Petrogeochemistry, zircon U-Pb age and Hf isotope of Xinping granodiorite(104Ma) in Xinfeng area, Guangdong Province
-
摘要:
新坪铜钼矿化花岗闪长岩体位于佛冈复式岩体中北部,LA-ICP-MS锆石U-Pb年龄为(104.6±1.8)Ma(MSWD=1.2),侵位时间为早白垩世晚期。岩石呈中酸性(SiO2=63.43%~65.27%)、准铝质(ACNK=0.76~0.92)、中等碱含量(ALK=6.09%~7.63%)和富钾钙碱性特征,富集轻稀土,LREE/HREE=8.26~13.20,(La/Yb)N=8.17~16.64,轻微的铕亏损(δEu=0.73~0.87),富集Rb、U、Th和La,亏损Nb、Ta、Ti和P、Ba、Sr。锆石εHf(t)值为-3.0~0.2,Hf二阶段模式年龄tDM2=1.16~1.36Ga,镁指数(Mg#)=42.64~46.95,表明源岩主要为中元古代地壳物质,并有亏损地幔组分的参与。Nb/U和Nb/La比值分别为0.20~0.38和1.7~2.2,显示源区受古太平洋板块俯冲流体交代作用的影响。研究表明,新坪岩体成岩过程主要受部分熔融作用控制,形成于燕山晚期古太平洋板片俯冲消减作用下的伸展拉张环境,与玄武质岩浆底垫诱发中元古代结晶基底的部分熔融有关。早白垩世晚期为中国东南部晚中生代重要的Cu-Au-Mo成矿期,位于南岭中东段的新坪花岗闪长岩体与邻区闽西南紫金山铜多金属岩(矿)体形成时代一致、岩石地球化学特征较为相似,且野外能观察到明显的铜钼矿化,因此具有较好的铜钼找矿前景。
Abstract:Located in the north-central part of the Fogang complex pluton, the Xinping Cu-Mo mineralization granodiorite pluton formed in late Early Cretaceous, and its LA-ICP-MS zircon U-Pb age is (104.6±1.8)Ma(MSWD=1.2). The granodiorite is characterized by medium acidity (SiO2=63.43%-65.27%), quasi-aluminium(ACNK=0.76-0.92), medium alkali(ALK=6.09%-7.63%) and high-K Calc-alkaline. It shows enrichment in light rare earth elements Rb, U, Th and La, and the ratio of LREE/HREE is 8.26-13.20 while (La/Yb)N is 8.17-16.64. Otherwise, it shows depletion in Nb, Ta, Ti, P, Ba and Sr, with minor loss of Eu (δEu=0.73-0.87). The εHf(t) range from -3.0 to +0.2, and the two-stage model age of Hf(tDM2) is 1.16-1.36Ga, and the index of Mg(Mg#) is 42.64-46.95. All of these indicate that the source rocks are mainly crustal materials formed in Mesoproterozoic, with the participation of deficient mantle components. The ratio of Nb/U and Nb/La is respectively 0.20-0.38 and 1.7-2.2, which indicates that the source area is affected by the fluid metasomatism in subduction of Paleo-Pacific Plate. This study shows that the Xinping granodiorite is dominated by partial melting in process of diageneesis. The Xinping pluton formed in the extensional setting under the subduction of the Paleo-Pacific plate in late Yanshanian period, which is related to the partial melting of the Mesoproterozoic crystalline basement induced by the basaltic magma. In late Early Cretaceous, it was an important Cu-Au-Mo mineralization period in late Mesozoic in southeastern China, while the Xinping granodiorite, located in the middle east of Nanling mountains, coincide with the diagenetic age of the Zijinshan copper polymetallic rocks or ores in the southwestern Fujian Province, with similar petrochemical characteristics. Also, the obvious copper-molybdenum mineralization can be observed in the field, so it will have a good prospecting prospect for copper-molybdenum deposits.
-
Keywords:
- granodiorite /
- Cu-Mo mineralization /
- U-Pb age /
- geochemistry /
- Hf isotope /
- mineral survey engineering /
- Xinfeng /
- Guangdong
-
1. 引言
赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989;陈郑辉等,2006;毛景文等,2007;郭春丽等,2007;许建祥等,2008;刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989;张文兰等,2006;王登红,2019;杨斌等,2021;秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981;李建康,2012;李建康等,2014;王登红等,2017;王成辉等,2019;Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。
2. 矿区地质特征
赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007;裴荣富和熊群尧,1999;刘善宝等,2010)。
石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。
矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。
表 1 ZKn11-11云英岩W、Sn、Li测试分析结果Table 1. The W, Sn, Li analysis results of greisen samples of ZKn11-11(1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。
图 2 石雷矿区钨锡锂多金属矿体特征a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿Figure 2. Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining areaa, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite(2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。
3. 含锂云母成分分析和初步认识
本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-AlⅥ-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。
表 2 石雷矿区云英岩中云母LA-ICP-MS原位分析结果Table 2. LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018;王正军等,2018;张勇等,2020;Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。
4. 南岭钨锡矿中云英岩型锂矿成矿潜力及找矿方向
随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020;娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。
以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。
总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019;陈其慎等,2021;王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。
5. 结论
南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。
-
图 1 佛冈复式岩体及新坪岩体地质简图(底图据孙涛, 2006; 徐夕生等, 2007修改; 岩体U-Pb年龄数据来源陈江峰等, 1991; 邱检生等, 1999; 高剑锋等, 2005; 刘昌实等, 2005; Li et al., 2007; 陈富文等, 2008; 李艳军等, 2009; 林清茶等, 2011; 邱检生等, 2012; Chen et al., 2013; 杨金豹等, 2013; 郭海浩等, 2014; 杨振等, 2014; 苏扣林等, 2015; Duan et al., 2017; 贾丽辉, 2018)
a—华南燕山期花岗岩及早白垩世晚期(100~110 Ma)岩体分布图;b—佛冈复式岩体花岗岩分布图;c—新坪岩体地质简图
Figure 1. Sketch geological map of the Fogang composite pluton and Xinping granodiorite pluton (modified from Sun Tao, 2006, Xu Xisheng et al., 2007; Age data of pluton from Chen Jiangfeng et al., 1991; Qiu Jiansheng et al., 1999; Gao Jianfeng et al., 2005; Liu Changshi et al., 2005; Li et al., 2007; Chen Fuwen et al., 2008; Li Yanjun et al., 2009; Lin Qingcha et al., 2011; Qiu Jiansheng et al., 2012; Chen et al., 2013; Yang Jinbao et al., 2013; Guo Haihao et al., 2014; Yang Zhen et al., 2014; Su Koulin et al., 2015; Duan et al., 2017; Jia Lihui, 2018)
a-Distribution map of Yanshanian granites and Late period of Early Cretaceous (100-110Ma) plutons in South China; b-Distribution map of Granites in Fogang composite pluton; c-Sketch geological map of Xinping pluton
图 3 新坪岩体花岗闪长岩样品(Dy017)锆石代表性阴极发光(CL)图像和锆石U-Pb年龄谐和图
阴极发光(CL)图像中:实线圆圈代表U-Pb分析点,虚线圆圈代表相应的Hf同位素分析点
Figure 3. Cathodoluminescence (CL) images of representative zircons in sample (Dy017) and concordia diagrams of LA-ICP-MS zircon U-Pb data from the Xinping granodiorite pluton
The solid circles represent the analysis spots of U-Pb and dotted circles represent the analysis spots of corresponding Hf isotope in the cathodoluminescence (CL) images
图 5 新坪花岗闪长岩主量元素判别图
a—TAS分类图解(底图据Middlemost, 1994); b—SiO2-A.R.图解; c—K2O-SiO2图解(底图据Peccerillo et al., 1976); d—A/NK-A/CNK图解
Figure 5. Plots of major element compositions of Xinping granodiorite
a-Total alkalis vs. silica(after Middlemost, 1994); b-Silica vs. A.R.; c-Potassium vs. silica(after Peccerillo et al., 1976); d-A/NK vs. A/CNK
图 6 新坪花岗闪长岩稀土元素球粒陨石标准化配分曲线(a, 标准化值据Taylor et al., 1985)和微量元素原始地幔标准化蛛丝图(b, 标准化值据Sun et al., 1989)
Figure 6. Diagrams of chondrite-normalized rare earth elements (a, the normalized values after Taylor et al., 1985) and Primitive mantle-normalized trace elements spidergrams(b, the normalized values after Sun et al., 1989) of the Xinping granodiorite pluton
图 8 新坪花岗闪长岩MgO-SiO2图(a)和Ni-Mg#图(b)
(底图数据来源:a, 据Hou et al., 2004; Zhu et al., 2009; b, 据Guo et al., 2012)
Figure 8. Discrimination diagrams of MgO-SiO2(a) and Ni-Mg#(b) for the Xinping granodiorite
(Date sources: a, after Hou et al., 2004; Zhu et al., 2009; b, after Guo et al., 2012)
图 10 新坪花岗闪长岩的构造背景判别图(据Pearce et al., 1984)
WPG—板内花岗岩;ORG—洋中脊花岗岩;VAG—火山弧花岗岩;syn—COLG-同碰撞花岗岩
Figure 10. Diagrams of tectonic environment for Xinping granodiorite by trace elements(after Pearce et al., 1984)
WPG-within plate granite; ORG-oceanic ridge granite; VAGvolcanic arc granite; syn-COLG-syn-collision granite on
表 1 新坪花岗闪长岩LA-ICP-MS锆石U-Pb测试结果
Table 1 LA-ICP-MS zircon U-Pb dating results of the Xinping granodiorite
表 2 新坪花岗闪长岩体锆石Hf同位素分析结果
Table 2 Zircon Hf isotopic compositions of the Xinping granodiorite pluton
表 3 新坪花岗闪长岩主量元素(%)及微量、稀土元素(10-6)分析结果
Table 3 Major element (%), trace and rare earth (10-6) analyses of the Xinping granodiorite
-
Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X
Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 132(4): 390-404. doi: 10.1007/s004100050431
Bao Zhiwei, Zhao Zhenhua. 2003. Geochemistry and tectonic setting fo the Fogang aluminous A-type granite, Guangdong Province, China-A preliminary study[J]. Geology-Geochemistry, 31(1): 52-61 (in Chinese with English abstract).
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan fold belt[J]. Royal Society of Edinburgh Transaction, 83: 1-26. http://www.onacademic.com/detail/journal_1000037590828310_9d36.html
Chen Fuwen, Li Huaqin, MeiYuping. 2008. Zircon SHRIMP U-Pb chronology of diagenetic mineralization of the Longtoushan porphyry gold orefield, Gui County, Guangxi[J]. Acta Geologica Sinica, 82(7): 921-926. http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200807011&dbcode=CJFD&year=2008&dflag=pdfdown
Chen Jiangfeng, Zhou Taixi, Yin Chunsheng. 1991. 40Ar-39Ar dating of several mesozoic plutous in Southeastern Zhejiang Province[J]. Acta Petrologica Sinica, 3: 37-44 (in Chinese with English abstract). http://www.researchgate.net/publication/292588018_40Ar-39Ar_dating_of_several_Mesozoic_plutons_in_southeastern_Zhejiang_Province
Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jinfeng, Simon Wilde. 2013. Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: Zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence[J]. Lithos, 162-163: 140-156. doi: 10.1016/j.lithos.2013.01.003
Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jingfeng. 2014. Geochemical transition shown by Cretaceous granitoids in southeastern China: Implications for continental crustal reworking and growth[J]. Lithos, 196-197: 115-130. doi: 10.1016/j.lithos.2014.03.003
Chen Jingyuan, Yang Jinhui. 2015. Petrogenesis of the Fogang highly fractionated Ⅰ-type granitoids: Constraints from Nb, Ta, Zr and Hf[J]. Acta Petrologica Sinica, 31(3): 846-854 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201503017
Chen Xiaoming, Wang Rucheng, Liu Changshi, Hu Huan, Zhang Wenlan, Gao Jianfeng. 2002. Isotopic dating and genesis for Fogang biotite granites of Conghua area, Guangdong Province[J]. Geological Journal of China Universities, 8(3): 293-307. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200203005.htm
Chung Sunlin, Liu Dunyi, Ji Jianqing, Chu Meifei, Lee haoyang, Wen dajen, Lo Chinghua, Lee Tungyi, Qian Qing, Zhang Qi. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. doi: 10.1130/G19796.1
Danyushevsky L V, Falloon T J, Crawford A J, Tetroeva S A, Leslie R L, Verbeeten A. 2008. High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: Evidence for the mantle origin of adakite parental melts[J]. Geology, 36(6): 499-502. doi: 10.1130/G24349A.1
Duan Gan, Chen Huayong, Hollings P, Qi Jinping, Xu Chao, Zhang Shuang, Xiao Bin, Liu Guangyong, Liu Jianming. 2017. The Mesozoic magmatic sources and tectonic setting of the Zijinshan mineral field, South China: Constraints from geochronology and geochemistry of igneous rocks in the Southeastern Ore Segment[J]. Ore Geology Reviews, 80: 800-827. doi: 10.1016/j.oregeorev.2016.08.016
Gao Jianfeng, Ling Hongfei, Sheng Weizhou, Lu Jianjun, Zhang Min, Huang Guolong, Tan Zhengzhong. 2005. Geochemistry and petrogenesis of Lianyang granite composite, west Guangdong Province[J]. Acta Petrologica Sinica, 21(6): 1645-1656 (in Chinese with English abstract). http://www.researchgate.net/publication/258418854_Geochemistry_and_petrogenesis_of_Lianyang_granite_composite_west_Guangdong_province
Gilder S A, Gill J, Coe R S, Zhao Xixi, Liu Zhongwei, Wang Genxian, Yuan Kuirong, Liu Wenlong, Kuang Guodong, Wu Haoruo. 1996. Isotopic and paleomagnetic constraints on the mesozoic tectonic evolution of South China[J]. Journal of Geophysical Research: Solid Earth, 1011(7): 16137-16154. http://www.es.ucsc.edu/~rcoe/coepubs/coe38.pdf
Griffin W L, Belousova E A, Shee S R. 2004. Crustal evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131(3-4): 231-281. doi: 10.1016/j.precamres.2003.12.011
Guo Haihao, Xiao Yilin, Gu Xiangping, Huang Jian, Hou Zhenhui, Liu Haiyang. 2014. LA-ICP-MS allanite U-Th-Pb geochronology study on Guangdong Xinfeng REE-rich granite[J]. Acta Geologica Sinica, 88(6): 1025-1037 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201406006.htm
Guo Xianqing, Yan Ziqiu, Wang Zhijun, Wang T, Hou Kejun, Fu Changlei, Li Jiaohong. 2012. Middle Triassic arc magmatim along the northeastern margin of the Tibet: U-Pb and Lu-Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China[J]. Journal of the Geological Society, 169(3): 327-336. doi: 10.1144/0016-76492011-083
Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
Hou Zengqian, Gao Yongfeng, Qu X M, Rui Z Y, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1/2): 139-155.
Jia Lihui. 2018. Petrogenesis of Late Mesozoic Granitoids and Evalution of Metallogenic Potential in Eastern Guangdong, Coastal Area of SE China[D]. Beijing: China University of Geosciences, 1-153 (in Chinese with English abstract).
Jiang Sihong, Bagas L, Liang Qingling. 2017. Pyrite Re-Os isotope systematics at the Zijinshan deposit of SW Fujian, China: Constraints on the timing and source of Cu-Au mineralization[J]. Ore Geology Reviews, 80: 612-622. doi: 10.1016/j.oregeorev.2016.07.024
Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, Dai Baozhang. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints[J]. Earth and Planetary Science Letters, 241(3/4): 617-633. http://www.sciencedirect.com/science/article/pii/S0012821X0500779X
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371
Li Bin, Jiang Shaoyong. 2014. A subduction-related metasomatically enriched mantle origin for the Luoboling and Zhongliao Cretaceous granitoids from South China: Implications for magma evolution and Cu-Mo mineralization[J]. International Geology Review, 57(9/10): 1239-1266.
Li Xianhua, Li Zhengxiang, Li Wuxian, Liu Ying, Yuan Chao, Wei Gangjian, Qi Changshi. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 96(1/2): 186-204. http://www.sciencedirect.com/science/article/pii/S002449370600291X
Li Xianhua, Zhao Zhenhua, Gui Xuntang, Yu Jinsheng. 1991. Sm-Nd Isotopic and zircon U-Pb constraints on the age of formation of the Precambrian crust in southeast China[J]. Geochimica, 3: 255-264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199103006.htm
Li Yanjun, Wei Junhao, Yao Chunliang, Yan Yunfei, Tan Jun, Fu Lebin, Pan Jinbo, Li Wei. 2009. Zircon U-Pb dating and tectonic significance of the Shipingchuan Granite in Southeastern Zhejiang Province, SE China[J]. Geological Review, 55(5): 673-684 (in Chinese with English abstract). http://www.researchgate.net/publication/303237075_Zircon_U-Pb_dating_and_tectonic_significance_of_the_Shipingchuan_Granite_in_Southeastern_Zhejiang_Province_SE_China
Li Yanjun, Wei Junhao, Yao Chunliang, Yan Yunfei, Tan Jun, Peng Lina, Xiao Guangling, Ye Zefu. 2010. Genetic relationship of the Huaixi copper-gold deposit and the Caomen Alkaline granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies[J]. Earth Science -Journal of China University of Geosciences, 35(4): 585-596 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.074
Lin Qingcha, Cheng Xiongwei, Zhang Yuquan, Wang Fangyue. 2011. Evolution of Granitoids in the active continental margin: A case study of the Fuzhou compound complex[J]. Acta Geologica Sinica, 85(7): 37-44 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201107007&dbcode=CJFD&year=2011&dflag=pdfdown
Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, Discrimination criteria and genesis for a type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253567896.html
Liu Changshi, Chen Xiaoming, Wang Rucheng, Zhang Wenlan, Hu Huan. 2005. Isotopic dating and origin of complexly zoned micas for A-type Nankunshan aluminous granite[J]. Geological Review, 51(2): 193-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200502015.htm
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.
Liu Yongsheng, Hu Zhaochu, Gao Shan, Gunther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1): 34-43. http://cms.kdis.edu.cn/cms/geology_cug/achievements/fabiaowenzhang/resource/414f3b8022107c51b3554fd7277929d6.pdf
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[D]. Berkeley: Berkeley Geochronology Center, California.
Mao Jingwen, Luo Maocheng, Xie Guiqing, Liu Jun, Wu Shenghua. 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 88(12): 2153-2175 (in Chinese with English abstract).
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215-224. http://www.onacademic.com/detail/journal_1000035302893810_0b9a.html
Morel M L A, Nebel O, Nebel-Jacobsen Y, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical geology, 255(1/2): 231-235. http://www.onacademic.com/detail/journal_1000035368875810_a084.html
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Peccerillo A, Taylor D R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kaitamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
Qiu Jiansheng, Li Zhen, Liu Liang, Zhao Jiaolong. 2012. Petrogenesis of the Zhangpu Composite Granite Pluton in Fujian Province: Constrains from Zircon U-Pb Ages, Elemental Geochemistry and Nd-Hf Isotopes[J]. Acta Geologica Sinica, 86(4): 561-576 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201204003.htm
Qiu Jiansheng, Wang Dezi, Brent I A McInnes. 1999. Geochemistry and petrogenesis of the I-and A-type composite granite masses in the coastal area of Zhejiang and Fujian Province[J]. Acta Petrologica Sinica, 15(2): 237-246 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10011069268
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle Recycling[J]. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Holland H D and Turekian K K(eds. ). The Crust. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 3: 1-64.
Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1-35. http://www.researchgate.net/profile/A_Gerdes/publication/223835536_Pleovice_zircon__A_new_natural_reference_material_for_UPb_and_Hf_isotopic_microanalysis/links/09e41507d9578c18e8000000
Song Chuanzhong, Li Jiahao, Yan Jiayong, Wang Yangyang, Liu Zhendong, Yuan Fang, Li Zhenwei. 2019. A tentative discussion on some tectonic problems in the east of South China continent[J]. Geology in China, 46(4): 704-722(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201904004.htm
Streck M J, Leeman W P. 2007. Chesley J. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 35: 351-354. doi: 10.1130/G23286A.1
Su Koulin, Ding Xing, Huang Yonggui, Zheng Xiaozhan, Wu Kai, Hu Yongbin. 2015. Compositional differentiation of Early Cretaceous Yajishan syenitic complex and its petrogenesis[J]. Acta Petrologica Sinica, 31(3): 829-845 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201503016.htm
Sun S S, McDonough W E. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42: 313-345.
Sun Tao. 2006. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz200603002
Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.
Wang Denghong, Chen Zhenyu, Huang Fan, Wang Chenghui, Zhao Zhi, Cheng Zhenghui, Zhao Zheng, Liu Xinxing. 2014. Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling Region[J]. Geotectonica et Metallogenia, 38(2): 230-238 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ddgzyckx201402003
Wang Lijuan, Griffin W L, Yu Jinhai, O'Reilly S Y. 2010. Precambrian crustal evolution of the Yangtze block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 177(1-2): 131-144. doi: 10.1016/j.precamres.2009.11.008
Wang Qiang, Li Xianhua, Jia Xiaohui, Wyman D A, Tang gongjian, Li Zhengxiang, Ma Lin, Yang Yuesheng, Jiang Ziqi, Gou Guoning. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 328: 222-243. doi: 10.1016/j.chemgeo.2012.04.029
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202
Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 58: 4127-4145. doi: 10.1016/0016-7037(94)90269-0
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chem. Geol., 234(1): 105-126. http://www10215.edu6.org/biaozhun/wu%202006.pdf
Xu Xisheng, Zhou Xinmin, O'Reilly S Y, Tang Hongfeng. 1999. Exploration for the lower crustal materials and granite genesis in southeast China[J]. Acta Petrologica Sinica, 15(2): 217-223 (in Chinese with English abstract). http://www.oalib.com/paper/1471882
Yang Jinbao, Sheng Dan, Zhao Zhidan, Ding Cong, Zhou Hongfang, Cui Yuanyuan, Jiang Ting, Hu Zhaochu. 2013. Petrogenesis and implications of granites and associated dioritic enclaves in Jiaomei area, Zhangzhou, Fujian Province[J]. Acta Petrologica Sinica, 29(11): 4004-4010 (in Chinese with English abstract). http://www.researchgate.net/profile/Jinbao_Yang2/publication/271387353_Petrogenesis_and_implications_of_granites_and_associated_dioritic_enclaves_in_Jiaomei_area_Zhangzhou_Fujian_Province/links/54c70eb10cf289f0ceccd009.pdf
Yang Zhen, Liu Rui, Wang Xinyu, Zhou Guofa. 2014 Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China: Evidence from Zircon U-Pb Ages and Hf Isotopes[J]. Earth Science-Journal of China University of Geosciences, 39(9): 1258-1276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201409002.htm
Yu Jinhai, O, Reilly S Y, Wang Lijuan, Griffin W L, Zhang Ming, Wang Rucheng, Jiang Shaoyong, Shu Liangshu. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb Geochronology and Hf Isotopes of Detrital Zircons[J]. Precambrian Research, 164(1): 1-15. http://www.onacademic.com/detail/journal_1000035433665810_076d.html
Yu Jinhai, O, Reilly S Y, Wang Lijuan, Griffin W L, Zhou Meifu, Zhang Ming, Shu Liangshu. 2010. Components and episodic growth of precambrian crust in the Cathaysia block, South China: Evidence from U-Pb ages and Hf isotopes of zircon in Neoproterozoic sediments[J]. Precambrian Research, 181(1): 97-114. http://www.onacademic.com/detail/journal_1000035434016910_ef90.html
Zhang Bangtong, Wu Junqi, Ling Hongfei, Chen Peirong. 2008. Geochemical evidence of element and Sr-O-Nd-Pb isotopes for petrogenesis of the Huichang Early Cretaceous shoshonite, southern Jiangxi Province[J]. Acta Geologica Sinica, 82(7): 986-997 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE200807019.htm
Zhang Bo, Guo Feng, Zhang Xiaobing, Wu Yanming, Wang Guoqing, Zhao Liang. 2019. Early Cretaceous subduction of Paleo-Lacific Ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions[J]. Lithos, 334-335: 8-24. doi: 10.1016/j.lithos.2019.03.010
Zhang Yongqian, Xu Yao, Yan Jiayong, Xu Zhiwu, Zhao Jinhua. 2019. Crustal thickness, properties and its relations to mineralization in the southeastern part of South China: Constraint from the teleseismic receiver functions[J]. Geology in China, 46(4): 723-736(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201904005.htm
Zhao Zheng, Wang Denghong, Zhang Changqing, He Yufan. 2014. Metallogenic specialization of the magmatic rocks associated with the Lead-Zinc Deposits in the Nanling Region[J]. Geotectonica et Metallogenia, 38(2): 289-300 (in Chinese with English abstract). http://www.cqvip.com/QK/90781X/201402/49816581.html
Zhong Zhifei, Wu Jianhua. 2015. Geochronology, geochemical characteristics and genesis significance of adakitic trachyte in Huichang Basin, Jiangxi Province[J]. Journal of China Institute of Technology, 38(2): 167-175 (in Chinese with English abstract). http://www.cqvip.com/QK/92652B/20152/665345484.html
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004
Zhu Dicheng, Zhao Zhidan, Pan Guitang, Lee haoyang, Kang Zhiqiang, Liao Zhongli, Wang liquan, Li Guangming, Dong guochen, Liu Bo. 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences, 34(3): 298-309. doi: 10.1016/j.jseaes.2008.05.003
Zhuang Wenming, Chen Shaoqian, Huang Youyi. 2000. Geological and geochemical characteristics of Fogang composite pluton and its source rock[J]. Guangdong Geology, 15(3): 1-12 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gddz200003001
包志伟, 赵振华. 2003. 佛冈铝质A型花岗岩的地球化学及其形成环境初探[J]. 地质地球化学, 31(1): 52-61. doi: 10.3969/j.issn.1672-9250.2003.01.009 陈富文, 李华芹, 梅玉萍. 2008. 广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究[J]. 地质学报, 82(7): 921-926. doi: 10.3321/j.issn:0001-5717.2008.07.009 陈江峰, 周泰禧, 印春生. 1991. 浙东南某些中生代侵入岩体的40Ar-39Ar年龄测定[J]. 岩石学报, 3: 37-44. doi: 10.3321/j.issn:1000-0569.1991.03.005 陈璟元, 杨进辉. 2015. 佛冈高分异Ⅰ型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约[J]. 岩石学报, 31(3): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503017.htm 陈小明, 王汝成, 刘昌实, 胡欢, 张文兰, 高剑锋. 2002. 广东从化佛冈(主体)黑云母花岗岩定年和成因[J]. 高校地质学报, 8(3): 293-307. doi: 10.3969/j.issn.1006-7493.2002.03.006 高剑锋, 凌洪飞, 沈渭洲, 陆建军, 张敏, 黄国龙, 谭正中. 2005. 粤西连阳复式岩体的地球化学特征及其成因研究[J]. 岩石学报, 21(06): 1645-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506014.htm 葛小月, 李献华, 陈志刚, 李伍平. 2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约[J]. 科学通报, 47(6): 474-480. doi: 10.3321/j.issn:0023-074X.2002.06.018 郭海浩, 肖益林, 谷湘平, 黄建, 侯振辉, 刘海洋. 2014. 广东新丰稀土花岗岩中褐帘石LA-ICP-MS的U-Th-Pb定年研究[J]. 地质学报, 88(6): 1025-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406006.htm 侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 贾丽辉. 2018. 东南沿海粤东地区晚中生代花岗质岩石成因研究与含矿性评价[D]. 北京: 中国地质大学, 1-153. 李献华, 赵振华, 桂训唐, 于津生. 1991. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, 3: 255-264. doi: 10.3321/j.issn:0379-1726.1991.03.007 李艳军, 魏俊浩, 姚春亮, 鄢云飞, 谭俊, 付乐兵, 潘锦勃, 李伟. 2009. 浙东南石平川花岗岩体LA-ICP-MS锆石U-Pb年代学及构造意义[J]. 地质论评, 55(5): 673-684. doi: 10.3321/j.issn:0371-5736.2009.05.009 李艳军, 魏俊浩, 姚春亮, 鄢云飞, 谭俊, 彭丽娜, 肖广玲, 叶泽富. 2010. 浙东南怀溪铜金矿床与曹门碱性花岗岩体成因关系的年代学制约[J]. 地球科学——中国地质大学学报, 35(4): 585-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004012.htm 林清茶, 程雄卫, 张玉泉, 汪方跃. 2011. 活动大陆边缘花岗岩类演化——以福州复式岩体为例[J]. 地质学报, 85(7): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107007.htm 刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 刘昌实, 陈小明, 王汝城, 张文兰, 胡欢. 2005. 广东南昆山A型花岗岩定年和环带云母研究[J]. 地质论评, 51(2): 193-200. doi: 10.3321/j.issn:0371-5736.2005.02.013 毛景文, 罗茂澄, 谢桂青, 刘军, 吴胜华. 2014. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm 邱检生, 李真, 刘亮, 赵姣龙. 2012. 福建漳浦复式花岗岩体的成因: 锆石U-Pb年代学、元素地球化学及Nd-Hf同位素制约[J]. 地质学报, 86(4): 561-576. doi: 10.3969/j.issn.0001-5717.2012.04.003 邱检生, 王德滋, Brent I A McInnes. 1999. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因[J]. 岩石学报, 15(2): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm 宋传中, 李加好, 严加永, 王阳阳, 刘振东, 袁芳, 李振伟. 2019. 华南大陆东部若干构造问题的思考[J]. 中国地质, 46(4): 704-722. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190403&flag=1 苏扣林, 丁兴, 黄永贵, 郑小战, 吴凯, 胡永斌. 2015. 粤中早白垩世亚髻山正长质杂岩体的成分分异及岩石成因[J]. 岩石学报, 31(3): 829-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503016.htm 孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 王登红, 陈振宇, 黄凡, 王成辉, 赵芝, 陈郑辉, 赵正, 刘新星. 2014. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 38(2): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402003.htm 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 徐克勤, 朱金初, 刘昌实, 沈渭洲. 1989. 华南花岗岩类的成因系列和物质来源[J]. 南京大学学报(地球科学), 3: 1-18. 徐夕生, 鲁为敏, 贺振宇. 2007. 佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源[J]. 中国科学(D辑), 37(1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701002.htm 徐夕生, 周新民, O'Reilly S Y, 唐红峰. 1999. 中国东南部下地壳物质与花岗岩成因探索[J]. 岩石学报, 15(02): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.007.htm 杨金豹, 盛丹, 赵志丹, 丁聪, 周红芳, 崔圆圆, 蒋婷, 胡兆初. 2013. 福建漳州角美花岗岩与闪长质包体的岩石成因及意义[J]. 岩石学报, 29(11): 4004-4010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311029.htm 杨振, 刘锐, 王新宇, 周国发. 2014. 云开地区燕山晚期花岗岩的岩石成因及构造意义: 锆石U-Pb年龄及Hf同位素证据[J]. 地球科学——中国地质大学学报, 39(9): 1258-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409002.htm 张绍立, 王联魁, 朱为方, 杨文金. 1983. 华南花岗岩类两个成岩成矿系列的副矿物特征[J]. 矿物岩石地球化学通讯, 3: 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH198303010.htm 章邦桐, 吴俊奇, 凌洪飞, 陈培荣. 2008. 会昌早白垩世橄榄玄粗岩(shoshonite)成因的元素及Sr-O-Nd-Pb同位素地球化学证据[J]. 地质学报, 82(7): 986-997. doi: 10.3321/j.issn:0001-5717.2008.07.017 张永谦, 徐峣, 严加永, 徐志伍, 赵金花. 2019. 华南东南部地壳厚度、属性及其与成矿的关系: 基于地震接收函数的约束[J]. 中国地质, 46(4): 723-736. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190404&flag=1 赵正, 王登红, 张长青, 何玉璠. 2014. 南岭地区与铅锌矿有关岩浆岩的成矿专属性研究[J]. 大地构造与成矿学, 38(2): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402008.htm 钟志菲, 巫建华. 2015. 江西会昌盆地埃达克质粗面岩年代学、地球化学与成因研究[J]. 东华理工大学学报(自然科学版), 38(2): 167-175. doi: 10.3969/j.issn.1674-3504.2015.02.005 庄文明, 陈绍前, 黄友义. 2000. 佛冈复式岩体地质地球化学特征及其成岩源岩[J]. 广东地质, 15(3): 1-12. https://d.wanfangdata.com.cn/periodical/gddz200003001 -
期刊类型引用(3)
1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术
其他类型引用(1)