂和火山机构发育, 区域性的断裂构造控制着该区火山岩和侵入岩的展布, 次级断裂控制着矿化蚀变带的分布, 更次一级构造裂隙带控制着矿化体的产出。主要发育北西、北北西和北东东向三组断裂构造, 其中北西向断裂为该区主要控矿构造, 同火山断裂发育, 含矿火山热液沿断裂活动强烈。

      区内火山活动强烈, 火山岩分布广泛。岩石类型以中基性火山岩为主, 中酸性火山岩次之, 从奥陶系至二叠系均有出露, 其中奥陶系最为发育, 其次为泥盆系、石炭系, 二叠系局部出现。侵入岩较为发育, 主要为一套古生代侵入体, 包括中酸性闪长岩、花岗闪长岩、花岗岩等侵入岩, 中部为与铜金矿化直接相关的中生代中酸性火山机构, 主要由石英斑岩、钠长斑岩、英安岩、英安斑岩、安山玢岩、闪长玢岩和火山角砾集块岩等岩性构成。其中志留纪侵入岩由老到新依次为英云闪长岩、花岗闪长岩、二长花岗岩、花岗斑岩。该区经受了区域埋深变质作用, 变质程度较弱, 主要变质矿物为绿泥石、钠长石、葡萄石、石英、阳起石、方解石、绿帘石。

      区内已知矿床自北西向南东依次产出有:红山铜金矿床→梅岭铜锌金矿床→红石铜金矿床→红海铜锌金矿床。

      不同矿床类型由于岩石岩性和蚀变矿物不同, 它们的光谱特征有明显的差异(姚佛军, 2006)。铜金矿床属于内生金属矿床, 这类矿床与地表蚀变密切相关, 可以利用航空高光谱遥感影像进行蚀变矿物提取, 结合地表岩石光谱测试分析, 应用HyMap航空成像光谱仪和美国ASD公司的FieldSpec Pro FR光谱仪对不同类型矿床的光谱特征进行测量, 分析其不同类型矿床的光谱特征, 进行蚀变矿物遥感信息提取, 开展高光谱遥感地空综合预测研究, 进而指导找矿。

      岩矿的光谱包含有一系列特征吸收谱带。每一个特征谱带或谱带组合与岩矿内部微粒的物质属性存在一定的对应关系(Povarennykh, 1978)。在短波红外光谱区域, 褐铁矿、黄钾铁矾、白云母、绿泥石等具有可以识别的诊断性光谱特征, 特征吸收波段的深度与岩石中这些矿物的含量密切相关(刘圣伟, 2006)。矿物诊断性光谱吸收包括金属阳离子在可见光区域的电子过程以及阴离子基团在近红外区域的振动过程。蚀变矿物的可见光−近红外范围内几种官能团主要包括Fe2+、Fe3+、Al−OH、Mg−OH、OH-、CO32-

      一般阴离子诊断谱带位于2000~2500 nm光谱区域。而Fe2+、Fe3+和Mn2+诊断谱带一般位于400~1200 nm光谱区域(甘甫平等, 2003)。所以根据400~1100 nm光谱区间的Fe吸收谱带和2000~2500 nm羟基和碳酸根谱带将矿物分为含铁矿物、含羟基矿物和含碳酸根矿物以及其他矿物(甘甫平, 2003)。褐铁矿的光谱吸收谷是矿物光谱分析、遥感铁染异常提取常用的波段。其中Fe3+离子的特征吸收谷位主要在600~800 nm, 中心位置在700 nm左右, Fe2+离子的特征吸收谷位主要在900~1500 nm, 中心位置在1200 nm左右; 白云母的诊断性光谱特征是Al−OH键在2180~2230 nm之间的尖锐而深的吸收特征, 以及在2340 nm和2440 nm附近的较弱Al−OH特征, Clark et al.(1990)在高光谱分辨率下, 检测到白云母矿物在2200 nm附近的吸收波段随Al含量的增加向长波方向的移动; 绿泥石的光谱具有Fe−OH和Mg−OH的诊断性吸收特征, 波长位置分别为2235~2255 nm和2320~2360 nm, 这些吸收特征的波长随着绿泥石中铁离子含量的增加而增大。

      综合考虑仪器参数、成图精度的要求、研究区自然地理、地形起伏、野外工作条件等因素, 进行飞行方案的最优设计(表 1)。将HyMap成像光谱仪搭载在Y−12飞机上, 利用国外引进的HyMap航空高光谱遥感测量系统、地面ASD光谱测量系统。采集高光谱分辨率的HyMap航空高光谱遥感数据、地面准同步的地物光谱定标数据。具体获取过程分为3个步骤:首先对HyMap成像光谱仪进行实验室定标, 保证其性能指标达到项目要求, 以获取优质的高光谱影像数据; 其次进行HyMap仪器的安装和测试, 按照仪器安装规范方法, 将HyMap安装在Y−12飞机上, 保证机下的摄影窗口满足数据获取要求, 按照航空成像光谱数据获取规范进行地面测试; 最后为HyMap航空高光谱数据获取和初步质量检查。

      表  1  HyMap航空成像光谱仪主要技术参数
      Table  1.  Main technical parameters of HyMap aviation imaging spectroradiometer
      下载: 导出CSV 
      | 显示表格

      在此基础上, 开展HyMap航空高光谱遥感数据辐射定标、大气校正光谱反演、几何校正和地理编码等数据处理工作。通过此项研究, 为高光谱遥感地空综合预测铜金矿床的技术方法研究和应用提供可靠的数据基础。

      地面光谱测量采用美国ASD公司生产的FieldSpec Pro FR地面光谱测量仪(表 2)。利用该仪器开展了地面光谱准同步定标。在HyMap高光谱数据获取过程中, 准同步布设黑白布定标场和明暗地物定标场, 利用FieldSpec Pro FR地面光谱测量仪进行光谱定标数据获取(图 2图 3), 并基于经验线性模型法, 对高光谱影像进行大气校正和光谱比对分析。

      表  2  FieldSpec Pro FR光谱仪主要技术参数
      Table  2.  Main technical parameters of FieldSpec Pro FR spectrometer
      下载: 导出CSV 
      | 显示表格
      图  2  黑白布地面准同步定标光谱曲线
      Figure  2.  Black and white cloth quasi-synchronization calibration spectra curve
      图  3  明暗地物地面准同步定标光谱曲线
      Figure  3.  Spectral curve features of light and shade ground quasi-synchronization calibration

      同时开展了典型铜金矿床地表蚀变围岩和其他相关的岩石地物的光谱测量, 完成了4条贯穿地层走向的成矿有利地质单元光谱测量和4条典型矿床光谱测量。共完成光谱测量点287个, 光谱测量曲线2870条。测量完成后, 开展了各岩石类型的岩矿光谱数据处理、光谱库建立、光谱特征分析等研究工作, 研究及分析结果为航空高光谱蚀变矿物信息提取、地面光谱验证、铜金矿床围岩蚀变信息筛选等提供重要的地面光谱信息支持。

      地面高光谱数据处理采用ViewSpec Pro软件, 利用ViewSpec Pro软件挑选符合要求的地面岩矿光谱曲线, 并将这些曲线转换为txt格式的文件。由于受到太阳位置、角度条件、大气条件、地形影响及传感器本身性能的影响, 传感器所记录的数据与目标的光谱反射率或光谱辐射亮度值并不一致。需先将传感器记录的原始辐射值(DN值)转化为地物反射率(李志忠等, 2015)。

      目前基于高光谱遥感影像数据提取矿物的处理方法可以分为2类: (1)通过像元光谱与矿物标准光谱曲线的匹配实现识别和量化目标矿物; (2)提取矿物光谱特征吸收波段参数作为识别和量化指标(卢燕, 2014)。前者在处理过程中光谱数据信息可能由于重定标而部分丢失。且基于单幅图像统计参数的处理方法难以做到无缝衔接, 该方法也涉及大量的运算。本次研究区蚀变矿物提取主要基于第2种方法。该方法利用ENVI软件, 基于可编程实现的特征提取处理通道, 该通道中脚本设计是基于提取光谱参数, 首先对影像光谱数据进行均值标准化、去连续统、卷积平滑等数据预处理, 在进行特征深度、特征面积、特征宽度、极小值波长、比值、算术和逻辑运算等特征参数提取。同时利用多个诊断性特征来标记或约束特定的矿物, 提取矿物的分布和相对含量, 并增强矿物识别的精度。

      根据矿物光谱特征吸收波段参数的蚀变矿物提取方法, 在研究区提取了褐铁矿−黄钾铁矾、白云母−蒙脱石、绿泥石−绿帘石−碳酸盐、叶腊石等蚀变矿物或组合(图 4), 其中褐铁矿−黄钾铁矾、白云母−蒙脱石、绿泥石−绿帘石−碳酸盐等蚀变矿物组合在全区范围内分布, 且呈团块状、条带状及星散状。叶腊石则仅在研究区北东部呈星点状分布, 蚀变不明显, 对于指导找矿意义不大(黄色圈内为叶腊石分布位置)。

      图  4  新疆卡拉塔格地区HyMap航空高光谱蚀变矿物丰度图
      a—褐铁矿-黄钾铁矾; b—白云母-蒙脱石; c—绿泥石、绿帘石、碳酸盐; d—叶腊石, 黄色圈内为叶腊石分布位置
      Figure  4.  HyMap aviation hyperspectral alteration mineral abundance map of Kalatag area in Xinjiang
      a-Limonite-jarosite; b-Muscovite-montmorillonite; c-Chlorite, epidote, carbonate; d-Pyrophyllite, yellow circle indicates pyrophyllite distribution position

      红山铜金矿床是高硫型−浅成低温热液型矿床(董承维, 2013)。矿床产于陆相蚀变酸性火山穹窿及其通道中, 该次火山机构受近东西与北西向两组断裂控制, 且主要控岩控矿构造为北西向断裂。铜矿体受北西向断裂及其次级构造破碎带控制, 为浸染状辉铜矿化和黄铜矿化。金矿化主要与酸性次火山岩中的细粒黄铁矿有关(王瑞军等, 2014) (图 5)。

      图  5  红山铜金矿区地质图(据王京彬, 2006)
      1—第四系残坡积物、风积物; 2—英安岩、英安斑岩、安山岩; 3—蚀变英安岩; 4—流纹斑岩、石英斑岩、霏细斑岩; 5—花岗岩; 6—花岗闪长岩脉; 7—闪长玢岩脉; 8—氧化带矿体; 9—推测断层; 10—片理化带; 11—金矿体; 12—铜矿体
      Figure  5.  Geological map of the Hongshan Cu-Au deposit (after Wang, 2006)
      1-quaternary debris slope sediments, aeolian; 2-dacite, British Ann porphyry, andesite; 3-alteration dacite; 4-rhyolitic porphyry and quartz porphyry, faye fine porphyry; 5-granite; 6-granite diorite vein; 7-diorite Bin dike; 8-oxidation zone ore body; 9-speculation fault; 10-piece of physics and chemistry; 11-gold ore body; 12-copper ore body

      矿区地表发育黄钾铁钒化、绢云母化、硅化、褐铁矿化、黄铁矿化、绿泥石化、绿帘石化、青磐岩化。近矿蚀变以火山岩酸淋滤带蚀变体的黄钾铁矾化−明矾石化−高岭土化−石膏和中性斑岩体的绢云母化−硅化为显著特征, 远矿蚀变为青磐岩化(许英霞等, 2008)。矿区中心为泥化、硫酸盐带, 向北为硅化−伊利石化−绢云母化−褐铁矿化带。具有找矿标志的矿化蚀变为:硅化−绢云母化、伊利石化、褐铁矿化、硅化、高岭土化−明矾石化等。

      红山铜金矿床矿化以铜、金矿为主, 赋矿岩性主要为流纹岩、英安岩、安山玢岩、闪长玢岩、火山角砾岩。矿石矿物主要为黄铜矿、蓝铜矿、闪锌矿、磁铁矿、赤铁矿、黄钾铁钒等。脉石矿物为石英、斜长石、绢云母、绿泥石等。矿石呈稠密浸染状、细脉状、角砾状构造(许英霞, 2010)。

      充分研究区域成矿有利的构造、地层、岩浆岩条件、变质条件的基础上, 结合区域控矿因素、矿床、矿化蚀变特征, 进行航空高光谱蚀变矿物分布特征分析及评价。本文截取了研究区内红山铜金矿床及外围基于HyMap航空高光谱遥感影像的蚀变矿物分布图(图 6), 图中显示红山铜金矿床中心位置处于开采状态, 呈黑白相间且颜色突变的色调, 影纹粗糙且不均匀, 矿床外围呈灰黑色、灰绿色色调, 影纹粗糙。与矿床有关的航空高光谱蚀变矿物组合主要为褐铁矿+黄钾铁钒、绢云母+蒙脱石等, 呈大面积的团块状分布。在矿床外围分布着呈星散状、星点状的绿泥石+绿帘石蚀变矿物组合, 该组蚀变为铜金矿床外围主要发育的蚀变组合, 对于寻找该类型矿床有一定的指示作用。

      图  6  红山铜金矿床HyMap航空高光谱成矿有利蚀变矿物分布图
      Figure  6.  HyMap aviation high spectrum mineralization favorable alteration mineral distribution of the Hongshan copper gold deposit

      在红山铜金矿区收集了具体的剖线采样和光谱数据, 图 7为红山铜金矿区的地质光谱综合剖面, 出露的地层为中奥陶统荒草坡群大柳沟组, 岩性主要为英安岩、片理化带、流纹斑岩、花岗岩、花岗闪长岩、构造蚀变岩以及铜金矿化体等。蚀变矿物主要有褐铁矿、黄钾铁钒、绢云母、石膏、高岭石、明矾石及方解石等。通过样品采集和光谱测试结果, 研究与该区铜金矿关系密切的几种赋矿岩性的光谱曲线, 分别为构造蚀变岩、花岗闪长岩、花岗岩、流纹斑岩、蚀变英安岩、及铜金矿化体。

      图  7  红山铜金矿区剖线地面高光谱蚀变矿物分布图
      1—英安岩; 2—片理化带; 3—流纹斑岩; 4—花岗岩; 5—花岗闪长岩; 6—断裂构造; 7—地面光谱样采样点; 8—地面光谱测试点编号; 9—褐铁矿; 10—黄钾铁矾; 11—绢云母; 12—石膏; 13—高岭石; 14—明矾石; 15—方解石
      Figure  7.  Surface hyperspectral alteration mineral distribution along geological section in the Hongshan copper gold orefield
      1-Dacite; 2-Schistosity zone; 3-Rhyolitic porphyry; 4-Granite; 5-Granite diorite; 6-Fracture structure; 7-Surface spectrum sampling site; 8-Serial number of spectrum test point; 9-Limonite; 10-Jarosite; 11-Sericite; 12-Gypsum; 13-Kaolinite; 14-Alunite; 15-Calcite

      经研究分析发现:红山铜金矿床及外围不同岩性地面光谱特征各不相同, 各类岩性具体曲线(图 8)特征如下:

      图  8  红山铜金矿床及外围各岩性光谱曲线对比图
      a—构造蚀变岩; b—花岗闪长岩; c—花岗岩; d—流纹斑岩; e—蚀变英安岩; f—铜金矿化体
      Figure  8.  Comparison diagram of various lithology spectral curves from the Hongshan copper gold deposit and peripheral areas
      a-Tectonic altered rock; b-Granodiorite; c-Granite; d-Rhyolitic porphyry; e-Altered dacite; f-Copper gold mineralization body

      构造蚀变岩(图 8-a)地面光谱曲线特征显示: 880 nm处的Fe3+特征吸收可能为褐铁矿化所致; 2210 nm处的弱吸收峰为发育弱绢云母化所致, 2260 nm处的较强吸收峰为岩石发育黄钾铁矾化所致。故构造蚀变岩蚀变矿物组合为:褐铁矿+黄钾铁矾+绢云母。

      花岗闪长岩(图 8-b)地面光谱曲线特征显示: 880 nm处较强的对称吸收峰为岩石发育褐铁矿化所致; 2210 nm处较强的吸收峰, 及右肩2250 nm处较弱次级吸收峰, 是Al−OH的特征吸收, 为明矾石化所致; 2350 nm处强的主吸收峰, 左肩2250 nm处较强的次级吸收峰, 是Mg−OH的特征吸收, 为绿泥石化所致。故其蚀变矿物组合为:褐铁矿+明矾石+绿泥石。

      花岗岩(图 8-c)地面光谱曲线特征显示: 910 nm处较弱的Fe3+特征吸收峰为褐铁矿化所致; 2210 nm处的弱Al−OH特征吸收峰为绢云母化引起, 其右肩2250 nm处的较弱吸收峰可能为明矾石化所致; 2265 nm处的较弱吸收峰可能为黄钾铁矾化所致; 2330 nm处可见较强吸收峰, 是CO32-的特征吸收峰, 为岩石发育碳酸盐化所致, 故花岗岩蚀变矿物组合为:褐铁矿+黄钾铁矾+绢云母+明矾石+方解石。

      流纹斑岩(图 8-d)地面光谱曲线特征显示: 880 nm处的较强吸收峰为褐铁矿化所致; 2210 nm处的强Al−OH特征吸收峰为岩石发育绢云母化所致; 2265 nm处的弱Fe−OH特征吸收峰为岩石发育黄钾铁矾化所致, 故流纹斑岩蚀变矿物组合为:褐铁矿+黄钾铁钒+绢云母。

      蚀变英安岩(图 8-e)地面光谱曲线特征显示: 880 nm处的弱吸收峰为弱褐铁矿化所致; 2210 nm处的弱Al−OH特征吸收峰为绢云母化引起; 2350 nm处的较强主吸收峰及其左肩2250 nm处的较强次级吸收峰, 是Mg−OH的特征吸收峰, 为绿泥石化所致; 2330 nm处的较强主吸收峰以及1880 nm、2060 nm、2170 nm处较弱次级吸收峰, 是CO32-的特征吸收峰, 为岩石发育碳酸盐化所致; 1836 nm、1935 nm、2213 nm、2270 nm处可见多处较强吸收峰, 为岩石发育石膏所致。故蚀变英安岩蚀变矿物组合为:褐铁矿+绢云母+绿泥石+方解石+石膏。

      铜金矿化体(图 8-f)地面光谱曲线特征显示: 880 nm处的较强Fe3+特征吸收为岩石发育褐铁矿化所致; 2210 nm处的弱Al−OH特征吸收峰为岩石发育绢云母化; 2265 nm处的弱Fe−OH特征吸收峰为岩石发育黄钾铁矾化; 1540 nm、1835 nm、1920 nm、2000 nm、2165 nm、2208 nm、2250 nm、2329 nm、2374 nm、2385 nm处可见多处较强吸收峰, 可能为岩石发育黝帘石化所致。故铜金矿化体蚀变矿物组合为:褐铁矿+绢云母+黄钾铁钒+黝帘石。

      根据航空高光谱和地面高光谱蚀变矿物或组合的类型和分布特征, 结合红山铜金矿床的地质特征, 进行典型矿床航空−地面高光谱综合剖析, 最终建立了红山铜金矿床高光谱遥感地空综合找矿模型(表 3)。

      表  3  红山铜金矿床高光谱遥感地空综合找矿模型
      Table  3.  Hyperspectral remote sensing air comprehensive prospecting model for the Hongshan copper gold deposit
      下载: 导出CSV 
      | 显示表格

      在建立红山铜金矿床高光谱遥感地空综合找矿模型的基础上, 结合地质、野外调查验证等多源地学信息, 运用高光谱遥感地空综合预测方法, 优选了2处与已知矿床航空−地面高光谱向类似的找矿有利地段, 分别为I−1和I−2(图 9)。

      图  9  新疆卡拉塔格地区找矿有利地段优选图
      1—全新统:砂石及砾石沉积; 2—下侏罗统三工河组:粉砂质泥岩、泥质砂岩夹钙质砂岩; 3—上二叠统库莱组:砾岩、中粗粒岩屑砂岩; 4—中二叠统阿尔巴萨依组:凝灰岩、橄榄玄武岩; 5—上石炭统脐山组:玄武岩、安山岩; 6—下泥盆统大南湖组:安山岩、英安岩、熔结凝灰岩、火山角砾岩; 7—中-上志留统红柳峡组:凝灰质砾岩、晶屑岩屑凝灰岩; 8—中奥陶统荒草坡群大柳沟组:玄武岩、安山岩、英安岩; 9—志留纪二长花岗岩; 10—志留纪花岗闪长岩; 11—志留纪英云闪长岩; 12—花岗岩体; 13—地质界线; 14—角度不整合界线; 15—岩相界线; 16—逆断层; 17—性质不明断层; 18—推测断层; 19—铜金矿; 20—铜锌矿; 21—铜锌金矿; 22—铜铁矿; 23—高光谱找矿有利地段
      Figure  9.  Favorable ore-prospecting optimization segments in Kalatag area of Xinjiang
      1-Holocene, sand and gravel deposits; 2-Lower Jurassic Sangonghe Formation: river silty mudstone, argillaceous sandstone intercalated with calcareous sandstone; 3-Permian Kulai Formation: breccia, coarse grained lithic sandstone; 4-Middle Permian Aebasayi Formation: tuff, olivine basalt; 5-Carboniferous Qishan Formation: basalt, andesite; 6-Lower Devonian Dananhu Formation: andesite, dacite, welded tuff and volcanic breccia; 7-Middle-upper Silurian Hongliuxia Formation: tuffaceous conglomerate, wafer crumbs debris tuff; 8-Daliugou Formation of Ordovician Huangcaopo Group: basalt, andesite, dacite; 9-Silurian monzonitic granite; 10-Silurian granite diorite; 11-Silurian tonalite; 12-Granite rock mass; 13-Geological boundary; 14-Angular unconformity; 15-Petrofacies boundary; 16-Thrust; 17-Unknown fault; 18-Inferred fault; 19-Copper and gold deposit; 20-Copper and zinc deposit; 21-Copper zinc deposit; 22-copper deposit; 23-Hyperspectral favorable ore-prospecting segments

      I−1找矿有利地段分布在玉带铜金矿点北西侧一带, 呈北北西向展布, 面积约5.2 km2。区内分布的地层为中−上志留统红柳峡组(S2-3h)火山岩, 近东西向断裂构造发育, 区内多发育褐铁矿化、硅化、绿帘石化等蚀变。微量元素分析23个, 化学分析显示钛含量最高达0.23×10-2, 金红石含量最高达0.38×10-2。为铜、金、钛等元素多金属找矿有利地段(图 10)。

      图  10  I−1找矿有利地段蚀变矿物丰度图
      Figure  10.  I−1 alteration mineral abundance map of favorable ore-prospecting segment

      I−2找矿有利地段分布在东二区南东侧, 呈近东西向展布, 面积约6.8 km2。区内分布的地层为中奥陶统荒草坡群大柳沟组(O2Hd)火山岩, 北东东向断裂构造发育, 花岗闪长岩体呈近东西向展布, 区内多发育硅化、褐铁矿化、赤铁矿化、绿帘石化、孔雀石化等蚀变。微量元素分析15个, 化学分析显示钛元素含量最高达0.21×10-2, 金红石含量最高达0.35×10-2, 且区内已有红山铜金矿床分布, 为铜、金、钛等元素多金属找矿有利地段(图 11)。

      图  11  I−2找矿有利地段蚀变矿物丰度图
      Figure  11.  I−2 alteration mineral abundance map of favorable ore-prospecting segment

      (1) 新疆东天山卡拉塔格铜金多金属矿床集中, 地表具有指示意义的蚀变矿物分布较为典型, 适合利用高光谱遥感地空综合预测方法在该区寻找铜金及多金属矿床, 故该方法为寻找铜金矿床的有效技术方法。

      (2) 在运用HyMap航空成像光谱仪和FieldSpec Pro FR光谱仪进行高光谱数据获取和处理的基础上, 结合HyMap航空高光谱蚀变矿物提取效果分析, 最终开展典型矿床航空−地面高光谱综合剖析研究, 建立了红山铜金矿床高光谱遥感地空综合找矿模型, 并综合地质、野外调查验证等多源地学信息, 圈定了I−1和I−2等两处找矿有利地段。

      (3) 与常规的地质、区域化探等地质矿产勘查方法相比, 高光谱遥感地空综合预测方法具有低成本、快速高效的优势。但由于各类矿床的找矿标志和高光谱异常信息多种多样, 从而造成蚀变异常信息的多解性, 加上利用高光谱地空综合预测方法开展多金属矿产资源调查研究还比较少, 需要今后继续完善成熟。

    • 图  1   北天山地区地质简图

      Figure  1.   Geologica map of Northern Tianshan

      图  2   黑石墩基性岩代表性岩石类型的显微照片

      a—辉长岩;b—橄榄辉长岩;Pl—斜长石; Aug—普通辉石; Ol—橄榄石; Srp—蛇纹石

      Figure  2.   Microphotographs of the representative rocks in the Heishidun basic intrusive

      a-Gabbro; b-Olivine gabbro; Pl-Plagioclase; Aug-Augite; Ol-Olivine; Srp-Serpentine

      图  3   黑石墩基性岩TAS图解(a)和SiO2-K2O图解(b)

      Figure  3.   TAS(a) and SiO2 vs. K2O (b)diagram of the Heishidun basic intrusive

      图  4   黑石墩基性岩哈克图解(除εNd(t)值外,其他单位均为%)

      Figure  4.   Harker diagrams of the Heishidun basic rocks(All the other units are % except the εNd(t) value)

      图  5   黑石墩基性岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(据Sun and McDonough, 1989)

      Figure  5.   Chondrite-normalized REE patterns(a)and Primitive mantle-normalized spidergrams(b)of Heishidun basic rocks(after Sun and McDonough, 1989)

      图  6   黑石墩辉长岩锆石阴极发光图像及测点点号图(a)和U-Pb谐和图(b)

      Figure  6.   CL images and test point number (a) and U-Pb concordia plots(b) of zircons from Heishidun gabbro

      图  7   黑石墩基性岩MgO-Co图解(a)和MgO-Ni图解(b)

      Figure  7.   MgO-Co diagram(a) and MgO-Ni diagram(b)of the Heishidun basic rocks

      图  8   黑石墩基性岩Sm/Yb-Sm相关图解

      熔融曲线为尖晶石二辉橄榄岩(模式及熔体模式: ol 0.530+opx 0.270+cpx 0.170+spo.030 and ol 0.060+opx 0.280+ cpx 0.670+sp 0.110)(据Kinzler,1997)和石榴子石二辉橄榄岩(模式及熔体模式: ol 0.600+opx 0.200+cpx 0.100+gt 0.100 and ol 0.030+opx 0.160+cpx0.880+gt 0.090)(据Walter,1998); 矿物/基质分配系数以及DMM引自Mc Kenzie and O'Nions(1991, 1995); PM,N-MORB和E-MORB组成引自Sun and Mc Donough(1989); 每条曲线上的数字对应于给定地幔源区的部分熔融程度

      Figure  8.   Sm/Yb vs.Sm diagram of the Heishidun basic rocks

      Melt curves are drawn for spinel-lherzolite(with mode and melt mode of ol 0.530 + opx 0.270 + cpx 0.170 + sp 0.030 and ol 0.060+opx0.280+cpx0.670+ sp 0.110, respectively; after Kinzler, 1997) and for garnet-lherzolite(with mode and melt mode of ol 0.600+opx 0.200+cpx0.100+gt 0.100and ol 0.030+opx0.160+cpx 0.880+gt 0.090, respectively; after Walter, 1998); Mineral/matrix partition coefficients and DMM arefrom the compilation of Mc Kenzie and O'Nions(1991, 1995); PM, N-MORB and E-MORB compositions are from Sun and Mc Donough(1989); Tickmarks on each curve(or line)correspond to degrees of partial melting for a given mantle source

      图  9   黑石墩基性岩(87Sr/86Sr)i-εNd(t)图解

      其中数字表示地壳物质参与的比例,计算采用的参数Nd(10-6)、εNd(t)、Sr(10-6)和(87Sr/86Sr)i值如下: 软流圈地幔(DM)分别为1.2、+8、20和0.703;玄武岩分别为15、+8、200和0.704; 上地壳(UCC)分别为30、-12、250和0.740(据Jahn et al., 1999); 下地壳(LCC)分别为20、-15、230和0.708(据Wu et al., 2000)

      Figure  9.   (87Sr/86Sr)ivs. εNd(t)diagram of the Heishidun basic rocks

      The numbers indicate the percentages of participation of the crustal materials. The calculated parameters of Nd(10-6), εNd(t), Sr(10-6) and(87Sr/86Sr)iare1.2、+8、20、and 0.703 for asthenospheric mantle(DM); 15、+8、200and 0.704 for basalt; 30、-12、250and 0. 740 for upper continental crust(UCC) (after Jahn et al., 1999); 20、-15、230、0.708 for lower continental crust(LCC). All data derive from Wu et al. (2000a)

      图  10   主量及微量元素构造环境判别图解(a, 据Meschede, 1986;b, 据Pearce and Cann, 1973;c, 据Mullen, 1983;d, 据Wood et al., 1979)

      Figure  10.   Tectonic discriminative diagrams by major-and trace-elements (a, after Meschede, 1986;b, after Pearce and Cann, 1973;c, after Mullen, 1983;d, after Wood et al., 1979)

      表  1   黑石墩基性岩岩石地球化学数据(含量单位: 主量元素为%, 微量元素为10-6

      Table  1   Major elements (%) and trace elements(10-6)data of the Heishidun basic rocks

      下载: 导出CSV

      表  2   黑石墩辉长岩LA-ICP-MS锆石U-Pb同位素数据

      Table  2   LA-ICP-MS zircon U-Pb dating results of Heishidun gabbro

      下载: 导出CSV

      表  3   黑石墩基性岩锆石Lu-Hf同位素组成

      Table  3   Zircn Lu-Hf isotopic composition of Heishidun basic rocks

      下载: 导出CSV

      表  4   黑石墩基性岩的全岩Sr-Nd同位素组成

      Table  4   Whole-rock Sr-Nd isotopic compositions of Heishidun basic rocks

      下载: 导出CSV
    • Blichert-Toft J, Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X

      Bai Yunlai. 2000. Tectonic setting of the Ni-Cu mineralization system in Huangshan and Jingerquan, Xinjiang[J]. Acta Geologica Guansu, 9(2): 1-7(in Chinese with English abstract).

      Chen Shoude, Xu Xing. 2001. Study on the tectonic mapping of Xinjiang and its adjacent areas[J]. Xinjiang Geology, (1): 33-37(in Chinese with English abstract).

      Defant M J, Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6): 65-65.

      Deng Yufeng, Song Xieyan, Jie Wei, Cheng Songlin, Li Jun. 2011. Petrogenesis of the Huangshandong Ni-Cu sulfide-bearing mafic-ultramafic intrusion, northern Tianshan, Xinjiang: Evidence from major and trace elements and Sr-Nd isotope[J]. Acta Geologica Sinica, 85(9): 1435-1451. http://www.researchgate.net/publication/285455862_Petrogenesis_of_the_huangshandong_Ni-Cu_sulfide-bearing_mafic-ultramafic_intrusion_northern_tianshan_xinjiang_Evidence_from_major_and_trace_elements_and_Sr-Nd_isotope

      Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research, 102(B7): 14991-15019. doi: 10.1029/97JB00788

      Feng Guangyin, Liu Shen, Feng Caixia, Jia Dacheng, Zhong Hong, Yu Xiaofei, Qi Youqiang, Wang Tiao. 2011. Zircon U-Pb age, Sr-Nd-Hf isotope geochemistry and the petrogenesis of the ultramafic pluton in Hongqiling, Jiling Province[J]. Acta Petrologica Sinica, 27(6): 1594-1606(in Chinese with English abstract). http://www.ams.org/mathscinet-getitem?mr=175358

      Feng Yiming, Zhu Baoqing, Yang Junlu, Zhang Kaichun. 2002. Geotectonics and evolution of the eastern Tianshan Mountains: A brief description of the tectonic map of the eastern Tianshan Mountains at 1: 500000[J]. Xinjiang Geology, (4): 309-314(in Chinese with English abstract).

      Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton[J]. Nature, 432(7019): 892-897. doi: 10.1038/nature03162

      Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 4: 133-147. http://www.sciencedirect.com/science/article/pii/s0016703799003439

      Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y. 2002. Zircon geochemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8

      Gu Lianxing, Zhang Zunzhong, Wu Changzhi. 2007. Permian geology-metallogenic thermal events in Huangshan-Jingerquan area, East Tianshan: Mantle-derived magmatic intramagmatic invasion and its crustal effect[J]. Acta Petrologica Sinica, 23(11): 2869-2880(in Chinese with English abstract).

      Gu Liangxing, Zhang Zunzhong, Wu Changzhi, Wang Yinxi, Tang Junhua, Wang Chuansheng, Xi Aihua, Zheng Yuanchuan. 2006. Some problems on granites and verical growth of the contimental crast in the eastern Tianshan Mountains, UW China[J]. Acta Petrologica Sinica, 22(5): 1103-1120(in Chinese with English abstract). http://www.researchgate.net/publication/235353475_Some_problems_on_granites_and_vertical_growth_of_the_continental_crust_in_the_eastern_Tianshan_Mountains_NW_China

      Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Li Zonghuai. 2004. Age and geological significance of zircon SHRIMP U-Pb in the Mafic-ultramafic complex of Kalatongke and Huangshan, Xinjiang[J]. Chinese Science Bulletin, 49(22): 2324-2328(in Chinese). doi: 10.1360/csb2004-49-22-2324

      Hawkesworth C J, Gallagher K, Hergt J M, Mc Dermott F. 1993. Mantle and slab contribution in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 21: 175-204. doi: 10.1146/annurev.ea.21.050193.001135

      He Guoqi, Li Maosong, Liu Dequan. 1994. Palaeozoic Crustal Evolution and Mineralization in Xinjiang of China[M]. Urumchi: Xinjiang People's Publishing House(in Chinese).

      He Guoqi, Zhu Yongfeng. 2006. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions[J]. Geology in China, 33(3): 451-460(in Chinese with English abstract). http://www.researchgate.net/publication/285722400_Comparative_study_of_the_geology_and_mineral_resources_in_Xinjiang_China_and_its_adjacent_regions

      Hou Guangchun, Tang Hongfeng, Liu Congqiang. 2006. Geochemical characteristics and significance of Late Paleozoic volcanic rocks in the Jeluotage tectonic belt, East Tianshan[J]. Acta Petrologica Sinica, (5): 1167-1177(in Chinese with English abstract).

      Hou Kejun, Li Yanhe, Zhou Tianren, Qu Xiaonming, Shi Yuruo, Xie Guiqing. 2007. LA-MC-ICP-MS zircon Hf isotope analysis method and its geological application[J]. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). http://www.researchgate.net/publication/279905849_LA-MC-ICP-MS_technique_for_Hf_isotope_microanalysis_of_zircon_and_its_geological_applications_in_Chinese

      Hu Fangfang, Fan Hongrui, Yang Jinhui, Zhai Mingguo, Xie Liewen, Yang Yueheng, Liu Xioaming. 2007. Pentrogenesis of Gongjia gabbros-diorite in the Kunyushan area, Jiaodong Peninsula: Constraints from petro-geochemistry, zircon U-Pb dating and Hf isotopes[J]. Acta Petrologica Sinica, 23(2): 369-380(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702017.htm

      Hu Shixi, Guo Jichun, Gu Lianxing. 1990. Important position and geological characteristics of caledonian orogenic belt in the tectonic framework of the East Tianshan Mountains (E85-E95)[C]//Xinjiang Geological Sciences. Vol. 1. Beijing: Geological Publishing House, 32-45(in Chinese).

      Ishikawa T, Tera F. 1999. Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematic[J]. Geology, 27(1): 83-86. doi: 10.1130/0091-7613(1999)027<0083:TIDFCI>2.3.CO;2

      Jahn B M, Wu F Y, Hong D W. 1999. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from East Central Asia[C]//Kumar A, Bhaskar S(eds. ). Indian Academy of Science(Gopalan Festschrif Volume), 108.

      Ji Jinsheng, Tao Hongxiang, Yang Xingke. 1994. Geochemical characteristics of volcanic rocks in different tectonic settings in the eastern Tianshan Mountains[J]. Acta Petrologica et Mineralogica, 36(1): 1-16, 255, 17-28.

      Johnson K T M. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures[J]. Contributions to Mineralogy and Petrology, 133: 60-68. doi: 10.1007/s004100050437

      Johnson M C, Plank T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments[J]. Geochem. Geophys. Geosys., l: paper no. 1999GC000014.

      Kemp A I S, Hawkesworth C J. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 226: 144-162. doi: 10.1016/j.chemgeo.2005.09.018

      Kinzler R J. 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to midocean ridge basalt petrogenesis[J]. Journal of Geophysics Research, 102: 853-874. doi: 10.1029/96JB00988

      Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of Eastern Xinjiang, NW China[J]. Geological Review. (3): 304-322(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539163

      Li Jinyi, Song Biao, Wang Kezhuo, Li Yaping, Sun Guihua, Qi Deyi. 2006. Permian mafic-ultramafic complexes on the southern margin of the Tu-Ha Basin, East Tianshan Mountains: Geological records of vertical crustal growth in Central Asia[J]. Acta Geoscientica Sinica, (5): 424-446(in Chinese with English abstract). http://www.oalib.com/paper/1558770

      Liu Dequan. 1983. Plate tectonics and mineral distribution in Xinjiang[J]. Northwest Geology, 4(2): 1-12(in Chinese with English abstract).

      Liu Dequan, Tang Yanling, Zhou Ruhong. 2005. Copper and nickel deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 1-360(in Chinese).

      Liu S, Hu R Z, Gao S, Feng C X, Qi L, Zhong H, Xiao T F, Qi Y Q, Wang T, Coulson I M. 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance[J]. Chemical Geology, 255: 329-345. doi: 10.1016/j.chemgeo.2008.07.006

      Liu S, Hu R Z, Gao S, Feng C X, Feng G Y, Coulson I M, Li C, Wang C, Qi Y Q. 2010a. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Permian granodiorites and associated gabbros in the Songliao Block, NE China and implications for growth of juvenile crust[J]. Lithos, 114: 423-436. doi: 10.1016/j.lithos.2009.10.009

      Liu S, Su W C, Hu R Z, Feng C X, Gao S, Coulson I M, Wang T, Feng G Y, Tao Y, Xia Y. 2010b. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China[J]. Lithos, 114: 253-264. doi: 10.1016/j.lithos.2009.08.012

      Ma Ruishi, Shu Liangshu, Sun Jiaqi. 1997. Tectonic Evolution and Mineralization of the East Tianshan Mountains[M]. Beijing: Geological Publishing House, 1-202(in Chinese).

      Mao Yajing, Qin Kezhang, Tang Dongmei, Xue Shengchao, Feng Hongye, Tian Ye. 2014. The multistage magmatic emplacement and mineralization of the magma copper nickel sulfide deposit in the East Tianshan Mountains——Taking Mount Huangshan copper nickel deposit as an example[J]. Acta Petrologica Sinica, 30(6): 1575-1594(in Chinese with English abstract).

      Mao J W, Pirajno F, Zhang Z H, Chai F M, Wu H, Chen S P, Chen L S, Yang J M, Zhang C Q. 2008. Areview of t he Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens(Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 32(2/4): 184-203.

      Maury R C, Defant M J, Joron J L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths[J]. Nature, 360(6405): 661-663. doi: 10.1038/360661a0

      Mc Culloch M T, Gamble JA. 1991. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 102(3/4): 358-374.

      Mc Kenzie D P, O'Nions R K. 1995. The source regions of ocean island basalts. Journal of Petrology, 36: 133-159. doi: 10.1093/petrology/36.1.133

      Meen J K, Eggler D H, Ayers J C. 1989. Experimental evidence for very low solubility of rare-earth elements in CO2-rich fluids at mantle conditions[J]. Nature, 340(6231): 301-303. doi: 10.1038/340301a0

      Meng En, Liu Fulai, Liu Pinghua, Liu Chaohui, Yang Hong, Wang Fang, Shi Jianrong, Cai Jia. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidencefrom zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry[J]. Precambrian Research, 247: 92-109. doi: 10.1016/j.precamres.2014.03.017

      Mohr PA. 1987. Crustal Contamination in mafic Sheets: A summary[C]//Halls H C, Fahrig W C (eds. ). Mafic dyke Swarms. Special Publication-Geological Association of Canada, 34: 75-80.

      Münker C. 2000. The isotope and trace element budget of the Cambrian Devil River Arc System, New Zealand: Identification of four source components[J]. Journal of Petrology, 41: 759-788. doi: 10.1093/petrology/41.6.759

      Pan Guitang, Xiao Qinhui, Lu Songnian, Deng Jinfu, Feng Yiming, Zhang Kexing, Zhang Zhiyong, Wang Fangguo. 2009. Subdivision of tectonic units in China[J]. Geogogy in China, 36(1): 1-28(in Chinese with English abstract). http://www.researchgate.net/publication/284700316_Subdivision_of_tectonic_units_in_China

      Pearce J W, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343

      Pirajno F, Mao J, Zhang Z, Chai F. 2008. The association of mafic http://www.sciencedirect.com/science/article/pii/S1367912007001733

      ultram aficint rusions and A-t ypemagm atism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of newore deposits[J]. Journal of Asian Earth Sciences, 32(2/4): 165-183.

      Qin Kezhang, Ding Kuaishou, Xu Yingxia. 2007. Oer potential of protolishs and modes of Co-Ni occurrence in Tulaegen and Baishiquan Cu-Ni-Co deposits[J]. Mineral Deposits, 26(1): 1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200701000.htm

      Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifeng, Xiu Qunye. 2002. Geological background research on plate tectonic subdivision, evolution and mineralization of the East Tianshan Mountains[J]. Xinjiang Geology, (4): 302-307(in Chinese with English abstract).

      Qin K Z, Zhang L C, Xiao W J. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan mountains, north-western China[C]//Mao J W, Goldfarb R J, Selt-mann R(eds. ). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan: Proceedings Volume of the international Symposium of the IGCP-473 project in Urumqi, IAGOD Guidebook Series, 227-248.

      Qin K Z, Zhang L C, Xiao W J, Xu X W, Yan Z, Mao J W. 2003. Overview of major A u, Cu, Ni and Fe deposits and met allogenic evolution of the eastern Tiansh an Mount ains, Nort hwestern China[C]//Mao J W, Goldfarb R, Seltmann R, Wang D H, XiaoW J, Hart C(ed. ). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London: IAGODG Uidebook Series, 10: 227-248.

      Regelous M, Collerson, K D, Ewart A, Wendt J I. 1997. Trace element transport rates in subduction zones: Evidence from Th, Sr and Pb isotope data for Tonga-Kermadec arc lavas[J]. Earth Planetary Science Letter, 150: 291-302. doi: 10.1016/S0012-821X(97)00107-6

      Sajona F G, Maury R C, Pubellier M, Leterrier J, Bellon H, Cotten J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines)[J]. Lithos, 54(3/4): 173-206. http://www.sciencedirect.com/science/article/pii/S0024493700000190

      She Jianzhong, Yang Wanzhi, Feng Changli, Tian Jiangtao, Yang Zhen. 2016. Geochemical characteristics and tectonic significance of north magnesium-ironite magnesium rock in the west of east Tianshan Section, Xinjiang[J]. Xinjiang Geology, 34(3): 325-330(in Chinese with English abstract).

      She Jianzhong, Yang Wanzhi, Qu Xun, Jia Jian, Di Xiaochen. 2017. U-Pb ages, geochemical characteristics and geological significance of zircon from magnesiumiron magmatite in North Dacaotan, Eastern Tianshan Mountains[J]. Bulletion of Mineralogy, Petrology and Geochemistry, 36(1): 82-91(in Chinese with English abstract).

      Soderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3

      Sun S S, Mc Donough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. Geological Society Special Publication, London, 313-345.

      Tang Dongmei, Qin Kezhang, Sun He, Qi Liang, Xiao Qinhua, Su Benxun. 2009. PGE geochemical characteristics of the Tianyu magmatic Cu-Ni deposit in eastern Xinjiang and its indication for magmatic evolution and sulfide segregation[J]. Acta Geological Sinica, 83(5): 680-697(in Chinese with English abstract). http://www.researchgate.net/publication/285794259_PGE_geochemical_characteristics_of_Tianyu_magmatic_Cu-Ni_deposit_Implications_for_magma_evolution_and_sulfide_segregation

      Tang Zhongli, Yan Haiqing, Jiao Jiangang. 2007. Regional metallogemic control of small-intrusion-host Ni-Cu(PGE)ore deposits in China[J]. Earth Science Frontiers, 14(5): 92-102(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60038-4

      Taylor S R, Mc Lennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1-328.

      Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J]. Journal of Petrology, 39: 29-60. doi: 10.1093/petroj/39.1.29

      Wang Jingbin, Wang Yuwang, He Zhijun. 2006. Ore deposits as aguide to the tectonic evolution in the East Tianshan mountains, NW China[J]. Geology in China, 33(3): 461-469(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi200603002

      Wang Yuwang, Wang Jinbing, Wang Lijuan. 2010. Petrographical and lithogeochemical characteristics of the mafic-ultra-mafic complex related to Cu Ni-V Ti Fe composite mineralization[J]. Acta Petrologica Sinica, 26(2): 401-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201002006.htm

      Windley B F, Allen M B, Zhang C. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia[J]. Geology, 18: 128-131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2

      Wood D A, Tarneu J, Varet J, Saunders A N, Bouhault H, Joron J L, Treuil M, Cann J R. 1979. Geochemistry of basalts drills in the North Atlantic by IPOD Leg 49: Implications for mantle heterogeneity[J]. Earth Planetary Science Letters, 42: 77-97. doi: 10.1016/0012-821X(79)90192-4

      Wu F Y, Jahn B M, Wilde S A, Sun D Y. 2000. Phanerozoic continental crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 328: 89-113. doi: 10.1016/S0040-1951(00)00179-7

      Wu F Y, Simon A W, Zhang G L, Sun D Y. 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, (23): 781-797. http://www.sciencedirect.com/science/article/pii/S1367912003001147

      Wu F Y, Li X H, Zheng Y F, Gao S. 2007b. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).

      Wu Yuanbao, Zheng Yunfei. 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, (16): 1589-1604(in Chinese). doi: 10.1007/BF03184122

      Xiao Xuchang. 1995. Classification of ophiolite from the perspective of expansion rate[J]. Acta Petrologica Sinica, 11(supp. ): 10-23(in Chinese).

      Xiao Xuchang, Tang Yaoqing, Feng Yiming. 1992. Tectonics in the North Xinjiang and its Adjacent Area[M]. Beijing: Geological Publishing House(in Chinese).

      Xiao Wenjiao, Han Chunming, Yuan Chao, Chen Hanling, Sun Ming, Lin Shoufa, Li Zilong, Mao Qigui, Zhang Jien, Sun Shu, Li Jiliang. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleosslan Domain[J]. Acta Petrologica Sinica, 22(5): 1062-1076(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539172

      Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L, Sun S. 2008. Middle Cambrian to Permian subduction related accret ionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia[J]. Journal of Asian Earth Sciences, 32(2/4): 102-117.

      Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin. 2011. Zircon LA-ICP-MS U-Pb dating, elements, and Sr-Nd-Hf isotope geochemistry of the early Mesozoic mafic rock wall group in the East Kunlun orogenic belt[J]. Acta Petrolatica Sinica, 27(11): 3350-3364. http://d.old.wanfangdata.com.cn/Periodical_ysxb98201111016.aspx

      Yang Jinhui, Wu Fuyuan, Shao Jiyuan, Xie Liewen, Liu Xiaoming. 2006b. In-situ U-Pb dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou Formations in the Zhang-Xuan area, Northeast China[J]. Earth Science, 31(1): 71-80(in Chinese with English abstract).

      Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006a. A hybrid origin for the Qianshan A-type granite, northeast China Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89: 89-106. doi: 10.1016/j.lithos.2005.10.002

      You MinXin, Zhao Weizhang, Wang Yalei, Qian Bing, Jiang weizhang. 2017. East tianshan mountain huangshan south magnesium iron-super mafic intrusions zircon U-Pb age and magma evolution study[J]. Geology and Prospecting, 2017 does (5): 903-914. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201705007.htm

      Yang Wanzhi, Ren Yan, Tian Jiangtao, She Jianzhong, Yang Ganggang. 2017. The discovery of LuBei Cu-Ni sulfide Deposit in Eastern Tianshan, NW China and its significant[J]. Billetion of Mineralogy, Petrology and Geochemistry. 36(1): 112-120(in Chinese with English abstract).

      Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan District, eastern Xin jiang, northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 209(3/4): 233-257.

      Zhu Y F, Zhou J, Zeng, Y S, 2007. The Tianger(Bingd-aban)shear zone hosted gold deposit, West Tianshan, NW China: Petrographic and geochemical characteristics[J]. Ore Geology Reviews, 32(1/2): 337-365. http://www.sciencedirect.com/science/article/pii/S0169136806001302

      Zhang Z C, Guo S J. 2009. Zircon SHRIMP U-Pb dating of gabbro in the ophiolitic melange on the northern margin of Altun Mountains and its geological significance[J]. Journal of Petrology, 432(7019): 892-897.

      Zhang Zhicheng, Guo Zhaojie. 2007. Dating of gababi zircon U-PB from ophiolites in the northern margin of the Aljinshan Mountain and its geological significance[J]. Acta Petrosica Sinica, 23(7): 1683-1695.

      Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan District, eastern Xinjiang, northwest China: Implications for the tectonice volution of the Central Asian orogenic belt[J]. Chemical Geology, 209(3/4): 233-257.

      Zhao J H, Zhou M F. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 152: 27-47. doi: 10.1016/j.precamres.2006.09.002

      Zuo Guochao, Liang Guanglin, Chen Jun, Zheng Yong, Gao JunBao, Xing Dechao, Li Shaoxiong. 2006. Tectonic pattern and Evolution of late Paleozoic in Jeluotag area, East Tianshan, China[J]. Geological Bulletin of China, (supp. ): 48-57(in Chinese).

      白云来. 2000. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 9(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200002000.htm
      成守德, 徐新. 新疆及邻区大地构造编图研究[J]. 新疆地质, 2001, (1): 33-37. doi: 10.3969/j.issn.1000-8845.2001.01.006
      范亚洲, 王垚, 陈丹丽, 王子玺, 夏明哲. 2014. 新疆东天山黄山南基性-超基性岩体岩石学、矿物学研究[J]. 新疆地质, 32(3): 310-315. doi: 10.3969/j.issn.1000-8845.2014.03.005
      冯光英, 刘燊, 冯彩霞, 贾大成, 钟宏, 于晓飞, 齐有强, 王涛. 2011. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报, 27(6): 1594-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106003.htm
      冯益民, 朱宝清, 杨军录, 张开春. 2002. 东天山大地构造及演化——1: 50万东天山大地构造图简要说明[J]. 新疆地质, (4): 309-314. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204004.htm
      顾连兴, 张遵忠, 吴昌志. 2007. 东天山黄山-镜儿泉地区二叠纪地质-成矿热事件: 幔源岩浆内侵及其地壳效应[J]. 岩石学报, 23(11): 2869-2880. doi: 10.3969/j.issn.1000-0569.2007.11.017
      顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识[J]. 岩石学报, 22(5): 1103-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605005.htm
      韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 49(22): 2324-2328. doi: 10.3321/j.issn:0023-074X.2004.22.012
      何国琦, 李茂松, 刘德权. 1994. 中国新疆古生代地壳演化与成矿[M]. 乌鲁木齐: 新疆人民出版社.
      何国琦, 朱永峰. 2006. 中国新疆及其邻区地质矿产对比研究[J]. 中国地质, 33(3): 451-460. doi: 10.3969/j.issn.1000-3657.2006.03.001
      侯广顺, 唐红峰, 刘丛强. 2006. 东天山觉罗塔格构造带晚古生代火山岩地球化学特征及意义[J]. 岩石学报, 22(5): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605009.htm
      侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      胡芳芳, 范宏瑞, 杨进辉, 翟明国, 谢烈文, 杨岳衡, 柳小明. 2007. 鲁东昆嵛山地区宫家辉长闪长岩成因: 岩石地球化学、锆石U-Pb年代学与Hf同位素制约[J]. 岩石学报, (2): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702017.htm
      胡受奚, 郭继春, 顾连兴. 1990. 加里东造山带在东天山(E85-E95)构造格架中的重要地位及其地质特征[C]//新疆地质科学. 第一辑, 北京: 地质出版社, 32-45.
      姬金生, 陶洪祥, 杨兴科. 1994. 东天山中段不同构造环境火山岩地球化学特征[J]. 岩石矿物学杂志, (4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.001.htm
      李锦轶. 2004. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, (3): 304-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm
      李锦轶, 宋彪, 王克卓, 李亚萍, 孙桂华, 齐得义. 2006. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩: 中亚地区陆壳垂向生长的地质记录[J]. 地球学报, 27(5): 424-446. doi: 10.3321/j.issn:1006-3021.2006.05.006
      刘德权. 1983. 新疆板块构造与矿产分布[J]. 西北地质, 4(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198302000.htm
      刘德权, 唐延龄, 周汝洪. 2005. 中国新疆铜矿床和镍矿床[M]. 北京: 地质出版社, 1-360.
      马瑞士, 舒良树, 孙家齐. 1997. 东天山构造演化与成矿[M]. 北京: 地质出版社, 1-202.
      毛亚晶, 秦克章, 唐冬梅, 薛胜超, 冯宏业, 田野. 2014. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用——以黄山铜镍矿床为例[J]. 岩石学报, 30(6): 1575-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406005.htm
      潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20090101&flag=1
      秦克章, 丁奎首, 许英霞. 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 26(1): 1-11. doi: 10.3969/j.issn.0258-7106.2007.01.001
      秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区、演化与成矿地质背景研究[J]. 新疆地质, (4): 302-307. doi: 10.3969/j.issn.1000-8845.2002.04.002
      舍建忠, 杨万志, 冯长丽, 田江涛, 杨震. 2016. 新疆东天山西段路北镁铁-超镁铁岩地球化学特征及构造意义[J]. 新疆地质, 34(3): 325-330. doi: 10.3969/j.issn.1000-8845.2016.03.005
      舍建忠, 杨万志, 屈迅, 贾健, 邸晓辰. 2017. 东天山大草滩北镁铁超镁铁岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 36(1): 82-91. doi: 10.3969/j.issn.1007-2802.2017.01.010
      唐冬梅, 秦克章, 孙赫, 漆亮, 肖庆华, 苏本勋. 2009. 东疆天宇岩浆Cu-Ni矿床的铂族元素地球化学特征及其对岩浆演化、硫化物熔离的指示[J]. 地质学报, 83(5): 680-697. doi: 10.3321/j.issn:0001-5717.2009.05.009
      汤中立, 闫海卿, 焦建刚. 2007. 中国小岩体镍铜(铂族)矿床的区域成矿规律[J]. 地学前缘, 14(5): 92-102. doi: 10.3321/j.issn:1005-2321.2007.05.010
      王京彬, 王玉往, 何志军. 2006. 东天山大地构造演化的成矿示踪[J]. 中国地质, 33(3): 461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
      王玉往, 王京彬, 王莉娟. 2010. CuNi-VTiFe复合型矿化镁铁-超镁铁杂岩体岩相学及岩石地球化学特征: 以新疆北部为例[J]. 岩石学报, 26(2): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002006.htm
      吴福元, 李献华, 郑永飞, 高山. 2007b. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      肖序常, 汤耀庆, 冯益民, 1992. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社.
      肖序常. 1995. 从扩张速率试论蛇绿岩的类型划分[J]. 岩石学报, 11(增刊): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.001.htm
      肖文交, 韩春明, 袁超, 陈汉林, 孙敏, 林寿发, 厉子龙, 毛启贵, 张继恩, 孙枢, 李继亮. 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, (5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm
      熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm
      杨进辉, 吴福元, 邵济安, 谢烈文, 柳小明. 2006. 冀北张-宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素[J]. 地球科学, (1): 71-80. doi: 10.3321/j.issn:1000-2383.2006.01.010
      杨万志, 任燕, 田江涛, 舍建忠, 杨刚刚. 2017. 东天山路北铜镍矿的发现及其意义[J]. 矿物岩石地球化学通报, 36(1): 112-120. doi: 10.3969/j.issn.1007-2802.2017.01.013
      尤敏鑫, 张照伟, 王亚磊, 钱兵, 张江伟. 2017. 东天山黄山南镁铁-超镁铁质岩体锆石U-Pb年龄及岩浆演化过程探讨[J]. 地质与勘探, 53(5): 903-914. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201705007.htm
      张志诚, 郭召杰. 2007. 阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 23(7): 1683-1695. doi: 10.3969/j.issn.1000-0569.2007.07.014
      张柳毅, 李霓, Dejan PRELEVI. 2016. 橄榄石微量元素原位分析的现状及其应用[J]. 岩石学报, 32(6): 1877-1890. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201606020.htm
      左国朝, 梁广林, 陈俊, 郑勇, 高俊宝, 邢德超, 李绍雄. 2006. 东天山觉罗塔格地区夹白山一带晚古生代构造格局及演化[J]. 地质通报, (增刊): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1009.htm
    • 期刊类型引用(13)

      1. 马庆,王元伟,高永宝,刘明. 青海省玛多县夺儿贡玛地区地球化学特征与找矿方向. 西北地质. 2025(01): 178-185 . 百度学术
      2. 杨海涛,刘新伟,汪超,牛亮,胡西顺,门文辉,杨文刚. 蠎西寺沟斑岩-矽卡岩型钨钼矿物化探异常特征及找矿模型. 地质与勘探. 2022(05): 929-939 . 百度学术
      3. 白德胜,李水平,纵瑞,程华,齐勇攀,张爱玲,孙进,赵华奇. 豫西董家埝构造蚀变岩型银矿物化探异常特征及找矿模型. 地质与勘探. 2021(02): 241-253 . 百度学术
      4. 刘亮,王超,孙占营,张杰,马运超,赵相国,杨宇东. 青海多尔娘地区地层和岩体含矿性研究. 河南理工大学学报(自然科学版). 2021(06): 64-76 . 百度学术
      5. 王占彬,宋贺民,马庆,谢志远,李保飞,王凯. 河北省怀安县朱家洼矿区地球化学特征与找矿方向. 地质与勘探. 2020(01): 102-112 . 百度学术
      6. 刘亮,王超,孙占营,余长荣,赵相国. 综合物化探方法在青海珊旗根玛金锑矿点的运用. 科学技术与工程. 2020(04): 1337-1343 . 百度学术
      7. 李菲. 蟒西地区中酸性岩体地质特征及找矿潜力. 科学技术与工程. 2020(18): 7176-7182 . 百度学术
      8. 丁吉顺,陈伟,周恒,郭奇奇,孙渺,张祎. 西藏雄梅地区1:5万水系沉积物地球化学特征及找矿远景. 地质与勘探. 2019(01): 48-63 . 百度学术
      9. 张翔,戴霜,黄万堂,赵振斌,李鸿睿,王玉玺,刘博,吴茂先. 甘肃省玛曲县大水金矿原生金矿石的发现及意义. 地质与勘探. 2019(02): 484-495 . 百度学术
      10. 段吉学,刘江. 综合物化探在内蒙萤石多金属矿普查中的应用研究. 西北地质. 2019(03): 265-274 . 百度学术
      11. 王伟. 新疆托克逊县阿热塔格山Ⅱ区的物化探异常特征. 黑龙江科技大学学报. 2019(05): 546-551 . 百度学术
      12. 缪宇,宋文婷,何茂源,徐乐. 云南弥渡县云景地区多元地学信息集成及找矿模型. 地质与勘探. 2019(06): 1367-1378 . 百度学术
      13. Shi-hong Zhang,Ke-yan Xiao,Jian-ping Chen,Jie Xiang,Ning Cui,Xiao-nan Wang. Development and future prospects of quantitative mineral assessment in China. China Geology. 2019(02): 198-210 . 必应学术

      其他类型引用(0)

    图(10)  /  表(4)
    计量
    • 文章访问数:  2146
    • HTML全文浏览量:  842
    • PDF下载量:  3535
    • 被引次数: 13
    出版历程
    • 收稿日期:  2019-04-02
    • 修回日期:  2020-05-05
    • 网络出版日期:  2023-09-25
    • 刊出日期:  2021-08-24

    目录

    /

    返回文章
    返回
    x 关闭 永久关闭