• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

辽河坳陷大洼地区中生界火山岩储层特征及成藏模式

李洪楠, 高荣锦, 张海栋, 李子敬, 王贵文, 田志

李洪楠, 高荣锦, 张海栋, 李子敬, 王贵文, 田志. 辽河坳陷大洼地区中生界火山岩储层特征及成藏模式[J]. 中国地质, 2021, 48(4): 1280-1291. DOI: 10.12029/gc20210422
引用本文: 李洪楠, 高荣锦, 张海栋, 李子敬, 王贵文, 田志. 辽河坳陷大洼地区中生界火山岩储层特征及成藏模式[J]. 中国地质, 2021, 48(4): 1280-1291. DOI: 10.12029/gc20210422
LI Hongnan, GAO Rongjin, ZHANG Haidong, LI Zijing, WANG Guiwen, TIAN Zhi. Characteristics and hydrocarbon accumulation models of Mesozoic volcanic reservoirs in the Dawa area of Liaohe depression[J]. GEOLOGY IN CHINA, 2021, 48(4): 1280-1291. DOI: 10.12029/gc20210422
Citation: LI Hongnan, GAO Rongjin, ZHANG Haidong, LI Zijing, WANG Guiwen, TIAN Zhi. Characteristics and hydrocarbon accumulation models of Mesozoic volcanic reservoirs in the Dawa area of Liaohe depression[J]. GEOLOGY IN CHINA, 2021, 48(4): 1280-1291. DOI: 10.12029/gc20210422

辽河坳陷大洼地区中生界火山岩储层特征及成藏模式

基金项目: 

中国石油天然气股份有限公司重大科技专项“辽河油田千万吨稳产关键技术研究与应用” 2017E-16

详细信息
    作者简介:

    李洪楠, 男, 1988年生, 硕士, 工程师, 主要从事综合地质研究; E-mail: honeylee5599@126.com

  • 中图分类号: TE122.2

Characteristics and hydrocarbon accumulation models of Mesozoic volcanic reservoirs in the Dawa area of Liaohe depression

Funds: 

Major science and technology project of CNPC"Research and application of key technology of ten million tons stable production in Liaohe Oilfield" 2017E-16

More Information
    Author Bio:

    LI Hongnan, male, born in 1988, master, engineer, engaged in the study of comprehensive geology; E-mail: honeylee5599@126.com

  • 摘要:

    大洼地区毗邻大型生油洼陷—清水洼陷,多级断裂及多期不整合面构成复合油气输导体系,成藏条件优越。但本区火山岩储层岩性岩相复杂、喷发环境多变。为进一步明确储层发育特征及油气成藏主控因素,本次研究利用15口井107.73 m的岩心、270块薄片及测井资料综合分析,认为大洼地区Mz-Ⅰ段形成于水下喷发环境,发育溢流相玻质碎屑岩亚相玄武质火山角砾岩及溢流相熔岩亚相玄武岩;Mz-Ⅱ段形成于水上喷发环境,发育爆发相凝灰亚相流纹质凝灰岩及溢流相熔岩亚相安山岩。其中玄武质火山角砾岩储集性能最好,平均孔隙度19.3%,平均渗透率6.71×10-3 μm2,玄武岩物性最差,平均孔隙度9.2%,平均渗透率0.23×10-3 μm2。根据录测井及地震资料分析,认识到大洼地区中生界火山岩具有良好源储配置关系且发育多期次断裂及不整合面组成的复合油气输导体系。结合试油试采资料进一步确定油气藏的分布,明确成藏主控因素,建立油气成藏模式。研究表明,储层品质受控于岩性岩相、火山喷发环境及构造活动,油气成藏主要受控于源储配置关系及输导体系,油藏类型为构造-岩性复合型油藏,西侧近油源且近台安—大洼断层的有利岩性岩相带为有利勘探目标区。

    Abstract:

    The Dawa area is adjacent to the Qingshui large oil-generating sag, where the composite hydrocarbon migration system constituted by multi-stage faults and unconformities provides a favorable condition for hydrocarbon accumulation. However, the volcanic lithology and lithofacies are complex with changeable eruption environment in this area. In order to clarify the reservoir characteristics and the main controlling factors of hydrocarbon accumulation, based on 107.73 m core, 270 thin sections and logging data from 15 wells, the volcanic lithology and lithofacies are classified. It is suggested that the Mz-ⅠMember was formed in underwater eruption environment with overflow hyaloclastite subfacies basaltic volcanic breccia and overflow lava subfacies basalt. The Mz-Ⅱ Member was developed in abovewater eruption environment with explosive tuff subfacies rhyolitic tuff and overflow lava subfacies andesite. Among the volcanic lithofacies, the basaltic volcanic breccia shows the best physical property with porosity of 19.3% and permeability of 6.71×10-3μm2, and the basalt shows the worst physical property with porosity of 9.2% and permeability of 0.23×10-3μm2. Based on the logging and seismic data, it is recognized that the Dawa area possesses a favorable source-reservoir matching and composite hydrocarbon migration system constituted by multi-stage faults and unconformities. The hydrocarbon reservoir distribution is determined by production test data to definite the main controlling factors of hydrocarbon accumulation and establish accumulation models. The study shows that the reservoir quality is controlled by lithology, lithofacies, volcanic eruption environment and tectonic movement. The hydrocarbon accumulation is mainly controlled by source-reservoir configuration and migration system. The reservoir type is structural-lithologic composite reservoir. The favorable exploration target area is on the west side of the study area which develops favorable lithology and lithofacies and locates near oil source and Dawa fault. The west side of the study area and localities near oil source and Dawa fault are the priority prospects for exploration, where favorable lithology and lithofacies are developed.

  • 赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989陈郑辉等,2006毛景文等,2007郭春丽等,2007许建祥等,2008刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989张文兰等,2006王登红,2019杨斌等,2021秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981李建康,2012李建康等,2014王登红等,2017王成辉等,2019Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。

    赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007裴荣富和熊群尧,1999刘善宝等,2010)。

    图  1  赣南石雷钨锡矿地质简图
    Figure  1.  Simplified geological map of Shilei tungsten and tin deposits in the Southern Jiangxi Province

    石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。

    矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。

    表  1  ZKn11-11云英岩W、Sn、Li测试分析结果
    Table  1.  The W, Sn, Li analysis results of greisen samples of ZKn11-11
    下载: 导出CSV 
    | 显示表格

    (1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。

    图  2  石雷矿区钨锡锂多金属矿体特征
    a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿
    Figure  2.  Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining area
    a, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite

    (2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。

    本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-Al-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。

    图  3  石雷矿区11号勘探线简图
    Figure  3.  No.11 Sketch map of exploration line in the Shilei mining area
    表  2  石雷矿区云英岩中云母LA-ICP-MS原位分析结果
    Table  2.  LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area
    下载: 导出CSV 
    | 显示表格
    图  4  石雷矿区云英岩中云母的Fetot+Mn+Ti+Al-Mg-Li判别图解(据Guggenhim and Bailey, 1977)
    Figure  4.  Fetot+Mn+Ti+Al vs. Mg-Li discriminant diagram of the mica of greisen in the Shilei mining area (after Guggenhim and Bailey, 1977)

    云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018王正军等,2018张勇等,2020Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。

    随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。

    以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。

    总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019陈其慎等,2021王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。

    南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。

  • 图  1   西部凹陷构造分区图

    Figure  1.   Tectonic division of the Western Depression

    图  2   大洼地区中生界地层划分联井剖面

    Figure  2.   Well-connected profile of stratigraphic division of the Mesozoic in the Dawa area

    图  3   火山岩岩石类型

    a—玄武岩,W19-26井1977.7 m;b—玄武岩,气孔杏仁构造,斑晶绿泥石化,W603井2180.25 m;c—安山岩,W19-26井2388.98 m;d—安山岩,交织结构,W19-26井2390.98 m;e—玄武质火山角砾岩,W606井2029.35 m;f—玄武质火山角砾岩,砾石间碳酸盐及绿泥石充填,W603井2178.78 m;g—流纹质熔结凝灰岩,熔结凝灰结构,假流纹构造,ZG7井1906 m;h—流纹质复屑凝灰岩,复屑熔结结构,假流纹构造,铁质浸染,W51井1975.6 m

    Figure  3.   Types of volcanic rocks

    a-Basalt, well W19-26, 1977.7 m; b-Basalt, air pore and almond structure, chloritization in phenocryst, well W603, 2180.25 m; c-Andesite, well W19-26, 2388.98 m; d-Andesite, interwoven structure, well W19-26, 2390.98 m; e-Basaltic volcanic breccia, well W606, 2029.35 m; f-Basaltic volcanic breccia, gravels intervals filled with carbonate and chlorite, well W603, 2178.78 m; g-Rhyolitic fused tuff, fusion structure, pseudo rhyolite structure, well ZG7, 1906 m; h-Rhyolitic fragments tuff, fragments fusion structure, pseudo rhyolite structure, ferruginies dissemination, well W51, 1975.6 m

    图  4   火山岩储集空间类型

    a—角砾间残余孔,W19井2402.02 m;b—气孔,W7井1826.65 m;c—角砾间溶蚀孔,W7井1825.6 m;d—裂缝,W7井1821.05 m;e—安山岩气孔及基质溶蚀孔,W19-26井2389.98 m;f—凝灰岩晶内溶孔,W609井1991.70 m;g—片状及弯片状喉道,W603井2179.18 m;h—管束状喉道,W7井1815.75 m,扫描电镜

    Figure  4.   Types of storage space of volcanic

    a-Inter breccia residual pores, well W19, 2402.02 m; b-Air pores, well W7, 1826.65 m; c-Inter breccia dissolution pores, well W7, 1825.6 m; d-Fractures, well W7, 1821.05 m; e-Andesite, air pores and matrix dissolution pores, well W19-26, 2389.98 m; f-Tuff, intracrystal dissolution pores, well W609, 1991.70 m; g-Sheet throat and bent sheet throat, well W603, 2179.18 m; h-Tube shaped throat, well W7, 1815.75 m, scanning electron miscroscope

    图  5   研究区火山岩储层物性特征

    Figure  5.   Physical properties of volcanic rocks in the study area

    图  6   研究区不同类型火山岩储层物性特征

    Figure  6.   Physical properties of different types of volcanic rocks in the study area

    图  7   研究区玄武质火山角砾岩微观特征

    a—玻璃质冷凝边,W19井2401.55 m;b—玻璃质火山角砾,W19井2401.55 m;c—角砾间碳酸盐胶结物,W603井2178.78 m

    Figure  7.   Microcosmic characteristics of the basaltic volcanic breccia in the study area

    a-Glassy chilled border, well W19, 2401.55 m; b-Glassy volcanic breccia, well W19, 2401.55 m; c-Inter breccia carbonates cements, well W603, 2178.78 m

    图  8   暗色泥岩隔夹层

    Figure  8.   Dark mudstone sandwich

    图  9   研究区埋藏史及生烃史

    Figure  9.   Burial history and hydrocarbon generation history of the study area

    图  10   研究区源储配置关系及试油结果

    Figure  10.   Source-reservoir configuration and oil test result of the study area

    图  11   研究区油气运移通道

    Figure  11.   Oil and gas migration channels in the study area

    图  12   研究区火山岩油气成藏模式

    Figure  12.   Oil and gas accumulation model of volcanic rocks in the study area

    表  1   大洼地区中生界火山岩岩石分类

    Table  1   Classification of Mesozoic volcanic rocks in the Dawa area

    下载: 导出CSV
  • Chen Kongquan, Lu Jianlin, Zhang Xi, Bi Hailong. 2011. Volcanic reservoir features and exploration potential of Changling faulted depression in the southern Songliao Basin, China[J]. Geological Bulletin of China, 30(2/3): 228-234(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2011Z1008.htm

    Chen Zhenyan, Qiu Jintao, Wang Pujun, Li Pai, Zhang Peixian, Liu Xin, Hao Tao, Nie Guimin. 2011. Relationship between volcanic rocks and hydrocarbon accumulation during dominant period of basin formation in Liaohe Depression[J]. Acta Sedimentologica Sinica, 29(1): 798-808(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201104023.htm

    Einsele G. 2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget[M]. Berlin: Springer-verlag, 64-65.

    Feng Zhiqiang, Liu Jiaqi, Wang Pujun, Chen Shumin, Feng Zihui, Tong Ying. 2011. New oil and gas exploration field: Volcanic hydrocarbon reservoirs-enlightenment from the discovery of the large gas field in Songliao basin[J]. Chinese Journal of Geophysics, 54(2): 269-279(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWX201102003.htm

    Fu Qian. 2017. Status and prospect of igneous oil and gas exploration and development in China[J]. Oil Drilling & Production Technology, 39(1): 25-32(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGYQ200903008.htm

    Gao Pengcheng, Bian Weihua, Liu Xin, Chang Wenzong, Huang Yulong, Wang Yanquan, Geng Qi. 2015. Characteristics of volcanic rocks from Dongying Formation and their sealing effects in eastern depression of Liaohe Basin[J]. Global Geology, 34(2): 445-453(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201502020&dbcode=CJFD&year=2015&dflag=pdfdown

    Gao Xianzhi, Li Jianhai, Zou Zhiwen, Liu Feng. 2008. Effect of faults on the migration and accumulation of the petroleum in Dawa Oilfield, Liaohe Subfasin[J]. Geoscience, 22(4): 613-618(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200804018.htm

    Jiang Hongfu, Shi Yongmin, Zhang Yuguang, Fan Zhengping, Shi Feng, Kou Yu, Wang Lei. 2009. Potential of global volcanics-hosted oil and gas resoruces[J]. Resources & Industries, 11(3): 20-22(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZIYU200903006.htm

    Jin Chunshuang, Qiao Dewu, Dan Weining. 2012. Meso-Cenozoic volcanic rock distribution and reservoir characteristics in the Bohai Bay Basin[J]. Oil & Gas Geology, 33(1): 19-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201201004.htm

    Kawamoto T. 2001. Distribution and alteration of the volcanic reservoir in the Minami-Nagaoka gas field[J]. Japan. Ass. Petroleum Tech., 66(1): 46-55. doi: 10.3720/japt.66.46

    Liu Guoping, Zeng Lianbo, Lei Maosheng, Zu Kewei, Wang Fei, Liu Qi, Li Wenfang. 2016. Fracture development characteristics and main controlling factors of the volcanic reservoir in Xujiaweizi fault depression[J]. Geology in China, 43(1): 329-337(in Chinese with English abstract). http://www.researchgate.net/publication/311435124_Fracture_development_characteristics_and_main_controlling_factors_of_the_volcanic_reservoir_in_Xujiaweizi_fault_depression

    Liu Jiaqi, Meng Fanchao, Cui Yan, Zhang Yutao. 2010. Discussion on the formation mechanism of volcanic oil and gas reservoirs[J]. Acta Petrologica Sinica, 26(1): 1-13(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201001001

    Liu Shiwen. 2001. Characteristics and favorable reservoir forming conditions of igneous reservoir in Liaohe Basin[J]. Special Oil and Gas Reservoirs, 8(3): 6-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ200103001.htm

    Liu Zongli, Wang Zhuwen, Liu Jinghua, Zhao Shuqing, Ou Weiming. 2018. Logging response characteristics and reservoir significance of volcanic rocks in the Eastern Sag of Liaohe Depression[J]. Journal of Jilin University(Earth Science Edition), 48(1): 285-297(in Chinese with English abstract). http://www.researchgate.net/publication/326127780_Logging_Response_Characteristics_and_Reservoir_Significance_of_Volcanic_Rocks_in_the_Eastern_Sag_of_Liaohe_Depression

    Luo Jinglan, Sadoon Morad, Liang Zhigang, Zhu Yushuang. 2012. Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill, western depression of Liaohe basin China[J]. AAPG Bulletin, 33(1): 19-36. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020413014991.html

    Meng Weigong, Chen Zhenyan, Zhang Bin, Hu Yingjie, Zhang Ziming, Hui Yuting. 2015. Key technology for exploration of igneous reservoirs in Liaohe Basin[J]. China Petroleum Exploration, 20(3): 45-57(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201503006.htm

    Mu Deliang, Meng Weigong, Li Cheng, Li Xiaoguang, Liu Jinyun, Wang Zhanzhong. 2009. Structural style and hydrocarbon accumulation in the steep slope zone of faulted basin: An example from the western sag of the Liaohe Depression, the Bohai Bay Basin[J]. Oil & Gas Geology, 30(5): 635-642(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200905015.htm

    Ren Zuowei, Jin Chunshuang. 1999. Reservoirs spacefeature of the volcanic rocks in the area of Well Wa-609, Liaohe depression[J]. Petroleun Exploration and Development, 26(4): 54-56(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199904014.htm

    Sruoga P, Rubinstein N. 2007. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina[J]. AAPG Bulletin, 91: 115-129. doi: 10.1306/08290605173

    Sun Fenjin, Luo Xia, Qi Jingshun, Shao Mingli, Zeng Fuying, Jiang Xiaohua, Hao Cuiguo. 2010. Controlling effects of volcanic rocks upon gas pools[J]. Oil & Gas Geology, 31(2): 180-186(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103347092.html;jsessionid=19D9C8B5673E8A936EC60E117FE5658E

    Tang Liangjie, Huang Taizhu, Qiu Haijun, Cui Zehong, Wan Guimei, Jin Xianmei, Yang Suju. 2012. The tectonic characteristics and hydrocarbon accumulation of late hercynian volcanic rocks in the Tahe Area, Tarim Basin. [J]. Acta Geologica Sinica, 86(8): 1188-1197(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201208003.htm

    Wang Luo, Li Jianghai, Shi Yongmin, Zhao Yue, Ma Yinsheng. 2015. Review and prospect of global volcanic reservoirs[J]. Geology in China, 42(5): 1610-1620(inChinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252102747.html

    Wang Weifeng, Gao Bin, Wei Pingsheng, Pan Jianguo, Li Fei, Yi Zejun. 2012. Research of volcanic reservoir characters and hydrocarbon accumulation model[J]. Progress in Geophysics, 27(6): 2478-2491(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201206023.htm

    Wang Yanquan, Hu Daqian, Cai Guogang, Wang Pujun, Yu Xiaojian. 2013. Characteristics and controlling factors of Cenozoic volcanic reservoirs in Liaohe Basin, NE, China[J]. Acta Petrolei Sinica, 34(5): 896-904(in Chinese with English abstract). http://www.researchgate.net/publication/285966567_Characteristics_and_controlling_factors_of_Cenozoic_volcanic_reservoirs_in_Liaohe_Basin_NE_China

    Yuan Dan, Xi Aihua, Liu Wen, Xiong Yixue, Zhou Hui, Liu Jiangyu. 2013. Characteristics of volcanic explosive facies and factors influencing reservoir performance in Dixi area, Junggar Basin[J]. Geolgy in China, 40(2): 414-422(in Chinese with English abstract). http://www.researchgate.net/publication/292791748_Characteristics_of_volcanic_explosive_facies_and_factors_influencing_reservoir_performance_in_Dixi_area_Junggar_Basin

    Zhang Bin. 2013. Characteristics and hydrocarbon accumulation patterns of volcanic rocks in the Yixian Formation Zhangqiang depression, southern Songliao Basin[J]. Oil & Gas Geology, 34(4): 508 -515(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201304015.htm

    Zhang Jiangtao, Wu Zhiping, Lü Mingzhen, Yu Qianqian. 2014. Tectonic activity difference and its control on hydrocarbon accumulation of volcanic rock reservoir in eastern and western sags of Liaohe Depression[J]. Geoscience, 28(5): 1032-1040(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201405020.htm

    Zhao Wenzhi, Zou Caineng, Li Jianzhong, Feng Zhiqiang, Zhang Guangya, Hu Suyun, Kuang Lichun, Zhang Yan. 2009. Comparative study on volcanic hydrocarbon accumulations in western and eastern China and its significance[J]. Petroleum Exploration and Development, 36(1): 1-11(in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60106-3

    Zheng Man, Wu Xiaozhi, Li Jianzhong, Chen Xiaoming, Zheng Min. 2013. Characteristics of volcanic reservoir and process of petroleum entrapment in Santanghu Basin[J]. Chinese Journal of Geology, 48(4): 1246-1257(in Chinese with English abstract). http://www.researchgate.net/publication/286687122_Characteristics_of_volcanic_reservoir_and_process_of_petroleum_entrapment_in_Santanghu_Basin

    Zhou Dongli, Wang Yong, Zhang Xiubo. 2010. Analysis on favorable reservoir and accumulation model of igneous reservoir[J]. Petroleum Geology and Recovery Efficiency, 17(5): 6-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201005004.htm

    陈孔全, 陆建林, 张玺, 毕海龙. 2011. 松辽盆地南部长岭断陷火山岩储层的特征与勘探潜力[J]. 地质通报, 30(2/3): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1008.htm
    陈振岩, 仇劲涛, 王璞珺, 李湃, 张培先, 刘鑫, 郝涛, 聂桂民. 2011. 主成盆期火山岩与油气成藏关系探讨[J]. 沉积学报, 29(1): 798-808. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201104023.htm
    冯志强, 刘嘉麒, 王璞珺, 陈树民, 冯子辉, 童英. 2011. 油气勘探新领域: 火山岩油气藏——松辽盆地大型火山岩气田发现的启示[J]. 地球物理学报, 54(2): 269-279. doi: 10.3969/j.issn.0001-5733.2011.02.001
    付茜. 2017. 中国火成岩油气勘探开发现状及展望[J]. 石油钻采工艺, 39(1): 25-32 https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201701007.htm
    高鹏程, 边伟华, 刘鑫, 常文宗, 黄玉龙, 王岩泉, 庚琪. 2015. 辽河盆地东部坳陷东营组火山岩特征及油气封盖作用[J]. 世界地质, 34(2): 445-453. doi: 10.3969/j.issn.1004-5589.2015.02.020
    高先志, 李建海, 邹志文, 刘峰. 2008. 断裂对辽河西部凹陷大洼油田油气成藏和分布的控制作用[J]. 现代地质, 22(4): 613-618. doi: 10.3969/j.issn.1000-8527.2008.04.018
    姜洪福, 师永民, 张玉广, 范正平, 师锋, 寇彧, 王磊. 2009. 全球火山岩油气资源前景分析[J]. 资源与产业, 11(3): 20-22. doi: 10.3969/j.issn.1673-2464.2009.03.006
    金春爽, 乔德武, 淡伟宁. 2012. 渤海湾盆地中、新生代火山岩分布及油气藏特征[J]. 石油与天然气地质, 33(1): 19-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201201004.htm
    刘国平, 曾联波, 雷茂盛, 祖克威, 王菲, 刘奇, 李文芳. 2016. 徐家围子断陷火山岩储层裂缝发育特征及主控因素[J]. 中国地质, 43(1): 329-337. doi: 10.3969/j.issn.1000-3657.2016.01.025
    刘嘉麒, 孟凡超, 崔岩, 张玉涛. 2010. 试论火山岩油气藏成藏机理[J]. 岩石学报, 26(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001003.htm
    刘诗文. 2001. 辽河断陷盆地火山岩油气藏特征及有利成藏条件分析[J]. 特种油气藏, 8(3): 6-9. doi: 10.3969/j.issn.1006-6535.2001.03.002
    刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 2018. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 48(1): 285-297. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801023.htm
    孟卫工, 陈振岩, 张斌, 胡英杰, 张子明, 回宇婷. 2015. 辽河坳陷火成岩油气藏勘探关键技术[J]. 中国石油勘探, 20(3): 45-57. doi: 10.3969/j.issn.1672-7703.2015.03.006
    慕德梁, 孟卫工, 李成, 李晓光, 柳锦云, 王占忠. 2009. 断陷盆地陡坡带构造样式与油气聚集——以渤海湾盆地辽河坳陷西部凹陷陡坡带为例[J]. 石油与天然气地质, 30(5): 635-642. doi: 10.3321/j.issn:0253-9985.2009.05.014
    任作伟, 金春爽. 1999. 辽河坳陷洼609井区火山岩储集层的储集空间特征[J]. 石油勘探与开发, 26(4): 54-56. doi: 10.3321/j.issn:1000-0747.1999.04.014
    孙粉锦, 罗霞, 齐景顺, 邵明礼, 曾富英, 姜晓华, 郝翠果. 2010. 火山岩体对火山岩气藏的控制作用[J]. 石油与天然气地质, 31(2): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201002010.htm
    汤良杰, 黄太柱, 邱海峻, 崔泽宏, 万桂梅, 金仙梅, 杨素举. 2012. 塔里木盆地塔河地区海西晚期火山岩构造特征与油气成藏[J]. 地质学报, 86(8): 1188-1197. doi: 10.3969/j.issn.0001-5717.2012.08.002
    王洛, 李江海, 师永民, 赵越, 马寅生. 2015. 全球火山岩油气藏研究的历程与展望[J]. 中国地质, 42(5): 1610-1620. doi: 10.3969/j.issn.1000-3657.2015.05.028
    王伟锋, 高斌, 卫平生, 潘建国, 李飞, 易泽军. 2012. 火山岩储层特征与油气成藏模式研究[J]. 地球物理学进展, 27(6): 2478-2491. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201206023.htm
    王岩泉, 胡大千, 蔡国刚, 王璞君, 于小健. 2013. 辽河盆地东部凹陷火山岩储层特征与主控因素[J]. 石油学报, 34 (5): 896-904. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305010.htm
    袁丹, 郗爱华, 刘文, 熊益学, 周慧, 刘豇瑜. 2013. 准噶尔盆地滴西地区火山岩爆发相特征及储集性能影响因素[J]. 中国地质, 40(2): 414-422. doi: 10.3969/j.issn.1000-3657.2013.02.005
    张斌. 2013. 松辽盆地南部张强凹陷义县组火山岩储层特征及成藏规律[J]. 石油与天然气地质, 34(4): 508-515. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304015.htm
    张江涛, 吴智平, 吕明针, 于倩倩. 2014. 辽河坳陷东、西部凹陷构造活动差异性对火山岩油气成藏的控制作用[J]. 现代地质, 28(5): 1032-1040. doi: 10.3969/j.issn.1000-8527.2014.05.019
    赵文智, 邹才能, 李建忠, 冯志强, 张光亚, 胡素云, 匡立春, 张研. 2009. 中国陆上东西部地区火山岩成藏比较研究与意义[J]. 石油勘探与开发, 36(1): 1-11. doi: 10.3321/j.issn:1000-0747.2009.01.001
    郑曼, 吴晓智, 李建忠, 陈晓明, 郑民. 2013. 三塘湖盆地胡搜含有油藏特征与成藏过程分析[J]. 地质科学, 48(4): 1246-1257.
    周动力, 汪勇, 张秀波. 2010. 火成岩有利储层与油气成藏分析[J]. 油气地质与采收率, 17(5): 6-10. doi: 10.3969/j.issn.1009-9603.2010.05.002
  • 期刊类型引用(3)

    1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
    2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
    3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术

    其他类型引用(1)

图(12)  /  表(1)
计量
  • 文章访问数:  2346
  • HTML全文浏览量:  825
  • PDF下载量:  3560
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-12-24
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-08-24

目录

/

返回文章
返回
x 关闭 永久关闭