Reservoir characteristics and gas-bearing capacity of the Wufeng-Longmaxi Formation in the Well Eyy2, east Huangling Uplift, western Hubei Province
-
摘要:
鄂西地区五峰组-龙马溪组已成为中国南方页岩气勘探的热点领域。为深化该区页岩储层及含气性特征认识,本文以鄂宜页2井钻井及测试分析资料为基础,以笔石带为标尺,对五峰组-龙马溪组下部黑色富有机质页岩的岩石学特征、有机地化特征、储集空间类型及结构特征进行深入研究,分析总结了页岩储层含气性特征及影响因素,并对页岩储层开展了综合评价。结果表明:鄂宜页2井五峰组-龙马溪组下部黑色岩系缺失LM5-LM6笔石带,富有机质页岩上延至LM7笔石带,总厚度约16 m;岩性以硅质页岩夹少量硅质岩、混合质页岩和黏土质页岩为主,有机质类型为Ⅰ-Ⅱ1型,Ro为1.88%~2.03%,显示黑色页岩已过大量生气阶段;页岩储集空间主要为小于100 nm的有机质纳米孔、直径大于5 μm的微米孔和构造微裂缝,其中纳米孔占比超过50%,孔隙容积、比表面积与有机碳含量存在显著正相关性;现场解析总含气量为0.068~3.33 m3/t,平均1.13 m3/t,高含气量段集中于凯迪阶WF2-WF3与鲁丹阶LM2-LM4,含气量与TOC、脆性矿物含量之间具有明显的正相关性;根据TOC、含气性、脆性矿物含量以及页岩沉积环境等参数进行综合评价,Ⅰ类储层主要对应于凯迪阶WF2-WF3笔石带以及鲁丹阶LM2-LM4笔石带以深水环境下形成的硅质页岩和硅质岩层段,总厚度约9 m,是该区五峰-龙马溪组水平钻井的最佳甜点段。
Abstract:The organic-rich shale of the Wufeng-Longmaxi Formation in the western Hubei Province has become a hotspot for the shale-gas exploration in South China. In order to deepen the understanding of reservoir characteristics and gas-bearing capacity, the lithological and geochemical characteristics, types and features of reservoir space, and gas-bearing capacity were detailedly studied on the basis of the drilling and testing data of the Well Eyy2, as well as the affecting factors of shale gas and evaluation of shale reservoir. The results show that the organic-rich shale extending to LM7 graptolite zone in the Well Eyy2 is about 16m in thickness and the LM5-LM6 graptolite zone is missing, which is mainly composed of siliceous shale interbedded with silicastone, mixed shale and clay shale. Organic type is type Ⅰ and Ⅱ1, with Ro value ranging from 1.88% to 2.03% indicating that the shale is under massive gas generating stage. The main reservoir space consist of organic nanopores with diameter less than 100 nm, micropores with diameter exceed 5um and tectonic microfracture, of which the volume ratio of nanopore is more than 50%. Pore volume and specific area has closely positive relationship with total organic content (TOC). The on-site measured core gas content ranges from 0.068 to 3.33 m3/t with average of 1.13 m3/t, and the graptolite zone WF2-WF3 in the Katian and LM2-LM4 in the Rhuddanian has highest gas content. Gas content has obviously positive correlation with TOC and brittle mineral content. According to the TOC, gas content, brittle mineral content, shale sedimentary environment and other parameters, the favorable reservoir (typeⅠ) with about 9 m in thickness mainly corresponds to siliceous shale interbedded with silicastone of the graptolite zone WF2-WF3 in the Katian and LM2-LM4 in the Rhuddanian formed in the deep-water sedimentary environment, which is the best "sweet spot" for the horizontal drilling in the shale gas exploration in the Wufeng-Longmaxi Formation.
-
1. 引言
扬子地块西缘地区新元古代构造-岩浆活动较强烈,形成大量以中酸性火成岩为主的侵入岩浆岩群。这些构造-岩浆岩体的形成时代主要集中在740~830 Ma,主要侵位于中新元古界扬子型变质基底岩系中,并多被南华系或震旦系及少量被中生代地层不整合覆盖。由于其形成构造环境对研究扬子地块大地构造格局和形成演化以及Rodinia超大陆的恢复重建具有重要意义而受到广泛关注;大量对新元古代岩浆岩成因及热源研究认为,扬子板块周缘经历了早期大洋板片俯冲作用930~1160 Ma和晚期大规模陆缘裂解635~830 Ma(李献华等,2001;凌文黎等,2006;李献华等,2008;裴先治等,2009;刘树文等,2009;夏林圻等,2016;刘军平等,2017)。深入了解这些新元古代岩浆岩的成因和形成的构造环境对研究扬子地块大地构造格架和形成演化及其在Rodinia超大陆的聚合-裂解演化中的作用具有重要的科学意义(李献华等,2008)。
目前学术界对这些岩浆岩的成因和形成的构造背景存在3种不同的认识(李献华等,2008;张沛等,2008;谢士稳等,2009):一种观点认为与地幔柱有关,这些岩浆岩是与Rodinia超大陆裂解有关的地幔柱活动引发岩石圈地幔和下地壳熔融的产物;另一种观点认为与岛弧有关,早期(830~820 Ma)岩浆岩为弧-陆碰撞造山带拉张垮塌熔融产物,而晚期740~780 Ma为Rodinia超大陆裂解过程中裂谷岩浆活动产物;第三种观点介于上述两种观点之间,认为扬子地块周缘新元古代岩浆活动是早期弧-陆碰撞、晚期伸展垮塌和大陆裂谷再造产物(颜丹平等,2002;凌文黎等,2006),认为扬子和华夏地块的造山运动持续到约820 Ma,大规模的820~830 Ma花岗岩形成于造山带垮塌阶段,而随后的岩浆活动形成于岩石圈伸展—裂谷阶段(Zheng et al., 2006;Wu et al., 2006)。
王梦玺等(2006)对扬子北缘随枣盆地中周庵超镁铁质岩体(637±4) Ma进行了锆石Hf-O同位素分析,认为Rodinia超大陆在扬子板块北缘的最终裂解时限为约635 Ma,扬子北缘俯冲-伸展的转换时间可能在635~740 Ma的观点(颜丹平等,2002;王梦玺等,2006)。本文对扬子地块西缘云南安宁地区出露的石虎山花岗岩进行了锆石U-Pb年代学、岩石地球化学和Hf同位素分析,并探讨其侵位时代、岩石成因、物质来源和构造背景,为Rodinia超大陆裂解时限提供新证据,为扬子地块西缘新元古代的构造-岩浆活动提供新的约束。
研究区位于滇中安宁地区,属扬子陆块区之上扬子古陆块的康滇基底断隆带,地层区划隶属华南地层大区扬子地层区康滇地层分区之昆明地层小区(图 1)。研究区出露地层有中元古界昆阳群黑山头组、中元古界昆阳群大龙口组、中元古界昆阳群美党组、新元古界灯影组、三叠系舍资组及侏罗系禄丰群(图 1)。中元古界昆阳群为一套浅变质的陆源碎屑-碳酸盐岩及少量火山岩,新元古界灯影组为一套含磷矿层的碳酸盐岩建造,三叠系舍资组为一套湖泊砂岩-粉砂岩组合,侏罗系禄丰群为一套潮湿-干旱气候环境的红色碎屑岩建造;区内早期断裂为北西-南东向,晚期断裂为北北东向及近南北向,岩浆活动主要以石虎山花岗岩为主,少量晚期辉长-辉绿岩脉发育。
2. 样品采集及测试
2.1 样品采样
本次研究的样品采自易门—罗茨断裂以东,地点在安宁市八街镇德滋村(图 1),地理坐标为:102° 20′02″E,24°35′15″N。在八街镇德滋村地区,石虎山花岗岩岩体呈岩株状产出,出露面积约5 km2,岩性以碱长花岗岩为主,少量粗中粒似斑状黑云二长花岗岩,岩石结构上由细粒向粗粒含斑演化,变化的有序性和单向性明显,且在空间上紧密共生,形成时间、成分及结构变化上表现出清楚的亲缘和演化关系,说明它们是同一岩浆热事件的产物。野外两者为渐变过渡接触,整个岩体由中心至边部矿物颗粒由中粗粒变为中细粒;岩体侵入于昆阳群大龙口组碳酸盐岩及美党组碎屑岩中,围岩普遍角岩化,南、南东面被三叠系舍资组(T3s)角度不整合覆盖(图 1);岩石受后期构造影响仅发生碎裂岩化。因黑云二长花岗岩风化较强并未采集相应地化样品,仅为薄片样;本次采集较新鲜的碱长花岗岩(D0120)为主要的研究对象,岩石主要由钾长石(65%~70%)、钠长石(2%~3%)和石英(30%~35%)组成,少量黑云母(0~2%)。钾长石呈半自形—他形粒状,条纹发育,部分颗粒可见裂纹,粒径一般为0.56~1.4 mm,均匀分布。石英呈他形粒状,干净透亮,具波状消光,粒径一般为0.4~1.4 mm,与钾长石镶嵌分布。岩石受构造作用,裂隙发育,裂隙内充填绢-白云母、铁质物,穿插分布。此外,岩石中还可见磁铁矿、锆石、钠闪石,零星分布;本次对岩石后期的碎裂岩化、波状消光及充填的铁质物进行了相关处理,对本文获得的岩石地球化学数据准确性并无影响。样品镜下特征见图 2。
粗中粒似斑状黑云二长花岗岩:肉红色,风化后呈浅灰-灰白色,粗中粒似斑状花岗结构,块状构造,岩石由钾长石(20% ~40%)、斜长石(20% ~35%)、石英(20%~40%)组成,含少量黑云母(5%~15%)、白云母(≤1);副矿物为锆石、磷灰石、金红石。似斑晶主要为微斜微纹长石(10%~15%),粒径一般在7~15 mm,最大可达3.5 cm, 分布稀疏不均,半自形板状;基质以中粒(d >2~4.5 mm)花岗结构为主。斜长石多为更长石(An20±),自形、半自形板柱状;钾长石的自形程度相对较差,多为他形、半自形板状。中粒钾长石常有细粒半自形斜长石等包晶,包晶多具净边结构。黑云母Ng褐黑,Np黄白。蚀变特征:多数片状黑云母已绿泥石化,长石具轻微黏土化、绢云母化。
2.2 样品测试
样品D0121新鲜色为浅灰-浅肉红色,岩性为碱长花岗岩,块状构造;锆石分选在南京宏创地矿完成,将样品先经手工粉碎,后按常规重力及电磁法浮选出锆石颗粒,最后在实体镜下挑选出纯正锆石约250余粒。锆石多为无色透明,个别呈浅黄色,粒状、短柱状、碎粒状,金刚光泽,透明,表面多具磨蚀特征,锆石长度一般为70~150 µm,少数达180 µm。
选择晶型较好,无裂隙的锆石颗粒黏贴在环氧树脂表面制成锆石样品靶,打磨样品靶,使锆石的中心部位暴露出来,然后进行抛光。对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,最后根据反射光、透射光及锆石CL图像选择代表性的锆石颗粒和区域进行U-Pb测年。
U-Pb同位素定年在湖北省地质实验室测试中心岩石矿物研究室利用LA-ICP-MS分析完成。测试仪器采用的是由美国Coherent Inc公司生产的GeoLasPro全自动版193 nm ArF准分子激光剥蚀系统(LA)和美国Agilent公司生产的7700X型电感耦合等离子质谱仪(ICP-MS)联用构成的激光剥蚀电感耦合等离子体质谱分析系统(LA-ICP-MS)。另外激光剥蚀系统配置了由澳大利亚国立大学开发研制的匀化器,由10根长度不同的细PV管组成,激光剥蚀产生的细小粉末样品通过匀化器装置后,因通过长短不同的管道所需的时间略有不同而使样品脉冲信号得到平滑,从而能有效降低激光脉冲剥蚀样品而产生的信号波动(Hoskin et al., 2003)。锆石微量元素含量利用NIST610作为外标,Si作为内标进行定量计算。锆石U-Pb定年分析采用锆石标准年龄物质91500作为外标进行同位素分馏校正,每分析6~8个样品点分析2次91500。样品测试时,背景信号采集10 s,样品剥蚀40 s,管路吹扫10 s,信号采集时间总共为60 s。样品的同位素比值和元素含量采用ICPMSDataCal 9.0进行处理分析,加权平均年龄的计算及锆石年龄谐和图的绘制采用Isoplot3.0(Ludwing,2003)来完成。采用年龄为206Pb/238U年龄,其加权平均值的误差为2σ,206Pb/238U(和207Pb/206Pb)平均年龄误差为95%置信度。
锆石Hf同位素分析在武汉上谱分析科技有限责任公司完成。锆石原位Hf同位素测定由激光剥蚀多接收器电感耦合等离子体质谱仪完成,激光进样系统为NWR213nm固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus),激光剥蚀的斑束直径一般为55 μm,能量密度为7~8 J/cm2,频率为10 Hz,176Lu和176Yb对176Hf的同质异位素干扰通过监测175Lu和172Yb信号强度,采用175Lu/176Lu=0.02655和176Yb /172Yb=0.5886进行校正,以标准锆石91500、GJ-1与样品锆石交叉分析对仪器漂移进行外部监控。分析结果所获得标准样品91500和GJ-1的176Hf/177Hf值分别为0.282283 ± 0.000041(n=4,2σ)和0.282019±0.000029(n4,2σ),在误差范围内与参考值吻合(吴福元,2007)。计算εHf(t)时,球粒陨石的176Hf/177Hf值为0.282772,176Lu/ 177Hf值为0.0332,单阶段Hf模式年龄(TDM1)计算时,亏损地幔的值采用176Hf/177Hf=0.28325,176Lu/177Hf=0.0384,两阶段Hf模式年龄(TDM2)计算时,平均地壳的176Lu/177Hf值为0.015(吴福元,2007;谢士稳,2009)。
选择11件岩石样品分别进行主量元素和微量元素分析(表 1)。样品磨碎至200目后,在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室进行主量和微量元素分析测试。主量元素使用X-射线荧光光谱仪(XRF-1500)法测试。用0.6 g样品和6 g四硼酸锂制成的玻璃片在ShimadzuXRF-1500上测定氧化物的质量分数值,精度优于2%~3%。微量元素及稀土元素利用酸溶法制备样品,使用ICP-MS(ElementⅡ)测试,分析精度(按照GSR-1和GSR-2国家标准):当元素质量分数值大于10×10-6时,精度优于5%,当质量分数值小于10×10-6时,精度优于10%。
表 1 石虎山岩体碱长花岗岩的主量元素(%)和微量元素(10-6)分析结果Table 1. Major (%) and trace element (10-6) compositions of the Shihushan granite3. 岩石地球化学特征
3.1 主量元素
石虎山岩体主体岩性为碱长花岗岩,岩石主量元素含量见表 1。
碱长花岗岩样品SiO2含量70.22%~75.09%,平均73.58%,高于中国花岗岩平均含量71.63%(黎彤等,1998);Al2O3含量为12.36% ~14.45%,平均13.41%;MgO=0.20%~0.68%,平均0.41%,Mg#=21~49,平均36;K2O=5.35%~7.32%,平均6.29%;铝饱和指数A/CNK=1.04~1.57,平均1.24,大于1.1,属强过铝花岗岩;K2O/Na2O=1.64~7.81,平均3.45,具有富钾特征;全碱含量alk=7.76% ~9.02%,平均8.54%;在ANOR-Q'分类图解(图 3)中11件样品点落入碱长花岗岩区域,岩体中黑云母二长花岗岩因风化强未采集样品分析,11件样品定名与镜下鉴定成果无差别;在A/CNK-A/NK图解(图 4a)中,样品点均落入过铝质区;在C.I.P.W.标准矿物组合中普遍存在刚玉分子;在SiO2-K2O图解中(图 4b),由于样品点SiO2含量偏高,样品点投到钾玄岩系列区域。总体上,石虎山岩体主体岩性显示出相对富钾的特征。
图 3 石虎山花岗岩类Q′-ANOR图解(据Streckeisen and Le Maitre,1979)2—碱长花岗岩;3a—正长花岗岩;3b—二长花岗岩;4—花岗闪长岩;5-英云闪长岩;6'-石英碱长正长岩;7'-石英正长岩;8'-石英二长岩;9'-石英二长闪长岩、石英二长辉长岩;10'—石英闪长岩、石英辉长岩、石英斜长岩;6—碱长正长岩;7—正长岩;8—二长岩;9—二长闪长岩、二长辉长岩;10—闪长岩、辉长岩、斜长岩Figure 3. Q′-ANOR diagram of the Shihushan granite(after Streckeisen and Le Maitre, 1979)2-Alkali-feldspar granite; 3a-Syen granite; 3b-Monzonitic granite; 4-Granodiorite; 5-Yingyun diorite; 6'-Quartz alkali long syenite 7'-Quartz syenite; 8'-Quartz monzonite; 9'-Quartz diorite Quartz two long gabbro; 10'-Quartz diorite, quartz gabbro, quartz plagioclase; 6-alkali syenite; 7-Syenite; 8-Monnicite; 9-Two long Diorite, Erchang gabbro; 10-Diorite, gabbro, plagioclase图 4 石虎山岩体A/CNK-A/NK及SiO2-K2O图解(据Rickwood,1989)Figure 4. A/CNK-A/NK(a)and SiO2-K2O(b)diagram of the Shihushan granite(after Rickwood, 1989)3.2 稀土元素
石虎山岩体样品稀土元素含量如表 1所示。
石虎山岩体岩石样品稀土元素总量为148.8×10-6~387.3×10-6,含量较高且差异较大。配分曲线呈右倾的“L”型(图 5a)展布。LREE/HREE=0.85~6.17,平均4.08,富集轻稀土元素;(La/Yb)N=3.95~13.63,平均9.06;(La/Sm)N=2.32~4.97,平均3.55,(Gd/Yb)N=1.00~1.90,平均1.53,轻稀土元素分馏较重稀土元素略明显;δEu=0.32~0.65,平均0.50,具有明显的Eu负异常,说明岩浆在演化过程中发生了较明显的斜长石分离结晶作用,δCe=0.89~0.94,平均0.93,说明岩石受后期低温蚀变作用较弱。
图 5 石虎山岩体稀土元素配分样式图及微量元素原始地幔标准化蜘蛛网图(原始地幔数据引自Sun and McDonough, 1989)Figure 5. Chondrite-normalized REE patterns(a)and normalized diagram for trace elements(b)of Shihushan granite(Chondrite values are from Sun and McDonough, 1989)3.3 微量元素
石虎山岩体岩石样品微量元素含量如表 1所示。
石虎山岩体岩石样品微量元素比值蛛网图(图 5b)表现为K、Rb、Th明显富集的大隆起形式,Ce、Sm选择性富集,Ba的负异常,说明斜长石作为熔融残留相或结晶分离相存在,Nb、Hf、Zr等元素明显亏损,与板内花岗岩、火山弧花岗岩均有一些相似之处,形成于拉张环境。样品曲线形态趋势相近,它们应该具有相似的源区。
4. 分析结果
4.1 锆石U-Pb年龄
本次工作用于锆石U-Pb年龄测试的样品采位置见图 1,样品分析数据见表 2。
表 2 碱长花岗岩(D0120)锆石LA-ICP-MS U-Th-Pb同位素分析结果Table 2. LA-ICP-MS zircon U-Pb age data of alkali-feldspar granite (D0120)样品锆石颗粒为无色透明或浅黄色,半自形-自形,形态有长柱状、短柱状、粒状和不规则状,粒径大小为110~180 μm,颗粒长宽比为1~4。在阴极发光图像上(图 6),锆石结构比较复杂,一类锆石具核-边结构,核、边部具有环带结构(点27、28、29、33等),为岩浆成因锆石特征;另一类锆石核部具扇形结构或椭圆状结构,没有环带结构、呈暗色区或少量环带(点8、10、17、20),为继承性锆石特征。选择33颗锆石进行定年分析。33个分析点获得4组相对集中年龄(图 7),其中A组打在锆石核部,有10颗锆石数据较为集中,无振荡环带,且获得了较为一致的206Pb/238U年龄(839 ± 17) Ma(MSWD=2.3,n10);该年龄代表了石虎山岩体早期继承性年龄或捕获围岩年龄,与区域上新元古界澄江组年龄相当。B组有10颗锆石,数据也较为集中,获得了较为一致的206Pb/238U年龄(767±15) Ma(MSWD=2.9,n10),与区域上新元古界牛头山组年龄相当。C组有6颗锆石数据较为集中,获得了206Pb/238U年龄(705.5±9.4) Ma(MSWD=0.44,n6),与区域上新元古界南坨组年龄相当;年龄均代表了石虎山岩体捕获围岩年龄。D组有7颗锆石数据集中,锆石微区Th/U比值0.4~1.0,具有典型的振荡环带,为岩浆成因,获得206Pb/238U年龄(616±20) Ma(MSWD=2.1,n7),该年龄代表了石虎山岩体岩浆结晶年龄,也代表了岩体侵位地表时间,与区域上新元古界观音崖组、陡山坨组时代相当;综合年龄分析结果、岩石地化及岩相学特征,616~839 Ma年代记录,与Rodinia超大陆裂解事件有关。
4.2 锆石Lu-Hf同位素
对锆石进行了33组Hf同位素测试,点位与UPb定年点位相同,Hf同位素分析数据表明,不同年龄锆石具有不同的εHf(t)值和两阶段模式年龄TDM2值(表 3)。其中表面年龄约839 Ma的锆石εHf(t)为-1.07~-6.32,TDM2为介于1733~2074 Ma;约767 Ma锆石的εHf(t)值介于-2.71~-7.70,TDM2介于1851~2131 Ma;约705.5 Ma锆石的εHf(t)值介于-6.0~-7.51,TDM2介于1977~2104 Ma;约616 Ma锆石的εHf(t)值介于-6.78~-8.96,TDM2介于1991~2117 Ma;样品锆石εHf(t)值均小于0,在t-t(Ma)和t-(176Hf/177Hf)图上,所有样品点均落在上地壳演化线之上(图 8),二阶段模式年龄变化范围为1.73~2.31 Ga;表明成岩物质主要来源于古元古代古老下地壳物质的部分熔融。
表 3 碱长花岗岩(D0120)Hf同位素组成Table 3. Analytical data of zircon Hf isotope composition of alkali-feldspar granite (D0120)5. 讨论
5.1 花岗岩源区
近年来对过铝质花岗岩的研究中,普遍接受的观点是它们的源区虽具有多样性,但变质沉积岩(如泥质岩、砂屑岩或杂砂岩等)是主要的源区(Chappell et al., 1992;Harris et al., 1992)。石虎山岩体花岗岩具有较高的SiO(2 70.22%~75.09%)含量及低的TiO2(0.09% ~0.28%)含量,A/CNK=1.04~1.57,A/NK=1.08~1.61,表现出过铝质的特征,在(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(图 9a)上,所有样品均位于A型花岗岩区域内,结合石虎山花岗岩其他主量元素和微量元素特征,认为石虎山岩体花岗岩为铝质A型花岗岩。花岗岩类岩石Rb/YNb/Y(图 9b)、Al2O3/TiO2-CaO/Na2O(图 10a)、Rb/Sr-Rb/Ba(图 10b)源区判别图解及Sr-Yb图解(图 11a),结合锆石Hf同位素特征,表明石虎山岩体花岗岩原始岩浆形成于古元古代古老下地壳贫黏土源区的页岩60%左右的部分熔融,残留相为麻粒岩,主要组成矿物斜长石+角闪石(张旗,2006),其物源可能为滇中地区新近发现的古元古界易门群(刘军平等, 2018, 2020a, b, c)。
图 9 石虎山岩体花岗岩类岩石(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(a,据Whalen et al., 1987)及Nb/Y-Rb/Y图解(b,据Jahn et al., 1999)Figure 9. (Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO diagram (a, after Whalen et al., 1987) and Nb/Y-Rb/Y of the Shihushan granite (b, after Jahn et al., 1999)5.2 构造环境
过铝质花岗岩可形成于多种构造环境,如陆-陆碰撞过程中早期挤压环境下的地壳加厚环境(Harris et al., 1986),也可形成于碰撞高峰期后的岩石圈伸展环境(Kalsbeek et al., 2001)。石虎山岩体样品微量元素比值蛛网图(图 5b)表现为K、Rb、Th明显富集的大隆起形式,Ce、Sm选择性富集,Nb、Hf、Zr等元素明显亏损,与板内花岗岩较为相似,形成于拉张环境。在(Y+Nb)-Rb图解(Pearce,1996)上,样品点均落入板内花岗岩区(WPG)(图 11b);其主量、微量元素特征显示为高K2O+Na2O,且K2O/Na2O=1.64~7.81,平均3.45,高含铁指数,强烈亏损Eu、Ba、P、Ti,类似于A型花岗岩的地球化学特征(Collins et al., 1982;Whalen et al., 1987),且在(Zr+ Nb+Ce+Y)-(K2O+Na2O)/CaO图解(图 9a)上,所有样品均位于A型花岗岩区域内;结合岩体主要岩性为碱长花岗岩,见钠长石,表明其形成环境为伸展环境。李献华等(2012)认为750~830 Ma是Rodinia超级地幔柱与超大陆裂解的时期,其中795~830 Ma和745~780 Ma分别是Rodinia超大陆开始张裂和最终裂解两个阶段(Li et al., 2003)。王梦玺等(2012)认为Rodinia超大陆在扬子板块北缘的最终裂解时限为约635 Ma。综上所述,石虎山花岗岩岩体形成于拉张伸展构造背景,与华南新元古代裂谷盆地发育时限高度一致,是与Rodinia超大陆裂谷化-裂解事件有关的新元古代中晚期全球性大陆裂谷事件群的组成单元(刘军平等,2019)。
Ⅰ—高Sr低Yb花岗岩;Ⅱ—低Sr低Yb花岗岩;Ⅲ—高Sr高Yb花岗岩;Ⅳ—低Sr高Yb花岗岩;Ⅴ—极低Sr高Yb花岗岩VAG—火山弧花岗岩;Syn-COLG —同碰撞花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩Figure 11. Yb-Sr diagram of the(a, after Zhang Qi, 2006)and(Y+Rb)-Rb of the Shihushan granite(b, after Pearce, 1996)Ⅰ-granite with high Sr and low Yb; Ⅱ-granite with low Sr and low Yb; Ⅲ-granite with high Sr and high Yb; Ⅳ-granite with low Sr and high Yb; Ⅴ-granite with overly low Sr and high Yb; VAG-Volcanic arc granites; Syn-COLG-syn-collision granites; WPG-within plate granites; ORG-ocean ridge granites5.3 与Rodinia超大陆裂解的关系
前寒武纪地质体的形成、增生与再造历史对超大陆的重建具有重要意义。大量对新元古代岩浆岩成因及热源研究认为,扬子板块周缘经历了早期大洋板片俯冲作用(930~1160 Ma)和晚期大规模陆缘裂解(700~830 Ma),然而,俯冲-伸展的转换时间和机制仍然存在争论。扬子地块周缘地区新元古代构造-岩浆活动非常强烈,形成大量以中酸性火成岩为主的侵入岩浆岩群。这些构造-岩浆岩体的形成时代主要集中在740~830 Ma,主要侵位于中新元古界扬子型变质基底岩系中,并多被南华系或震旦系不整合覆盖(李献华等,2008;裴先治等,2009;鄢圣武等,2017)。王梦玺等(2006)对扬子北缘随枣盆地中周庵超镁铁质岩体(637±4) Ma进行了锆石Hf-O同位素分析,认为Rodinia超大陆在扬子板块北缘的最终裂解时限应该是约635 Ma;扬子北缘俯冲-伸展的转换时间可能在635~740 Ma的观点;结合区域相关研究资料,认为扬子西缘存在一个自约800 Ma持续至725 Ma的幕式双峰式岩浆岩带,澄江组底部玄武岩和苏雄组火山岩均为约800 Ma双峰式岩浆活动的产物,且双峰式岩浆岩带形成于大陆裂谷环境(崔晓庄等, 2013, 2015;刘军平等,2019)。Li et al.(2010)研究发现侵入至盐边同德杂岩中的苦橄质岩墙来源于比同期周边洋中脊玄武岩源地幔高200℃的异常高温地幔,该地幔温度与现代地幔柱相当,从而认为同德苦橄质岩墙应该是800 Ma左右地幔柱岩浆作用的可靠证据。值得注意的是,云南东川下田坝黑云母二长花岗岩的成岩年龄为(769±4.4) Ma,属于典型的A型花岗岩,形成于板内伸展环境(程佳孝等,2014);这些证据均表明扬子西缘康滇裂谷应为与地幔柱活动有关的大陆裂谷;云南宾川地区响水花岗质岩体锆石U-Pb同位素测年显示,响水花岗质岩体侵位与冷凝时期为(761.9±4.1) Ma,与扬子地台周缘Rodinia超大陆裂解时期形成的花岗岩年龄峰值相对应;汪正江等(2011)报道了川西南峨边县牛郎坝A型花岗岩,该花岗岩具有高硅、低钙、贫镁、铝质的特征,其SHRIMP锆石U-Pb测年结果为(826±21.4) Ma,认为牛郎坝A型花岗岩是新元古代中期在Rodinia超大陆裂解背景下与地幔柱构造相关的壳幔相互作用的产物。
大量资料表明扬子板块西缘存在约830 Ma、800 Ma、760 Ma、700 Ma及635 Ma构造热事件,这些构造热事件与Rodinia超大陆裂解的幕式地幔柱活动有关(Li et al., 2002a;江新胜,2012;崔晓庄等,2015)。本文对石虎山岩体进行锆石U-Pb及Hf同位素分析,获得的岩浆结晶年龄为616 Ma,其锆石所有分析点Th/U比值均较高,在0.4~1.0,显示出岩浆锆石的高Th/U比值特征,由于这些分析点的年龄均是从具有岩浆结晶环带的锆石微区所获得,且其形成于拉张伸展环境,可以说明该期岩浆组合应是Rodinia超大陆裂解的响应,616 Ma可能是Rodinia超大陆在扬子板块西缘最终裂解时限,与王梦玺等(2012)认识一致;而(839 ± 17) Ma、(766 ± 15) Ma、(705.5 ± 9.4) Ma的构造热事件年龄组合可能是Rodinia超大陆裂解构造过程在扬子西缘的记录,该期岩浆组合可能与导致Rodinia超大陆裂解的幕式地幔柱活动有关(Li et al., 2002a;崔晓庄等,2015;毕政家等,2016;刘军平等,2019)。
6. 结论
通过对扬子地块西缘后石虎山花岗岩的锆石U-Pb年代学和岩石地球化学研究,得到如下结论:
(1)锆石LA-ICP-MS U-Pb法测得石虎山碱长花岗岩样品(D0120)的锆石206Pb/238U年龄加权平均值为(839±17) Ma、(767±15) Ma、(705.5±9.4) Ma及(616±20) Ma四组年龄值;其中616 Ma代表了该花岗岩岩体的侵位时代;(839±17) Ma、(766± 15) Ma、(705.5±9.4) Ma为继承性年龄或捕获年龄。石虎山花岗岩岩浆形成于板内伸展环境,说明该期岩浆应是Rodinia超大陆裂解构造过程的响应,616 Ma可能是Rodinia超大陆在扬子板块西缘最终裂解时限;而(839 ± 17) Ma、(766 ± 15) Ma、(705.5 ± 9.4) Ma的构造热事件年龄组合可能是Rodinia超大陆裂解构造过程在扬子西缘的记录,该期岩浆组合可能与导致Rodinia超大陆裂解的幕式地幔柱活动有关。
(2)石虎山花岗岩的岩石地球化学化学特征及Hf同位素反映出该岩体具有板内-裂谷型的地球化学特征;其原始岩浆为古元古代下地壳页岩60%部分熔融的同源岩浆产物,其物源可能为古元古界易门群。
-
图 1 鄂宜页2井所处构造位置及晚奥陶世—早志留世古地理特征(c, 据Chen et al., 2004修改)
1—中太古—中元古界;2—南华系—震旦系;3—寒武系;4—奥陶系;5—志留系;6—泥盆系;7—二叠系;8—三叠系;9—白垩系;10—古近系;11—第四系;12—钻井;13—断层;14—志留系残存区;15—泥质沉积;16—砂岩沉积
Figure 1. Tectonic location of the well Eyy2 and its paleogeographic characteristics during the Upper Ordovician to Early Silurian (c, modified from Chen et al., 2004)
1-Mesoarchean Erathem-Mesoproterozoic Erathem; 2-Nanhuan System-Sinian System; 3-Cambrian System; 4-Ordovician System; 5-Silurian System; 6-Devonian System; 7-Permian System; 8-Triassic System; 9-Cretaceous System; 10-Palaeogene; 11-Quaternary System; 12-Well; 13-Fault; 14-Covered region of the Silurian System; 15-Argillaceous sediments; 16-Sandstone sediments
图 2 鄂宜页2井五峰组—龙马溪组下部黑色岩系笔石带特征
1—泥岩;2—混合页岩;3—富炭黏土质页岩;4富炭硅质岩;5—富炭硅质页岩;6—粉砂质泥岩;7—泥灰岩;8—介壳灰岩;9—深灰色页岩;10—灰黑色页岩;11—黑色页岩
Figure 2. Graptolite zone of the black shale in the lower part of the Wufeng-Longmaxi Formation in the Well Eyy2
1-Mudstone; 2-Mixed shale; 3-Organic-rich argillaceous shale; 4-Organic-rich silicolites; 5-Organic-rich siliceous shale; 6-Silty mudstone; 7-Argillaceous mudstone; 8-Shell limestone; 9-Dark grey shale; 10-Black gray shale; 11-Black shale
图 5 五峰组—龙马溪组黑色岩系储集空间类型及特征
a—大量有机质孔,蜂窝状分布;b—硅质放射虫内溶蚀孔隙,被有机质充填;c—残余粒间孔,受压实作用呈三角形;d—黄铁矿晶间孔发育;e—溶蚀孔及微裂缝,裂缝被溶蚀改造;f—矿物溶蚀后形成铸模孔,可见晶体外形;g—多期裂缝大量发育,被方解石充填;h—层间缝,顺伊利石层面
Figure 5. Types and characteristics of the black shale in the Wufeng-Longmaxi Formation from the Well Eyy2
a-Massive honeycomb-like organic pore; b-Dissolved pore in siliceous radiolarian, filled by organic matter; c-Residual intergranular pore with triangle shape resulted by compaction; d-Developed intergranular pore in pyrite; e-Dissolved pore and microfracture alternated by dissolution; fMold pore formed by the mineral dissolution, the crystal skeleton remained; g-Multi-phase microfractures filled by calcite; h-Interlaminated microfracture along illite layer
图 10 鄂宜页2井五峰—龙马溪组富有机质页岩段储层综合评价
1—泥岩;2—混合质页岩;3—富碳黏土质页岩;4—富碳硅质岩;5—富碳硅质页岩;6—粉砂质泥岩;7—泥灰岩;8—介壳灰岩;9—深灰色页岩;10—灰黑色页岩;11—黑色页岩
Figure 10. Reservoir evaluation of the black organic-rich shale of the Wufeng and Longmaxi Formation in the Well Eyy2
1-Mudstone; 2-Mixed shale; 3-Organic-rich argillaceous shale; 4-Organic-rich silicolites; 5-Organic-rich siliceous shale; 6-Silty mudstone; 7-Argillaceous mudstone; 8-Shell limestone; 9-Dark grey shale; 10-Black gray shale; 11-Black shale
表 1 鄂宜页2井五峰组—龙马溪组下部黑色岩系主要矿物组成特征
Table 1 Main minerals of the black shale in the Wufeng-Longmaxi Formation from the Well Eyy2
表 2 五峰组—龙马溪组不同TOC样品的压汞法孔喉半径分布
Table 2 The pore throat radius of samples with different TOC based on mercury intrusion method
表 3 鄂宜页2井五峰组—龙马溪组页岩储层品质分级评价参数
Table 3 Reservoir evaluation parameters of the Wufeng and Longmaxi Formation in the Well Eyy2
-
Chen Shangbin, Zhu Yanmin, Wang Hongyan, Liu Honglin, Wei Wei, Fang Junhua. 2011. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J]. Acta Petrolei Sinica, 32(5): 775-782(in Chinese with English abstract). http://ci.nii.ac.jp/ncid/BA77785497
Chen Xiaohong, Zhang Baomin, Chen Lin, Zhang Guotao, Li Peijun, Zhang Miao. 2018. Main geological controlling factors and enrichment pattern of shale gas reservoirs in the Late Ordovician-Early Silurian Strata of Yichang, Western Hubei Province[J]. Acta Geoscientica Sinica, 39(3): 257-268(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201803001.htm
Chen X, Rong J Y, Li Y, Boucot A J. 2004. Facies patterns and geography of the Yangtze Region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3): 353-372. http://www.onacademic.com/detail/journal_1000035471487210_d1f1.html
Chen X, Rong J Y, Fan J X, Zhan R B, Mitchell C E, Harper D A T, Melchin M J, Peng P A, Finney S C, Wang X F. 2006. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[J]. Episodes, 29(3): 183-195. doi: 10.18814/epiiugs/2006/v29i3/004
Chen Xu, Fan Junxuan, Zhang Yuandong, Wang Hongyan, Chen Qing, Wang Wenhui, Liang Feng, Guo Wei, Zhao Qun. 2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy 39(4): 351-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201504001.htm
Deng Mingzhe, He Dengfa. 2018. The geological structure in the Dangyang area and its significance to the shale gas exploration in Yichang Area, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 45(4): 487-500(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG201804009.htm
Dong Min, Zhang Linyan, Wang Zongxiu, Dong Hui, Zhu Yonggang. 2019. Accumulation characteristics and preservation conditions of the Niutitang Formation of Lower Cambrian Series shale gas in Western Hubei: A case study of well XD1[J]. Journal of Earth Science: 1-19. DOI: 10.3799/dqkx.2019.127(inChinesewithEnglishabstract).
Fan J X, Melchin M J, Chen X, Wang Y, Zhang Y D, Chen Q, Chi Z L, Chen F. 2011. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Science China: Earth Science, 54: 1854-1863 doi: 10.1007/s11430-011-4301-3
Ge Mingna, Pang Fei, Bao Shujing. 2019. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content: a case study of well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology & Experiment, 41(1): 23-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201901005.htm
Guo Tonglou, Liu Ruobing. 2013. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in Well JY1 as an example[J]. Natural Gas Geoscience, 24(4): 643-651(in Chinese with English abstract). http://www.researchgate.net/publication/281504770_Implications_from_marine_shale_gas_exploration_breakthrough_in_complicated_structural_area_at_high_thermal_stage_Taking_Longmaxi_Formation_in_Well_JY1_as_an_example
Guo Xusheng. 2014. Rules of two-factor enrichiment for marine shale gas in Southern China——Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 88(7): 1209-1218(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252704177.html
Jacob H. 1989. Classification, structure, genesis and practical importance of natural solid oil bitumen ("Migrabitumen"). International Journal of Coal Geology, 11: 65-79. doi: 10.1016/0166-5162(89)90113-4
Li Xiao, Wang Bingxian. 2020. Study on the reservoir characteristics and gas-bearing property of Longmaxi Formation in Py-1 Well, Southeast Chongqing[J]. Geology and Resources, 29(2): 152-160(in Chinese with English abstract).
Liu An, Bao Hanyong, Li Hai, Wei Kai, Li Jitao, Zeng Xiongwei. 2016. Analysis of the shale gas geological conditions of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Hubei Province and predict the favorable zone[J]. Geological and Mineral Resources of South China, 32(2): 126-134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201602005.htm
Maletz J, Wang C S, Wang X F. 2019. Katian (Ordovician) to Aeronian (Silurian, Llandovery) graptolite biostratigraphy of the YD-1 drill core, Yuanan County, Hubei Province, China[J]. Palaeontology, 1-32. doi: 10.1002/spp2.1267
Miao Fengbin, Peng Zhongqin, Wang Chuanshang, Yue Yong, Wang Zongxin. 2019. Gas-bearing capacity and controlling factors of Niutitang Formation shale in Well XZD-1, western margin of Xuefeng Uplift[J]. Journal of Earth Science, 44(11): 3662-3677 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911007.htm
Nie Haikuan, Jin Zhijun, Bian Ruikang, Du Wei. 2016. The "Source-Cap Hydrocarbon-Controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 37(5): 557-571(in Chinese with English abstract).
Tu Yi, Zou Haiyan, Meng Haiping, Xia Zhiyuan, Li Nan. 2014. Evaluation criteria and classification of shale gas reservoirs[J]. Oil & Gas Geology, 35(1): 153-158(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201401021.htm
Wang Chao, Zhang Boqiao, Shu Zhiguo, Lu Yongchao, Lu Yaqiu, Bao Hanyong, Li Zheng, Liu Chao. 2018. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling Area, the Sichuan Basin[J]. Oil & Gas Geology, 39(3): 485-497(in Chinese with English abstract).
Wang Chuanshang, Wang, Xiaofeng, Chen Xiaohong, Li Zhihong, Li Xubing. 2018. Ordovician sequence stratigraphy and correlation in the Middle-Upper Yangtze region, South China[J]. China Geology, 1(3): 354-366. http://www.cqvip.com/QK/72537X/20183/6100195244.html
Wang Yuman, Dong Dazhong, Li Xinjing, Huang Jinliang, Wang Shufang, Wu Wei. 2015. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 35(3): 12-21(in Chinese with English abstract). http://core.ac.uk/download/pdf/82263080.pdf
Wang Yuman, Wang Shufang, Dong Dazhong, Li Xinjing, Huang Jinliang, Zhang Chenchen, Guan Quanzhong. 2016. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan[J]. Earth Science Frontiers, 23(1): 119-133(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201601013.htm
Wang Zhigang. 2015. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 36(1): 1-6(in Chinese with English abstract). http://www.researchgate.net/publication/282682450_Breakthrough_of_Fuling_shale_gas_exploration_and_development_and_its_inspiration
Wu Jin, Liang Feng, Lin Wen, Bai wenhua, Ma Chao, Sun Shasha, Zhao Qun, Song Xiaojiang, Yu Rongze. 2017. Reservoirs characteristics and gas-bearing capacity of Wufeng-Longmaxi Formation shale in Well WX-2, northeast Chongqing area[J]. Acta Petrolei Sinica, 38(5): 512-524(in Chinese with English abstract). http://www.researchgate.net/publication/321722120_Reservoirs_characteristics_and_gas-bearing_capacity_of_Wufeng-Longmaxi_Formation_shale_in_Well_WX-2_northeast_Chongqing_area
Xie Zhitao, Hu Haiyan, Yuan Haopu, Liu Jipeng, Wang Tao, Liu Lihang. 2021. Influence of shale components on the pore development differences between Wufeng-Longmaxi Formation and Niutitang Formation: A case study of Jy-1 Well in Southeast Chongqing and Cy-1 Well in Northwest Hunan[J]. Geology and Resources, 30(2): 143-152(in Chinese with English abstract).
Xu Daliang, Peng Lianhong, Liu Hao, Wei Yunxu. 2013. Meso-Cenozoic tectono-sedimentary response of multi-phased uplifts of Huangling Anticline, Central China[J]. Geology & Mineral Resources of South China, 29(02): 90-99(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201302002.htm
Xu Zhenyu, Jiang Shu, Xiong Shaoyun, Liang Xin, Wang Gaocheng, Guo Yanling, He Yong, Rao Daqian. 2015. Characteristics and depositional model of the Lower Paleozoic organic rich shale in the Yangtze Continental Block[J]. Acta Sedimentologica Sinica, 33(1): 21-35(in Chinese with English abstract). http://www.researchgate.net/publication/304744506_Characteristics_and_depositional_model_of_the_Lower_Paleozoic_organic_rich_shale_in_the_Yangtz_continental_block
Yan Detian, Wang Qingchen, Chen Daizhao, Wang ZhuoZhuo. 2008. Sedimentary environment and development controls of the hydrocarbon sources beds: The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area[J]. Acta Geologica Sinica, 82(3): 321-327(in Chinese with English abstract). http://www.researchgate.net/publication/282762447_Sedimentary_environment_and_development_controls_of_the_hydrocarbon_sources_beds_The_Upper_Ordovician_Wufeng_Formation_and_the_Lower_Silurian_Longmaxi_Formation_in_the_Yangtze_area
Yu Chuan, Nie Haikuan, Zeng Chunlin, Cheng Lijun Shao Xiaozhou. 2014. Shale reservoir space characteristics and the effect on gas content in Lower Palaeozoic Erathem of the Eastern Sichuan Basin[J]. Acta Geologica Sinica, 88(7): 1311-1320(in Chinese with English abstract).
Zhai Gangyi, Wang Yufang, Bao Shujing, Guo Tianxu, Zhou Zhi, Chen Xianglin, Wang Jinzhu. 2017. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in Southern China[J]. Earth Science, 42(7): 1057-1068(in Chinese with English abstract).
Zhang Chenchen, Wang Yuman, Dong Dazhong, Li Xinjing, Dong Dazhong. 2016. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 36(9): 51-60(in Chinese with English abstract). http://www.cqvip.com/QK/90587X/201609/670115401.html
Zhang Junfeng, Xu Hao, Zhou Zhi, Ren Pengfei, Guo Jingzhen, Wang Qiong. 2019. Geological characteristics of shale gas reservoir in Yichang area, western Hubei. Acta Petrolei Sinica, 40(8): 887-899(in Chinese with English abstract).
Zhang Xiaoming, Shi Wanzhong, Xu Qinghai, Wang Ren, Xu Zhuang, Wang Jian, Wang Chao, Yuan Qi. 2015. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba Area, Sichuan Basin[J]. Acta Petrolei Sinica, 36(8): 926-939, 953(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syxb201508004
Zhang Yanlin, Duan Ke, Liu Zaoxue, Jin Chunshuang, Chen Ke, Luo Fan. 2019. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei[J]. Petroleum Geology & Experiment, 41(5): 691-698(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201905010.htm
陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 2011. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J]. 石油学报, 32(5): 775-782 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105007.htm 陈孝红, 张保民, 陈林, 张国涛, 李培军, 张淼. 2018. 鄂西宜昌地区晚奥陶世-早志留世页岩气藏的主控地质因素与富集模式[J]. 地球学报, 39(3): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803001.htm 陈旭, 樊隽轩, 张元动, 王红岩, 陈清, 王文卉, 梁峰, 郭伟, 赵群, 聂海宽, 文治东, 孙宗元. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm 邓铭哲, 何登发. 2018. 当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义[J]. 成都理工大学学报(自然科学版), 45(4): 487-500. doi: 10.3969/j.issn.1671-9727.2018.04.09 董敏, 张林炎, 王宗秀, 董会, 朱永刚. 2019. 鄂西地区下寒武统牛蹄塘组页岩气成藏及保存条件分析——以XD1井为例[J]. 地球科学: 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911003.htm 葛明娜, 庞飞, 包书景. 2019. 贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制——以安页1井为例[J]. 石油实验地质, 41(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901005.htm 郭彤楼, 刘若冰. 2013. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 24(4): 643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm 郭旭升. 2014. 南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm 李萧, 王丙贤. 2020. 渝东南彭水地区彭页1井龙马溪组储层特征及含气性研究[J]. 地质与资源, 29(2): 152-160. doi: 10.3969/j.issn.1671-1947.2020.02.006 刘安, 包汉勇, 李海, 李继涛, 曾雄伟. 2016. 湖北省上奥陶统五峰组-下志留统龙马溪组页岩气地质条件分析及有利区带预测. 华南地质与矿产, 32(2): 126-134. doi: 10.3969/j.issn.1007-3701.2016.02.004 苗凤彬, 彭中勤, 王传尚, 岳勇, 汪宗欣. 2019. 雪峰隆起西缘湘张地1井牛蹄塘组页岩含气性特征及控制因素[J]. 地球科学, 44(11): 3662-3677. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911007.htm 聂海宽, 金之钧, 边瑞康, 杜伟. 2016. 四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集[J]. 石油学报, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htm 涂乙, 邹海燕, 孟海平, 夏志远, 李楠. 2014. 页岩气评价标准与储层分类[J]. 石油与天然气地质, 35(1): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401021.htm 王超, 张柏桥, 舒志国, 陆永潮, 陆亚秋, 包汉勇, 李争, 刘超. 2018. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 39(03): 485-497. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803007.htm 王玉满, 董大忠, 李新景, 黄金亮, 王淑芳, 吴伟. 2015. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 35(3): 12-21. doi: 10.3787/j.issn.1000-0976.2015.03.002 王玉满, 王淑芳, 董大忠, 李新景, 黄金亮, 张晨晨, 管全中. 2016. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htm 王志刚. 2015. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm 武瑾, 梁峰, 吝文, 王红岩, 拜文华, 马超, 孙莎莎, 赵群, 宋晓江, 于荣泽. 2017. 渝东北地区巫溪2井五峰组-龙马溪组页岩气储层及含气性特征[J]. 石油学报, 38(5): 512-524. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705004.htm 谢志涛, 胡海燕, 袁浩莆, 刘冀蓬, 王涛, 刘立航. 2021. 页岩组分对五峰-龙马溪组与牛蹄塘组页岩孔隙发育差异的影响——以渝东南焦页1井与湘西北慈页1井为例[J]. 地质与资源, 30(2): 143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202102005.htm 徐大良, 彭练红, 刘浩, 魏运许. 2013. 黄陵背斜中新生代多期次隆升的构造-沉积响应[J]. 华南地质与矿产, 29(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm 徐政语, 蒋恕, 熊绍云, 梁兴, 王高成, 郭燕玲, 何勇, 饶大骞. 2015. 扬子陆块下古生界页岩发育特征与沉积模式[J]. 沉积学报, 33(1): 21-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501003.htm 严德天, 王清晨, 陈代钊, 汪建国, 王卓卓. 2008. 扬子及周缘地区上奥陶统-下志留统烃源岩发育环境及其控制因素[J]. 地质学报, 82(3): 321-327. doi: 10.3321/j.issn:0001-5717.2008.03.005 余川, 聂海宽, 曾春林, 程礼军, 邵晓州. 2014. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响[J]. 地质学报, 88(7): 1311-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407008.htm 翟刚毅, 王玉芳, 包书景, 郭天旭, 周志, 陈相霖, 王劲铸. 2017. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm 张晨晨, 王玉满, 董大忠, 李新景, 管全中. 2016. 四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测[J]. 天然气工业, 36(9): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201609009.htm 张君峰, 许浩, 周志, 任鹏飞, 郭景震, 王琼. 2019. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 40(8): 887-899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908001.htm 张晓明, 石万忠, 徐清海, 王任, 徐壮, 王健, 王超, 袁琪. 2015. 四川盆地焦石坝地区页岩气储层特征及控制因素[J]. 石油学报36(8): 926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm 张焱林, 段轲, 刘早学, 金春爽, 陈科, 罗凡. 2019. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素[J]. 石油实验地质, 41(5): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201905010.htm -
期刊类型引用(2)
1. 焦守涛,张旗,汤军,原杰,王振,陈万峰,蔡宏明,王跃. 量子科学与大数据科学:推动地质学跨越式发展的两大利器. 地学前缘. 2023(03): 294-307 . 百度学术
2. XU Xiangzhen,YANG Jingsui,XIONG Fahui,GUO Guolin. Petrology and Geochemistry of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet, China. Acta Geologica Sinica(English Edition). 2019(02): 344-361 . 必应学术
其他类型引用(7)