Re–Os and Ar–Ar dating of the Dahu Au (Mo) deposit in the Xiaoqinling area, West Henan: Constraint on its metallogenetic stages
-
摘要:研究目的
位于华北克拉通南缘的东秦岭钼矿带是全球第二大钼矿带,其北缘蕴含有著名的小秦岭造山型金矿田。近年来通过地质调查工程的实施,在小秦岭大湖金(钼)矿区深部发现具有工业意义的钼矿化,并已开始开采钼矿,限定其成矿期次,有助于研究金钼成矿规律。
研究方法本文基于小秦岭地区危机矿山深部找矿工作,研究了金钼深部成矿模式,分析了辉钼矿Re–Os和钾长石40Ar/39Ar同位素定年在划分成矿期次中的作用。
研究结果来自S35矿脉的6件辉钼矿样品Re–Os模式年龄介于(192.3±2.9)~(223.4±3.2)Ma,等时线年龄为(214.9±5.2)Ma(MSWD=0.77),来自F5矿脉中钾长石晶体40Ar/39Ar坪年龄为(95.22±1.16)Ma,其等时线年龄为(95.10±4.57)Ma。
结论辉钼矿年龄代表了印支期钼矿化事件,钾长石年龄反映存在燕山中期新的构造−岩浆−热事件,这期热事件对于金钼矿床的成矿活动可能有积极意义,叠加改造了印支期的钼矿化事件。结合手标本和BSE图像分析结果,认为大湖金(钼)矿区与金钼矿化相关的热事件应不低于两期。
-
关键词:
- 钼矿化 /
- Re–Os同位素年龄 /
- 40Ar/39Ar同位素年龄 /
- 印支期 /
- 燕山期 /
- 矿产勘查工程 /
- 大湖金(钼)矿床 /
- 小秦岭 /
- 豫西
创新点:利用矿脉中辉钼矿Re–Os年龄和钾长石Ar–Ar年龄,解决了大湖金(钼)矿床成矿时代的争议,并认为燕山中期的构造−岩浆−热事件叠加改造了印支期的钼矿化事件,有效划分了小秦岭地区成矿期次,为浅部寻金深部探钼的找矿模式提供了年代学证据。
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveThe East Qinling molybdenum belt which located in the North China craton is the second largest Mo belt in the world, among which occur the most famous orogenic gold deposits of the Xiaoqinling. In recent years, through the implementation of geological survey engineering, molybdenum mineralization with industrial significance has been found in the deep of Dahu Au (Mo) deposit from Xiaoqinling area, and molybdenum ore mining has begun. Through the constraint on its metallogenetic stages, it is helpful to study the Au−Mo metallogenic regularity.
MethodsIn this paper, based on the Crisis Mine deep−seated deposits prospecting in Xiaoqinling area, we studied the metallogenic model of deep Au (Mo) deposit, and analyzed the role of molybdenite Re–Os and K–feldspar 40Ar/39Ar isotope dating in the classification of metallogenic stages.
ResultsSix molybdenite samples from the S35 ore vein yield Re–Os isotopic isochron age of (214.9±5.2) Ma (MSWD=0.77), with model ages ranging from (192.3±2.9) Ma to (223.4±3.2) Ma. K–feldspar samples from F5 ore vein yield Ar–Ar weighted plateau age of (95.22±1.16) Ma and the isochron age of (95.10±4.57) Ma.
ConclusionsMolybdenite age suggests that the Mo mineralization in S35 vein occurred in Indosinian period, and K–feldspar age indicates a new tectono–magmatic–thermal event during the Middle Yanshanian, and this hydrothermal event may contribute to metallogenic activity of Au (Mo) deposit, which superimposed the molybdenum mineralization events of Indosinian. Combined with the results of hand samples and BSE images analysis, it is concluded that there are at least two episodes of hydrothermal event related to Au (Mo) mineralization in Dahu Au (Mo) ore district.
Highlights:Using the Re–Os age of molybdenite and the Ar–Ar age of K–feldspar in the ore veins, the dispute about the metallogenic age of the Dahu Au (Mo) deposit is resolved. The superposition of a new tectono–magmatic–thermal event during the Mid–Yanshanian is considered to modify the molybdenum mineralization events of Indosinian, which effectively divides the mineralization stages in the Xiaoqinling area and provides the chronological evidence for the prospecting model of shallow gold and deep molybdenum exploration.
-
1. 引 言
秦岭造山带是中国金属矿产资源的重要基地之一(图1a),现已发现金属矿床400多处,在已探明的矿床中,金、钼、铅、锌等矿种具有比较明显的优势(姚书振等, 2002;石永红等,2022)。其中东秦岭是中国著名的钼矿带,也是世界最重要的钼矿带之一(李诺等, 2007; Zhu et al., 2011)。小秦岭位于东秦岭北部(图1b),是中国第二大产金地,先后发现金、钼、银等多金属矿产,被国内外学者共识为造山型金矿田(Kerrich et al., 2000; Mao et al., 2002; 蒋少涌等, 2009)。前人在小秦岭地区开展了大量的工作,对脉石矿物(如石英、绢云母、钾长石等)和辉钼矿、独居石等矿物进行定年研究,获得了以下成矿时代数据:元古代(薛良伟等, 1999)、古生代(李华芹等, 1993)、印支期(李诺等, 2008; Li et al., 2011)、燕山期(李厚民等, 2007; 强山峰等, 2013)。关于成矿时代仍存在争议,但学者们普遍认为小秦岭金矿田的形成是长期、多期次、多阶段地质作用的综合产物。然而上述这些分散的矿床其年代学研究影响了成矿演化研究和成矿期次划分。
a—秦岭造山带的构造格架和小秦岭地体位置;b—小秦岭造山型金(钼)矿床地质和分布特征及大湖矿床的位置Figure 1. Regional geological map of the Dahu Au (Mo) deposit (modified from Chen Yanjing, 2006; Li et al., 2011)a–Tectonic framework of the Qinling Orogen and the location of the Xiaoqinling terrane; b–Geological characteristics of orogenic Au (Mo) deposits of the Xiaoqinling and the location of the Dahu deposit大湖金(钼)矿床位于小秦岭金矿田北缘,产于近东西向韧性剪切带中,属于典型的断控脉状矿床(倪智勇等, 2009),曾是小秦岭金矿田的5个大型金矿之一(Chen et al., 1998)。近年来随着采矿深度加大,部分含金石英脉在深部转变为辉钼矿化石英脉,在海拔500 m以下还发现了多条独立的辉钼矿−石英脉,目前探获钼资源量已达中型规模。这为利用辉钼矿的Re–Os同位素定年直接厘定钼矿化时限提供了可能。F5断裂带和F35韧性剪切带是矿区主要的控矿构造,被认为是不同期次活动的断裂(陈莉, 2006; 陈莉等, 2010),但是还没有公认的构造−成矿时间。本文通过对大湖金(钼)矿床F5矿脉和F35断裂带所控制的S35矿脉成岩成矿年龄的界定,划分出不同期次的构造−岩浆−热事件。本文旨在解决小秦岭矿田成矿时代问题,建立秦岭造山带的构造演化与成矿关系,以期在小秦岭地区寻找深部钼矿提供理论依据。
2. 区域地质和矿床地质
小秦岭矿田呈东西向带状展布,北界为三宝断裂,南界为小河断裂,是秦岭造山带最北缘的华熊地块刚性基底推覆体的重要组成部分(陈衍景, 2006; 倪智勇等, 2009; Zhao et al., 2011)。矿田内出露的地层主要为太古宙太华群变质岩(Ni et al., 2012)。矿田内广泛发育断裂构造,并以近东西向韧性剪切带为主,在中生代经历了先挤压后伸展垮塌的过程(张进江等, 2003),岩浆作用被认为贯穿矿田整个地质演化历史(蒋少涌等, 2009)。
大湖金(钼)矿床属于小秦岭金矿田北矿带,矿区处于五里村背斜的北翼之山前地带。矿区北部出露第四系,南部出露基岩。矿区出露地层主要为早前寒武纪太华群闾家峪组中上部的一套由混合片麻岩、黑云斜长片麻岩、条带状混合岩、斜长角闪片麻岩等构成的岩石组合。矿区岩浆岩主要发育有太古宙混合花岗伟晶岩、燕山期辉绿岩、中生代花岗斑岩等基性—酸性侵入岩(倪智勇等, 2008)。矿区内广泛发育断裂构造,主要控矿构造为一组近东西向展布、向北缓倾的韧性剪切带及断层。自北向南依次标识为F1、F8、F7、F35、F5、F6。断裂总体上近平行排列,具多期活动、由压性经压扭性向张扭性断裂转化的特点(图2)。其中F5是矿区主要的控矿构造,控制着多数含金石英脉和金矿体的产出(杨继红等, 2007);F35韧性剪切带控制着S35石英−辉钼矿脉的产状。S35为规模较大的辉钼矿−石英脉,金矿化较弱(图2)。
图 2 大湖金(钼)矿床地质图(据Li et al., 2011修改)a—500 m标高地质简图,标明着赋矿石英脉的位置和F5、F35、F7断裂带之间的关系;b—A–A’剖面图展示F5断裂带中含金和含钼矿体分布状态Figure 2. Geological map of the Dahu Au (Mo) deposit (modified from Li et al., 2011)a–Simplified geological map at the 500 m level, showing the occurrences of ore–bearing quartz veins and their relation to faults such as F5, F7 and S35; b–Cross–section A–A’, showing the distribution of Au– and Mo–dominated orebodies hosted by F5矿石中的钼矿物主要为辉钼矿,据其产状不同可分为两种:一是呈自形—半自形粒状、团块状和放射状集合体分布于乳白色纯净的块状石英脉中(图3a);二是呈粉末状、浸染状、薄膜状分布于钾长石中(图3b)。其他金属矿物主要有黄铁矿、黄铜矿、方铅矿等,脉石矿物主要有石英、钾长石、斜长石、方解石、绢云母、绿泥石等。
图 3 大湖金(钼)矿床岩相学特征a—团块状辉钼矿分布于石英脉中;b—浸染状辉钼矿分布于钾长石中;c—含松散状钼矿石的石英-黄铁矿石;d—钾化蚀变带内出现薄层的辉钼矿;e—与辉钼矿共生的钾长石;f—辉钼矿集合体分布在钾长石中;Py—黄铁矿;Mo—辉钼矿;Qtz—石英;Kfs—钾长石Figure 3. Petrography characteristics of the Dahu Au (Mo) deposita–Crumbed molybdenite in quartz vein; b–Disseminated molybdenite in K−feldspar; c–Quartz-pyrite ore including loose molybdenum ore; d–Thin layers of molybdenite in the potassic alteration zone; e–K-feldspar overgrowth with molybdenite; f–Molybdenite aggregation in K-feldspar; Py–Pyrite; Mo–Molybdenite; Qtz–Quartz; Kfs–K−feldspar3. 样品及测试方法
3.1 辉钼矿Re–Os同位素定年
本次研究采用的6件辉钼矿样品均来自S35号矿脉,具体采样位置见图2b,分别从样品S35-007、S35-008、S35-009、S35-012、S35-013中选出。矿石类型为石英−黄铁型,内含有松散状辉钼矿矿石(图3c)。所有样品送至河北省区域地质矿产调查研究所实验室进行辉钼矿单矿物挑选。选出的辉钼矿单矿物在显微镜下检查,纯度大于99%、晶体无氧化、无污染。Re–Os同位素测试分析在国家地质实验测试中心Re–Os同位素实验室完成,样品的化学处理流程和质谱测定等分析方法可参考杜安道等(1994)。
3.2 钾长石40Ar/39Ar同位素定年
本次研究所采样品为F5矿脉中新生钾长石晶体,井下可见钾化蚀变带内出现薄层的辉钼矿化(图3d),手标本见图3e,镜下可见钾长石晶体中辉钼矿出现(图3f),钾长石样品重15.49 mg,在中国原子能科学院49-2反应堆B4通道进行快中子照射30 h,快中子通量为2.5×1013 n/(cm2·s),用于中子通量监测的标准样品为国际标样Bern4M,年龄取值为18.7 Ma。年龄计算中的衰变常数取Steiger and Jäger(1977)的建议值,λ=5.543×10−10 a−1。样品测试工作在中国科学院地质与地球物理研究所40Ar/39Ar实验室进行。样品装入石英样品管中,在250℃温度条件下加热去气3~5 d,直至系统本底达到测量要求。测量样品投入双真空炉的钽坩埚中,按设定温度由750℃升温至1450℃,步长约30~100℃,每个阶段熔融时间10 min。每个温度阶段释放出的气体经由两个SAES Zr-Al泵(NP10)纯化,纯化后的气体引入MM5400惰性气体质谱仪中进行Ar同位素测定。样品同位素分析采用英国GV公司MM5400静态惰性气体质谱仪,分析方法可参考He et al. (2006)和Shi et al. (2014)。
4. 分析结果
4.1 Re−Os同位素年龄
获得的6件辉钼矿Re–Os同位素测试结果列于表1。根据公式t=1/λ[(1+187Os/187Re)]其中,λ(187Re衰变常数)=1.666×10−11 a−1,计算得到模式年龄。计算模式年龄的不确定度,还包括衰变常数的不确定度(1.02%),置信水平95%。由于Re和187Os在辉钼矿亚晶粒(微米级)范围内出现了失耦现象,即放射性成因187Os的迁移使Re和187Os在空间上不再保持连接(杜安道等, 2007),在数据处理时予以合理取舍。Re–Os同位素分析测试的结果(表1)表明,大湖金(钼)矿中辉钼矿的模式年龄为(192.3±2.9)~(223.4±3.2)Ma,辉钼矿Re含量介于(485±5)×10−9~(1990±16)×10−9,Re与187Os含量变化较协调。图4中辉钼矿的Re–Os等时线年龄为(214.9±5.2)Ma(MSWD=0.77)。等时线年龄与模式年龄很接近,说明测试结果是可信的(张思明等, 2011)。
表 1 大湖金(钼)矿床辉钼矿Re–Os同位素测年数据Table 1. Re–Os isotope data of molybdenites in the Dahu Au (Mo) deposit原样名 样重/g Re/10−9 C普Os/10−9 187Re/10−9 187Os/10−9 模式年龄/Ma 测值 误差 测值 误差 测值 误差 测值 误差 测值 误差 S35-008 0.07022 1002 8 0.0323 0.0023 629.7 5.3 2.279 0.019 216.9 3.1 S35-007 0.02775 485 5 0.1098 0.0074 305.0 3.4 0.988 0.018 194.2 4.5 S35-008 0.04595 1035 9 0.0426 0.0025 650.3 5.6 2.335 0.022 215.2 3.3 S35-009 0.20069 1111 9 0.1384 0.0020 698.1 5.6 2.604 0.023 223.4 3.2 S35-012 0.03127 905 8 0.0570 0.0079 569.1 5.3 1.827 0.016 192.3 2.9 S35-013 0.08465 1990 16 0.0814 0.0022 1251.1 10.1 4.501 0.036 215.5 3.0 4.2 40Ar/39Ar同位素年龄
样品F5-004钾长石的40Ar–39Ar同位素测年分析结果列于表2,样品经过了22个阶段的分步加热,加热温度区间为750~1450℃。其中在1230~1450℃的温度范围内的8个加热阶段所获得的视年龄之间的差异极小,释放出的39Ar约占各温度阶段释放出的总39Ar量的60.30%。采用加权平均计算其坪年龄为(95.22±1.16)Ma,采用线性回归计算其等时线年龄为(95.10±4.57)Ma(图5),年龄结果具有良好的一致性。
表 2 大湖金(钼)矿床钾长石40Ar–39Ar阶段升温年龄分析结果Table 2. Results of 40Ar–39Ar step-heating dating of K-feldspar in the Dahu Au (Mo) deposit温度/℃ 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 40Ar*/39Ark 40Ar*/% 39Ark/% 年龄/Ma(±2σ) 750 45.88686 0.09939 0.14585 2.796694 6.09 0.13 23.7±11.0 840 18.50686 0.03110 0.05433 2.454568 13.26 0.41 20.8±3.7 890 34.22425 0.01072 0.04086 22.150356 64.72 1.91 179.7±2.9 920 46.30595 0.00520 0.04285 33.643726 72.65 3.94 266.4±3.4 950 11.94427 0.03280 0.01887 6.370618 53.33 1.51 53.6±1.3 1040 7.58016 0.01399 0.00315 6.649467 87.72 2.01 55.9±0.5 1080 6.61393 0.00265 0.00062 6.431189 97.24 2.75 54.1±0.5 1110 6.99281 0.00482 0.00066 6.798917 97.23 3.61 57.1±0.5 1130 6.45763 0.00552 0.00094 6.181301 95.72 2.82 52.0±0.5 1140 7.46603 0.00300 0.00074 7.247358 97.07 4.09 60.8±0.5 1160 8.05913 0.00325 0.00096 7.774168 96.46 4.08 65.1±0.5 1170 6.25936 0.00796 0.00066 6.063206 96.87 2.54 51.0±0.4 1190 9.20474 0.00147 0.00134 8.809144 95.70 5.20 73.6±0.6 1210 9.85899 0.00210 0.00141 9.443653 95.79 4.70 78.8±0.6 1230 10.76914 0.00238 0.00155 10.309731 95.73 5.31 85.9±0.6 1250 11.62351 0.00304 0.00172 11.115128 95.63 5.47 92.4±0.8 1280 12.52454 0.00180 0.00179 11.996324 95.78 8.56 99.6±0.9 1310 12.15080 0.00107 0.00176 11.630633 95.72 12.37 96.6±0.9 1340 11.94156 0.00113 0.00171 11.436564 95.77 14.67 95.0±0.8 1370 11.83086 0.00143 0.00166 11.341123 95.86 11.42 94.3±0.9 1400 12.00702 0.00565 0.00186 11.457699 95.42 2.06 95.2±0.7 1450 12.33680 0.03253 0.00302 11.448060 92.79 0.44 95.1±1.4 从图5中可以看出,在本次研究中所获得的钾长石40Ar/39Ar坪年龄谱图上,在低于1230℃温度范围内出现Ar同位素组成变化,指示矿物颗粒边缘发生了一定量的Ar丢失而引起视年龄的波动(Faure, 1998)。在1230~1450℃温度区间内的视年龄构成了平坦的坪年龄谱,说明矿物内部的Ar同位素组成稳定,边缘的Ar丢失没有影响到矿物内部。指示所测矿物钾长石在95 Ma左右形成之后没有经历高于其封闭温度的热扰动,故所测年龄值即为钾长石的结晶年龄。
5. 讨 论
5.1 印支期钼矿化事件
大规模成矿或大爆发式成矿通常是在一定特殊地球动力学环境中的产物(毛景文等, 1999)。秦岭地区在晚三叠世便经历了这样特殊的构造转换时期,自东向西由洋陆俯冲体制向陆陆碰撞体制转变的过程,属于陆陆碰撞造山作用的初始阶段(陈衍景, 2010),于印支期最终完成对接拼合,形成了统一的中国大陆,并由此转入陆内变形,形成一系列的铜−金−钼多金属矿床(卢欣祥等, 2008)。在这次构造−岩浆活动中,位于秦岭北缘的小秦岭地区随之发生了一系列的成矿作用,自从印支期的黄龙铺热液碳酸岩脉型钼矿床报道以来(黄典豪等, 1994),印支期的钼矿化作用越来越受到重视。前人在华北克拉通南缘造山型矿床中获得了大量的印支期成矿信息,较精确的有:小秦岭大湖金钼矿床辉钼矿的Re–Os等时线年龄为(218±41)Ma(李诺等, 2008)、Re–Os模式年龄为(223.0±2.8)~(232.9±2.7)Ma(李厚民等, 2007)、独居石的U–Th–Pb等时线年龄为(216±5)Ma(Li et al., 2011),东桐峪金矿床的碱性长石Rb–Sr等时线年龄为208.2 Ma(王秀璋等, 1992),东秦岭上宫金矿早阶段矿物Rb–Sr等时线年龄为(242±11)Ma,石英40Ar/39Ar年龄为(222.83±24.91)Ma(Chen et al., 2008)。
本次研究所测得的S35矿脉中辉钼矿Re–Os等时线年龄为(214.9±5.2)Ma,此年龄暗合于扬子陆块与华北—秦岭联合大陆间的碰撞起始时间230~200 Ma。此期间发生了自东向西拉链式缝合(陈衍景, 2010),近东西向叠加的S35矿脉很有可能是本次构造运动的产物。
5.2 燕山期构造-岩浆-热事件
秦岭印支期成矿作用是中国东部中生代成矿作用的先导和开始,奠定了中国东部中生代成矿大爆发的基础(卢欣祥等, 2008)。随后整个中国东部在燕山期经历了大规模的岩石圈拆沉作用,导致岩石圈减薄、软流圈物质上涌(张旗等, 2009)。区域上,燕山期是华北克拉通南缘的主要成矿期(邱庆伦等, 2008),对应的地球动力学背景主要有两期构造−岩浆事件,一是侏罗纪—白垩纪相交时期(~140 Ma),中国东部发生了构造体制的大转换,由近EW向构造体制转换为受古太平洋板块向欧亚板块下俯冲控制的NE—NNE向构造体制(毛景文等, 2005);二是早白垩世中晚期(130~110 Ma),受中国东部岩石圈减薄作用的影响,华北克拉通南缘发生了大规模伸展及变质核杂岩构造。伸展作用伴随岩石圈减薄、构造体制大转折和岩石圈大规模拆沉作用。太古代变质核的隆升及大规模岩浆侵位,地幔流体大规模参与成矿作用(Mao et al., 2008)。该期次构造−岩浆事件在小秦岭地区造成了大规模的金矿化和钼矿化,如小秦岭泉家峪金(钼)矿床中辉钼矿的Re–Os模式年龄为(129.1±1.6)Ma和(130.8±1.5)Ma(李厚民等, 2007),小秦岭金矿Q875脉黑云母40Ar/39Ar坪年龄为(128.3±0.3)Ma(王义天等, 2002),东秦岭金堆城钼矿床的辉钼矿Re–Os年龄为140 Ma左右(黄典豪等, 1994; 杜安道等, 1994),陕西石家湾斑岩钼矿辉钼矿的Re–Os等时线年龄为(145.4±2.1)Ma(赵海杰等, 2013)。由于空间上关系密切,认为这些金矿床与文峪、娘娘山等偏铝质黑云母花岗岩岩浆期后热液活动有关,如文峪岩体为(138.4±2.5)Ma,娘娘山岩体(141.7±2.5)Ma(毛景文等, 2005),金堆城花岗岩体锆石U–Pb年龄为(143.7±3.0)Ma(焦建刚等, 2010),石家湾钾长花岗斑岩锆石U–Pb年龄为(141.44±0.59)Ma(赵海杰等, 2010a),黄龙铺地区花岗斑岩和辉绿岩锆石U–Pb年龄分别为(131±1)Ma和(129±2)Ma(赵海杰等, 2010b)。
从前人研究来看,钾化蚀变在成矿过程中扮演着重要角色(Zhao et al., 2021)。本次研究的样品为F5矿脉中的钾长石晶体,其Ar–Ar坪年龄为(95.22±1.16)Ma,代表了燕山期的一次构造−岩浆−热事件。作为小秦岭金矿田大型的重要控矿构造之一,推测F5矿脉具有多期活动的特点(杨继红等, 2007)。
5.3 成矿期次讨论
为更加深入地揭示矿床本质,前人对不同类型矿床的矿石矿物(如辉钼矿、锡石等)和围岩(如锆石、云母等矿物)进行成岩成矿年龄的测试,获得了更为详实的数据,对构造−岩浆−热事件期次的划分具有重要意义(Huang et al., 2019; Huang et al., 2020; Qiao et al., 2021; Tang et al., 2021; Zhang et al., 2021)。本文通过对辉钼矿和钾长石进行了不同的测试,从分析结果来看,大湖金(钼)矿床存在两期构造−岩浆−热事件,其中后期构造活化事件发生在燕山期。Li et al.(2011)在对大湖金钼矿床F7断裂带中的独居石进行U–Th–Pb年代学研究时发现,与辉钼矿共生的热液独居石年龄为(216±5)Ma,后期的独居石年龄点落在混合线上,指出这些代表了后期扰动。本文对此期扰动事件给出了年龄范围<125 Ma,没有给出确定的时限,本研究成果可能证实了这一叠加改造事件。
6. 结 论
大湖金(钼)矿床S35矿脉中6件辉钼矿Re–Os模式年龄介于(192.3±2.9)~(223.4±3.2)Ma,辉钼矿的等时线年龄为(214.9±5.2)Ma(MSWD=0.77),表明钼矿化发生在印支期。F5矿脉中钾长石晶体40Ar/39Ar坪年龄为(95.22±1.16)Ma,其等时线年龄为(95.10±4.57)Ma,推测在燕山中期有一次新的构造−岩浆−热事件,既对研究区重要控矿构造F5断裂带的活动时限进行了约束,也说明在大湖金(钼)矿床至少发生两期构造−岩浆−热事件,燕山期构造−岩浆−热事件叠加改造印支期的钼矿化活动。
致谢: 野外工作得到了河南省地质矿产勘查院王杏村、李孝奇等支持,测试工作得到了陈郑辉博士、贺怀宇研究员的支持,与王瑜教授的讨论对论文帮助很大,在此一并致谢!
-
图 1 大湖金(钼)矿床区域地质图(据陈衍景, 2006; Li et al., 2011修改)
a—秦岭造山带的构造格架和小秦岭地体位置;b—小秦岭造山型金(钼)矿床地质和分布特征及大湖矿床的位置
Figure 1. Regional geological map of the Dahu Au (Mo) deposit (modified from Chen Yanjing, 2006; Li et al., 2011)
a–Tectonic framework of the Qinling Orogen and the location of the Xiaoqinling terrane; b–Geological characteristics of orogenic Au (Mo) deposits of the Xiaoqinling and the location of the Dahu deposit
图 2 大湖金(钼)矿床地质图(据Li et al., 2011修改)
a—500 m标高地质简图,标明着赋矿石英脉的位置和F5、F35、F7断裂带之间的关系;b—A–A’剖面图展示F5断裂带中含金和含钼矿体分布状态
Figure 2. Geological map of the Dahu Au (Mo) deposit (modified from Li et al., 2011)
a–Simplified geological map at the 500 m level, showing the occurrences of ore–bearing quartz veins and their relation to faults such as F5, F7 and S35; b–Cross–section A–A’, showing the distribution of Au– and Mo–dominated orebodies hosted by F5
图 3 大湖金(钼)矿床岩相学特征
a—团块状辉钼矿分布于石英脉中;b—浸染状辉钼矿分布于钾长石中;c—含松散状钼矿石的石英-黄铁矿石;d—钾化蚀变带内出现薄层的辉钼矿;e—与辉钼矿共生的钾长石;f—辉钼矿集合体分布在钾长石中;Py—黄铁矿;Mo—辉钼矿;Qtz—石英;Kfs—钾长石
Figure 3. Petrography characteristics of the Dahu Au (Mo) deposit
a–Crumbed molybdenite in quartz vein; b–Disseminated molybdenite in K−feldspar; c–Quartz-pyrite ore including loose molybdenum ore; d–Thin layers of molybdenite in the potassic alteration zone; e–K-feldspar overgrowth with molybdenite; f–Molybdenite aggregation in K-feldspar; Py–Pyrite; Mo–Molybdenite; Qtz–Quartz; Kfs–K−feldspar
表 1 大湖金(钼)矿床辉钼矿Re–Os同位素测年数据
Table 1 Re–Os isotope data of molybdenites in the Dahu Au (Mo) deposit
原样名 样重/g Re/10−9 C普Os/10−9 187Re/10−9 187Os/10−9 模式年龄/Ma 测值 误差 测值 误差 测值 误差 测值 误差 测值 误差 S35-008 0.07022 1002 8 0.0323 0.0023 629.7 5.3 2.279 0.019 216.9 3.1 S35-007 0.02775 485 5 0.1098 0.0074 305.0 3.4 0.988 0.018 194.2 4.5 S35-008 0.04595 1035 9 0.0426 0.0025 650.3 5.6 2.335 0.022 215.2 3.3 S35-009 0.20069 1111 9 0.1384 0.0020 698.1 5.6 2.604 0.023 223.4 3.2 S35-012 0.03127 905 8 0.0570 0.0079 569.1 5.3 1.827 0.016 192.3 2.9 S35-013 0.08465 1990 16 0.0814 0.0022 1251.1 10.1 4.501 0.036 215.5 3.0 表 2 大湖金(钼)矿床钾长石40Ar–39Ar阶段升温年龄分析结果
Table 2 Results of 40Ar–39Ar step-heating dating of K-feldspar in the Dahu Au (Mo) deposit
温度/℃ 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 40Ar*/39Ark 40Ar*/% 39Ark/% 年龄/Ma(±2σ) 750 45.88686 0.09939 0.14585 2.796694 6.09 0.13 23.7±11.0 840 18.50686 0.03110 0.05433 2.454568 13.26 0.41 20.8±3.7 890 34.22425 0.01072 0.04086 22.150356 64.72 1.91 179.7±2.9 920 46.30595 0.00520 0.04285 33.643726 72.65 3.94 266.4±3.4 950 11.94427 0.03280 0.01887 6.370618 53.33 1.51 53.6±1.3 1040 7.58016 0.01399 0.00315 6.649467 87.72 2.01 55.9±0.5 1080 6.61393 0.00265 0.00062 6.431189 97.24 2.75 54.1±0.5 1110 6.99281 0.00482 0.00066 6.798917 97.23 3.61 57.1±0.5 1130 6.45763 0.00552 0.00094 6.181301 95.72 2.82 52.0±0.5 1140 7.46603 0.00300 0.00074 7.247358 97.07 4.09 60.8±0.5 1160 8.05913 0.00325 0.00096 7.774168 96.46 4.08 65.1±0.5 1170 6.25936 0.00796 0.00066 6.063206 96.87 2.54 51.0±0.4 1190 9.20474 0.00147 0.00134 8.809144 95.70 5.20 73.6±0.6 1210 9.85899 0.00210 0.00141 9.443653 95.79 4.70 78.8±0.6 1230 10.76914 0.00238 0.00155 10.309731 95.73 5.31 85.9±0.6 1250 11.62351 0.00304 0.00172 11.115128 95.63 5.47 92.4±0.8 1280 12.52454 0.00180 0.00179 11.996324 95.78 8.56 99.6±0.9 1310 12.15080 0.00107 0.00176 11.630633 95.72 12.37 96.6±0.9 1340 11.94156 0.00113 0.00171 11.436564 95.77 14.67 95.0±0.8 1370 11.83086 0.00143 0.00166 11.341123 95.86 11.42 94.3±0.9 1400 12.00702 0.00565 0.00186 11.457699 95.42 2.06 95.2±0.7 1450 12.33680 0.03253 0.00302 11.448060 92.79 0.44 95.1±1.4 -
[1] Chen Li. 2006. Characteristic of Ore–forming Fluid and Ore Genesis of Dahu Gold Deposit, in Xiaoqinling Gold Area[D]. Beijing: China University of Geoscience (Beijing), 1–97 (in Chinese with English abstract).
[2] Chen Li, Mao Jingwen, Ye Huishou. 2010. Ore–forming fluids and ore genesis of the Dahu gold deposit in the Xiaoqinling gold field[J]. Sedimentary Geology and Tethyan Geology, 30(2): 103−107 (in Chinese with English abstract).
[3] Chen Yanjing. 2006. Orogenic–type deposits and their metallogenic model and exploration potential[J]. Geology in China, 33(6): 1181−1196 (in Chinese with English abstract).
[4] Chen Yanjing. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, central China[J]. Geology in China, 37(4): 854−865 (in Chinese with English abstract).
[5] Chen Y J, Guo G J, Li X. 1998. Metallogenic geodynamic background of gold deposits in granite–greenstone terrains of North China Craton[J]. Science in China (Series D), 41(2): 113−120. doi: 10.1007/BF02932429
[6] Chen Y J, Pirajno F, Qi J P. 2008. The Shanggong gold deposit, Eastern Qinling Orogen, China: Isotope geochemistry and implications for ore genesis[J]. Journal of Asian Earth Sciences, 33: 252−266. doi: 10.1016/j.jseaes.2007.12.002
[7] Du Andao, He Hongliao, Yin Ningwan, Zou Xiaoqiu, Sun Yali, Sun Dezhong, Chen Shaozhen, Qu Wenjun. 1994. A study on the Rhenium–Osmium geochronometry of molybdenites[J]. Acta Geologica Sinica, 68(4): 339−347 (in Chinese with English abstract).
[8] Du Andao, Qu Wenjun, Wang Denghong, Li Houming, Feng Chengyou, Liu Hua, Ren Jing, Zeng Fagang. 2007. Subgrain–size decoupling of Re and 187Os within molybdenite[J]. Mineral Deposits, 26(5): 572−580 (in Chinese with English abstract).
[9] Faure G. 1998. Isotope geochronology and its applications to geology[J]. Earth Science Frontiers, 5(1/2): 17−39.
[10] He H Y, Wang X L, Zhou Z H, Jin F, Wang F, Yang L K, Ding X, Boven A, Zhu R X. 2006. 40Ar/39Ar dating of Lujiatun Bed (Jehol Group) in Liaoning, northeastern China[J]. Geophysical Research Letters, 33: L04303.
[11] Huang Dianhao, Wu Chengyu, Du Andao, He Hongliao. 1994. Re–Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Mineral Deposits, 13(3): 221−230 (in Chinese with English abstract).
[12] Huang Y G, Xiong C L, Jia X C, Yang X J, Luo G. 2019. Zircon U–Pb ages of the two–periods magmatism from the Xiuwacu Mo–W–Cu deposit, northwest Yunnan, China[J]. China Geology, 3: 391−392.
[13] Huang Y, Ren M H, Liang W, Li G M, Heilbronn K, Dai Z W, Wang Y Y, Zhang L. 2020. Origin of the Oligocene Tuolangla porphyry–skarn Cu–W–Mo deposit in Lhasa terrane, southern Tibet[J]. China Geology, 3: 369−384.
[14] Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, Zhao Haixiang, Hou Minglan. 2009. Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different tectonic settings[J]. Acta Petrologica Sinica, 25(11): 2727−2738 (in Chinese with English abstract).
[15] Jiao Jiangang, Tang Zhongli, Qian Zhuangzhi, Yuan Haichao, Yan Haiqing, Sun Tao, Xu Gang, Li Xiaodong. 2010. Metallogenic mechanism, magma source and zircon U–Pb age of Jinduicheng granitic porphyry, East Qinling[J]. Earth Science—Journal of China University of Geosciences, 35(6): 1011−1022 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.114
[16] Kerrich R, Goldfarb R, Groves D, Garwin S. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China (Series D), 43(Supp): 1−68.
[17] Li Houmin, Ye Huishou, Mao Jingwen, Wang Denghong, Chen Yuchuan, Qu Wenjun, Du Andao. 2007. Re–Os dating of molybdenites from Au (–Mo) deposits in Xiaoqinling gold ore district and its geological significance[J]. Mineral Deposits, 26(4): 417−424 (in Chinese with English abstract).
[18] Li Huaqin, Liu Jiaqi, Wei Lin. 1993. The Chronological Study of Fluid Inclusion and Its Geological Application in Hydrothermal Deposit[M]. Beijing: Geological Publishing House (in Chinese).
[19] Li N, Chen Y J, Fletcher I R, Zeng Q T. 2011. Triassic mineralization with Cretaceous overprint in the Dahu Au–Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U–Th–Pb geochronology[J]. Gondwana Research, 20: 543−552. doi: 10.1016/j.gr.2010.12.013
[20] Li Nuo, Chen Yanjing, Zhang Hui, Zhao Taiping, Deng Xiaohua, Wang Yun, Ni Zhiyong. 2007. Molybdenum deposits in East Qinling[J]. Earth Science Frontiers, 14(5): 186−198 (in Chinese with English abstract).
[21] Li Nuo, Sun Yali, Li Jing, Xue Liangwei, Li Wenbo. 2008. Molybdenite Re–Os isotope age of the Dahu Au–Mo deposit, Xiaoqinling and the Indosinian mineralization[J]. Acta Petrologica Sinica, 24(4): 810−816 (in Chinese with English abstract).
[22] Lu Xinxiang, Li Mingli, Wang Wei, Yu Zaiping, Shi Yongzhi. 2008. Indosinian movement and metallogenesis in Qinling orogenic belt[J]. Mineral Deposits, 27(6): 762−773 (in Chinese with English abstract).
[23] Mao Jingwen, Hua Renmin, Li Xiaobo. 1999. A preliminary study of large–scale metallogenesis and large clusters of mineral deposits[J]. Mineral Deposits, 18(4): 291−299 (in Chinese with English abstract).
[24] Mao Jingwen, Xie Guiqing, Zhang Zuoheng, Li Xiaofeng, Wang Yitian, Zhang Changqing, Li Yongfeng. 2005. Mesozoic large–scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169−188 (in Chinese with English abstract).
[25] Mao J W, Goldfarb R J, Zhang Z W, Xu W Y, Qiu Y M, Deng Jun. 2002. Gold deposits in the Xiaoqinling–Xiong’ershan region, Central China[J]. Mineralium Deposita, 37(3): 306−325.
[26] Mao J W, Xie G Q, Bierlein F, Qü W J, Du A D, Ye H S, Pirajno F, Li H M, Guo B J, Li Y F, Yang Z Q. 2008. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 72: 4607−4626. doi: 10.1016/j.gca.2008.06.027
[27] Ni Zhiyong, Li Nuo, Guan Shenjin, Zhang hui, Xue Liangwei. 2008. Characteristics of fluid inclusions and ore genesis of the Dahu Au–Mo deposit in the Xiaoqinling gold field, Henan Province[J]. Acta Petrologica Sinica, 24(9): 2058−2068 (in Chinese with English abstract).
[28] Ni Zhiyong, Li Nuo, Zhang Hui, Xue Liangwei. 2009. Sr–Nd–Pb isotope constraints on the source of ore–forming elements of the Dahu Au–Mo deposit, Henan province[J]. Acta Petrologica Sinica, 25(11): 2823−2832 (in Chinese with English abstract).
[29] Ni Z Y, Chen Y J, Li N, Zhang H. 2012. Pb–Sr–Nd isotope constraints on the fluid source of the Dahu Au–Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting[J]. Ore Geology Reviews, 46: 60−67. doi: 10.1016/j.oregeorev.2012.01.004
[30] Qiang Shanfeng, Bi Shijian, Deng Xiaodong, Guo Lianqiao, Li Jianwei. 2013. Monazite U–Th–Pb ages of the Qinnan gold deposits, Xiaoqinling district: Implications for regional metallogenesis and tectonic setting[J]. Earth Science—Journal of China University of Geosciences, 38(1): 43−56 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.005
[31] Qiao G B, Wu Y Z, Liu T. 2021. Zircon U–Pb age of pegmatite veins in Dahongliutan lithium deposit, western Kunlun[J]. China Geology, 4: 185−187.
[32] Qiu Qinglun, Yan Changhai, Chen Ruibao, Lu Shuwei. 2008. The geodynamic settings of Yanshanian large–scale metallogenic pulses in Xiaoqinling–Xiong’ershan area[J]. Contributions to Geology and Mineral Resources Research, 23(4): 281−286 (in Chinese with English abstract).
[33] Shi G H, Lei W Y, He H Y, Ng Y N, Liu Y, Liu Y X, Yuan Y, Kang Z J, Xie G. 2014. Superimposed tectono–metamorphic episodes of Jurassic and Eocene age in the jadeite uplift, Myanmar, as revealed by 40Ar/39Ar dating[J]. Gondwana Research, 26(2): 464−474. doi: 10.1016/j.gr.2013.08.007
[34] Shi Yonghong, Wang Yong, Chen Bailin, Tan Renwen, Gao Yun, Shen Jinghui. 2022. Characteristics of silicon-calcium surface ore-controlling in Fengtai ore−concentration areas, West Qinling Mountains: Examples from Qiandongshan Pb−Zn deposit[J]. Geology in China, 49(1): 226–240 (in Chinese with English abstract).
[35] Steiger R H, Jäger E. 1977. Subcommision on geochronology: Conventionon the use of decay constants in geo– and cosmochronology[J]. Earth and Planetary Science Letters, 36: 359−362. doi: 10.1016/0012-821X(77)90060-7
[36] Tang Y, Liu Y P, Wang P, Tang W Q, Qin Y D, Gong X D, Wang D B, Wang B D. 2021. A new understanding of Demala Group complex in Chayu Area, southeastern Qinghai–Tibet Plateau: Evidence from zircon U–Pb and mica 40Ar/39Ar dating[J]. China Geology, 4: 77−94.
[37] Wang Xiuzhang, Cheng Jingping, Zhang Baogui, Fan Wenling, Bai Zhenghua, Liang Huaying. 1992. Transformation Type Gold Deposits of China[M]. Beijing: Science Press (in Chinese).
[38] Wang Yitian, Mao Jingwen, Lu Xinxiang, Ye Anwang. 2002. 40Ar–39Ar dating and geological implication of auriferous altered rocks from the middle–deep section of Q875 gold quartz vein in Xiaoqinling area, Henan, China[J]. Chinese Science Bulletin, 47(18): 1427−1431 (in Chinese). doi: 10.1360/csb2002-47-18-1427
[39] Xue Liangwei, Pang Jiqun, Wang Xiangguo, Zhou Changming. 1999. Rb–Sr and 40Ar–39Ar dating of fluid inclusion of the No. 303 quartz vein in Xiaoqinling region[J]. Geochimica, 28(5): 473−478 (in Chinese with English abstract).
[40] Yang Jihong, Zhang Jinchun, Miao Cuimei. 2007. Rules and application of F5 structure mineralization control in Dahu gold fields of Xiaoqinling[J]. Journal of Henan Polytechnic University (Natural Science), 26(6): 659−663 (in Chinese with English abstract).
[41] Yao Shuzhen, Ding Zhenju, Zhou Zonggui, Chen Shouyu. 2002. Metallogenic syestems of Qinling Orogen[J]. Earth Science, 27(5): 599−604 (in Chinese with English abstract).
[42] Zhang Jinjiang, Zheng Yadong, Liu Shuwen. 2003. Mesozoic tectonic evolution and ore–deposits formation in the gold mine field of Xiaoqinling[J]. Chinese Journal of Geology, 38(1): 74−84 (in Chinese with English abstract).
[43] Zhang Qi, Jin Weijun, Li Chengdong, Wang Yualong. 2009. Yanshanian large–scale magmatism and lithosphere thinning in Eastern China: Relation to large igneous province[J]. Earth Science Frontiers, 16(2): 21−51 (in Chinese with English abstract).
[44] Zhang Siming, Chen Zhenghui, Shi Guanghai, Li Lixia, Qu Wenjun, Li Chao. 2011. Re–Os isotopic dating of molybdenite from Dajishan tungsten deposit in Jiangxi Province[J]. Mineral Deposits, 30(6): 1113−1121 (in Chinese with English abstract).
[45] Zhang Y, Song Q H, Han S J, Ding J H. 2021. Geochronology and geochemistry of the Hekoulinchang Sn polymetallic deposit in Heilongjiang Province, China[J]. China Geology, 4: 1−14.
[46] Zhao Haijie, Mao Jingwen, Ye Huishou, Hou Kejun, Liang Huishan. 2010a. Chronology and petrogenesis of Shijiawan granite porphyry in Shannxi Province: Constrains from zircon U–Pb geochronology and Hf isotopic compositions[J]. Mineral Deposits, 29(1): 143−157 (in Chinese with English abstract).
[47] Zhao Haijie, Mao Jingwen, Ye Huishou, Xie Guiqing, Yang Zongxi. 2010b. Geochronology and geochemistry of the alkaline granite porphyry and diabase dikes in Huanglongpu area of Shaanxi Province: Petrogenesis and implications for tectonic environment[J]. Geology in China, 37(1): 12−27 (in Chinese with English abstract).
[48] Zhao Haijie, Ye Huishou, Li Chao. 2013. Re–Os dating of molybdenite from the Shijiawan molybdenum deposit in Shaanxi Province and its geological implications[J]. Acta Petrologica et Mineralogica, 32: 90−98 (in Chinese with English abstract).
[49] Zhao H B, Zhang Y, Liu L. 2021. Hydrothermal alteration processes in the giant Dahutang tungsten deposit, South China: Implications from litho–geochemistry and mass balance calculation[J]. China Geology, 4: 230−244.
[50] Zhao H X, Frimmel H E, Jiang S Y, Dai B Z. 2011. LA–ICP–MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis[J]. Ore Geology Review, 43: 142−153. doi: 10.1016/j.oregeorev.2011.07.006
[51] Zhu L M, Zhang G W, Chen Y J, Ding Z J, Guo B, Wang F, Lee B. 2011. Zircon U–Pb ages and geochemistry of the Wenquan Mo–bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Reviews, 39: 46−62. doi: 10.1016/j.oregeorev.2010.10.001
[52] 陈莉. 2006. 小秦岭大湖金矿床成矿流体特征及矿床成因探讨[D]. 北京: 中国地质大学(北京), 1–97. [53] 陈莉, 毛景文, 叶会寿. 2010. 小秦岭大湖金矿成矿流体特征及矿床成因[J]. 沉积与特提斯地质, 30(2): 103−107. doi: 10.3969/j.issn.1009-3850.2010.02.017 [54] 陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 33(6): 1181−1196. doi: 10.3969/j.issn.1000-3657.2006.06.001 [55] 陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用[J]. 中国地质, 37(4): 854–865. [56] 杜安道, 何红蓼, 殷宁万, 邹晓秋, 孙亚利, 孙德忠, 陈少珍, 屈文俊. 1994. 辉钼矿的铼锇同位素地质年龄测定方法研究[J]. 地质学报, 68(4): 339−347. doi: 10.3321/j.issn:0001-5717.1994.04.005 [57] 杜安道, 屈文俊, 王登红, 李厚明, 丰成友, 刘华, 任静, 曾法刚. 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象[J]. 矿床地质, 26(5): 572−580. doi: 10.3969/j.issn.0258-7106.2007.05.010 [58] 黄典豪, 吴澄宇, 杜安道, 何红蓼. 1994. 东秦岭地区钼矿床的铼锇同位素年龄及其意义[J]. 矿床地质, 13(3): 221−230. [59] 蒋少涌, 戴宝章, 姜耀辉, 赵海香, 侯明兰. 2009. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省[J]. 岩石学报, 25(11): 2727−2738. [60] 焦建刚, 汤中立, 钱壮志, 袁海潮, 闫海卿, 孙涛, 徐刚, 李小东. 2010. 东秦岭金堆城花岗斑岩体的锆石U–Pb年龄、物质来源及成矿机制[J]. 地球科学—中国地质大学学报, 35(6): 1011−1022. [61] 李厚民, 叶会寿, 毛景文, 王登红, 陈毓川, 屈文俊, 杜安道. 2007. 小秦岭金(钼)矿床辉钼矿铼–锇定年及其地质意义[J]. 矿床地质, 26(4): 417−424. doi: 10.3969/j.issn.0258-7106.2007.04.005 [62] 李华芹, 刘家齐, 魏林. 1993. 热液矿床流体包裹体年代学研究及其地质应用[M]. 北京: 地质出版社. [63] 李诺, 陈衍景, 张辉, 赵太平, 邓小华, 王运, 倪智勇. 2007. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 14(5): 186−198. doi: 10.3321/j.issn:1005-2321.2007.05.019 [64] 李诺, 孙亚莉, 李晶, 薛良伟, 李文博. 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件[J]. 岩石学报, 24(4): 810−816. [65] 卢欣祥, 李明立, 王卫, 于在平, 时永志. 2008. 秦岭造山带的印支运动及印支期成矿作用[J]. 矿床地质, 27(6): 762−773. doi: 10.3969/j.issn.0258-7106.2008.06.009 [66] 毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区[J]. 矿床地质, 18(4): 291−299. doi: 10.3969/j.issn.0258-7106.1999.04.001 [67] 毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169−188. doi: 10.3321/j.issn:1000-0569.2005.01.017 [68] 倪智勇, 李诺, 管申进, 张辉, 薛良伟. 2008. 河南小秦岭金矿田大湖金–钼矿床流体包裹体特征及矿床成因[J]. 岩石学报, 24(9): 2058−2068. [69] 倪智勇, 李诺, 张辉, 薛良伟. 2009. 河南大湖金钼矿床成矿物质来源的锶钕铅同位素约束[J]. 岩石学报, 25(11): 2823−2832. [70] 强山峰, 毕诗健, 邓晓东, 郭连巧, 李建威. 2013. 豫西小秦岭地区秦南金矿床热液独居石U–Th–Pb定年及其地质意义[J]. 地球科学—中国地质大学学报, 38(1): 43−56. [71] 邱庆伦, 燕长海, 陈瑞保, 卢书炜. 2008. 小秦岭—熊耳山地区燕山期大规模成矿的地球动力学背景[J]. 地质找矿论丛, 23(4): 281−286. [72] 石永红, 王永, 陈柏林, 谭人文, 高允, 申景辉. 2022. 西秦岭凤太矿集区铅锌矿床硅钙面控矿作用—以铅硐山铅锌矿床为例[J]. 中国地质, 49(1): 226–240. [73] 王秀璋, 程景平, 张宝贵, 樊文苓, 白正华, 梁华英. 1992. 中国改造型金矿床地球化学[M]. 北京: 科学出版社. [74] 王义天, 毛景文, 卢欣祥, 叶安旺. 2002. 河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar–39Ar年龄及其意义[J]. 科学通报, 47(18): 1427−1431. doi: 10.3321/j.issn:0023-074X.2002.18.015 [75] 薛良伟, 庞继群, 王祥国, 周长命. 1999. 小秦岭303号石英脉流体包裹体Rb–Sr, 40Ar–39Ar成矿年龄测定[J]. 地球化学, 28(5): 473−478. doi: 10.3321/j.issn:0379-1726.1999.05.007 [76] 杨继红, 张进春, 苗翠梅. 2007. 小秦岭大湖金矿区F5控矿规律及其应用研究[J]. 河南理工大学学报, 26(6): 659−663. [77] 姚书振, 丁振举, 周宗桂, 陈守余. 2002. 秦岭造山带金属成矿系统[J]. 地球科学, 27(5): 599−604. doi: 10.3321/j.issn:1000-2383.2002.05.020 [78] 张进江, 郑亚东, 刘树文. 2003. 小秦岭金矿田中生代构造演化与矿床形成[J]. 地质科学, 38(1): 74−84. doi: 10.3321/j.issn:0563-5020.2003.01.008 [79] 张旗, 金惟俊, 李承东, 王元龙. 2009. 中国东部燕山期大规模岩浆活动与岩石圈减薄: 与大火成岩省的关系[J]. 地学前缘, 16(2): 21−51. doi: 10.3321/j.issn:1005-2321.2009.02.002 [80] 张思明, 陈郑辉, 施光海, 李丽侠, 屈文俊, 李超. 2011. 江西省大吉山钨矿床辉钼矿铼–锇同位素定年[J]. 矿床地质, 30(6): 1113−1121. doi: 10.3969/j.issn.0258-7106.2011.06.011 [81] 赵海杰, 毛景文, 叶会寿, 侯可军, 梁慧山. 2010a. 陕西洛南县石家湾钼矿相关花岗斑岩的年代学及岩石成因: 锆石U–Pb年龄及Hf同位素制约[J]. 矿床地质, 29(1): 143−157. [82] 赵海杰, 毛景文, 叶会寿, 谢桂青, 杨宗喜. 2010b. 陕西黄龙铺地区碱性花岗斑岩及辉绿岩的年代学与地球化学: 岩石成因及其构造环境示踪[J]. 中国地质, 37(1): 12−27. [83] 赵海杰, 叶会寿, 李超. 2013. 陕西洛南县石家湾钼矿Re–Os同位素年龄及地质意义[J]. 岩石矿物学杂志, 32: 90−98. doi: 10.3969/j.issn.1000-6524.2013.01.007 -
期刊类型引用(0)
其他类型引用(1)