Petrogenesis of the Caledonian granites in the northern part of Miaoershan pluton, southwestern Hunan Province: Evidence from petrology, geochemistry and zircon U-Pb age
-
摘要:
苗儿山岩体位于湘西南与桂北交界处,为由晋宁期、加里东期、印支期和燕山期花岗岩组成的复式岩体。其中,加里东期花岗岩构成该复式岩体的主体,可划分为六个侵入次。本次通过锆石LA-ICP-MS测年,获得第一、第二、第六侵入次的年龄分别为(428.1±3.6)Ma、(420.3±3.4)~(421.3±3.2)Ma和(408.3±3.5)Ma。加里东期花岗岩的(87Sr/86Sr)i为0.71765,εNd(t)为-9.7,δ18O值为9.8‰,总体属壳源弱过铝-强过铝质花岗岩,形成于碰撞挤压峰期之后挤压减弱、应力松弛的后碰撞构造环境,其早期和晚期的源区岩石类型和形成温度有所区别:早期花岗岩的上地壳源区成分较为复杂,不仅存在泥岩,还有砂屑岩和/或变质火成岩,其形成温度较高(>875℃);晚期花岗岩的源岩为上地壳泥岩,属典型的S型花岗岩,其形成温度较低(< 875℃)。
Abstract:The Miaoershan pluton, located at the junction of southwestern Hunan and Northern Guangxi, is a composite batholith composed of Jinningian, Caledonian, Indosinian and Yanshanian granites. Among them, Caledonian granites constitute the main body of the composite batholith, which can be divided into six intruding episodes. Through zircon LA-ICP-MS dating, the ages of the first, second and sixth episodic granites were measured at (428.1±3.6) Ma, (420.3±3.4)-(421.3±3.2) Ma and (408.3±3.5) Ma, respectively. The average (87Sr/86Sr)i, εNd(t) and the δ18O values of the Caledonian granites are 0.71765, -9.7, and 9.8, respectively. Caledonian granites are generally crust derived weak peraluminous-strong peraluminous granites, formed in post-collisional tectonic environment characterized by weakened compression and relaxed stress after the peak period of collision and extrusion. Their material and heat sources are different in the early and late stages. The early stage granites were derived from upper crustal metamorphic mudstone, psammite and/or metamorphic igneous rocks, and their formation temperature is relatively high(> 875℃). The late stage granites were derived from upper crustal metamorphic mudstone with lower formation temperature (< 875℃), showing the characteristics of typical S-type granites.
-
1. 引言
祁连山位于华北板块西南缘,与秦岭、昆仑一起构成中国大陆内部巨型的中央造山带,是中国大陆主要造山带之一。北祁连造山带雄踞于河西走廊之南,成为青藏高原的东北界,东南与西秦岭相连,西北被阿尔金山截断(葛肖虹等,1999;杨永春等,2019;图 1a)。前人通过大量岩石学、沉积等研究对北祁连洋盆的俯冲极向做过研究,主要形成了双向俯冲(肖序常等,1978;王荃等,1981;左国朝等,1987;吴才来等,2010)、向北俯冲(许志琴等,1994;夏林圻等, 1996, 1998;张建新等, 1997, 1998;夏林圻等,2016)、向南俯冲(宋述光,1997;刘传周等,2005),目前尚无统一的认识。已有研究表明,通过花岗岩类地球化学特征及同位素年代学的研究可以提供有关其形成的大地构造背景信息,可以作为地质构造示踪剂(徐卫东等,2007;秦海鹏,2012)。目前,在北祁连山造山带毛藏寺、银硐梁、大野口等多处发现有埃达克岩或埃达克质岩石,这类岩石为区域构造背景研究提供了依据,本文试图利用车路沟岩体对北祁连构造演化进行研究。
研究区位于北祁连造山带西段,区内广泛发育寒武系黑茨沟组裂谷火山岩(王晓伟等,2018)、奥陶系阴沟群和扣门子组岛弧-弧后扩张脊型火山岩以及志留系复理石沉积,分布有俯冲混杂岩带,具有典型的沟弧盆体系(夏林圻等,2001),车路沟岩体位于前人所划分的奥陶系岛弧火山岩-沉积岩系中。前人对岩体特征和时代做了一些研究(杨建国等,2003;宋忠宝等,2004;贾群子等,2005),但多围绕其与金成矿作用方面的研究,宋忠宝等(2005)通过对车路沟中英安斑岩进行年代学、地球化学研究,认为车路沟岩体属于碰撞型花岗岩类,形成于碰撞作用晚期。本文通过对车路沟岩体中英云闪长玢岩的岩石学、地球化学、锆石U-Pb年代学等方面的研究,分析其岩石成因,揭示其形成时的构造背景,为北祁连造山带构造演化提供约束。
2. 区域地质概况
研究区大地构造位置属北祁连早古生代造山带西段之西端(杨建国等,2003),距离北祁连造山带与阿尔金断裂交汇部位4 km。区域上地层北部有古元古界敦煌岩群零星分布外,以古生界为主,主要有寒武系、奥陶系、志留系,其次为石炭系。区域上侵入岩较为发育,以明芨芨沟岩体、青石峡岩体、青山岩体和车路沟岩体为主,分布范围较大,多呈岩株状分布,展布方向和区域构造线方向基本一致,多呈北西、北西西向。
车路沟岩体位于北祁连造山带西段,紧邻阿尔金走滑断裂南侧,出露面积较大(图 1b),自阴凹大泉至照壁山一带广泛分布,多侵入于奥陶系扣门子组中,岩体被断裂构造破坏严重,形态呈不规则块状,呈岩基状东西向条带状分布,边界明显的受控于断裂构造(夏林圻等,2001),多与地层呈断层接触,接触部位具明显的片理化,反映岩体的形成与板块俯冲、碰撞和造山带上不同的块体之间的构造作用密切相关(吴才来等,2010)。
图 1 车路沟一带地质简图1—第四系冲、洪积物;2—二叠系砂岩;3—石炭系砂岩;4—志留系复理石建造;5—奥陶系扣门子组火山岩系;6—奥陶系中堡群火山-碎屑岩系;7—奥陶系阴沟群火山岩系;8—石英二长闪长岩;9—英云闪长玢岩;10—闪长玢岩;11—实测断裂构造;12—同位素测年样品采样位置;13—岩石全分析样品采样位置Figure 1. Regional geological map of the Chelugou pluton1- Quaternary; 2- Permian sandstone; 3- Carboniferous sandstone; 4- Silurian flysch formation; 5- Volcanic rocks of Ordovician Koumenzi Formation; 6- Volcanic clastic rocks of Ordovician Zhongbu Group; 7- Volcanic rocks of Ordovician Yingou Group; 8- Quartz monzodiorite; 9- Quartz mica dioritic porphyry; 10-Diorite porphyry; 11-Fault; 12-Sampling position for isotope dating; 13- Sampling position for rock analysis3. 岩石学特征
车路沟岩体主要由英云闪长玢岩、闪长玢岩组成,局部为石英闪长玢岩、英云闪长岩等,岩体与地层接触部位产出车路沟金矿、昌马金矿等多个金矿床。主要岩石特征如下:
英云闪长玢岩,灰白色,斑状结构,基质微粒花岗结构,块状构造。斑晶主要是斜长石和角闪石(10%~15%),粒径0.25~1.90 mm。斜长石为自形—半自形晶板条状,角闪石多为长柱状,斜长石具高岭土化、绿帘石化。基质成分由长石、角闪石、石英和不透明矿物组成,粒径小于0.10 mm(图 2a,b)。
闪长玢岩,浅灰黑色,斑状结构,显微粒状半自形柱状粒状结构,块状构造。斑晶为角闪石及少量斜长石,大小一般1~5 mm,星散状分布,含量15%~20%。基质为斜长石、石英、角闪石,大小一般0.1~0.2 mm,少0.02~0.1 mm(细),部分0.2~0.3 mm(细),杂乱分布。具绢云母化、绿帘石化、碳酸盐化(图 2c,d)。
4. 样品采集及分析方法
本次工作分别在岩体的不同地方采集了4件新鲜的岩石样品,做了岩石地球化学全分析,所采岩石类型均为英云闪长玢岩,样品重量均大于2 kg,利用玛瑙球磨机研磨至200目进行分析,样品加工由河北省区域地质调查研究所实验室承担,样品的加工过程均是在无污染设备中进行。在岩体西部二家台一带采集了新鲜英云闪长玢岩岩石样品1件,样品重量为11.3 kg,以挑选锆石进行U-Pb同位素测年。
锆石分选、制靶、透反射光拍照和阴极发光拍照均在廊坊诚信地质服务有限公司完成。锆石的激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位U-Pb定年在中国地质调查局西安地质调查中心自然资源部岩浆作用成矿与找矿重点实验室完成。激光剥蚀系统为GeoLas Pro,ICP-MS为Agilent 7700x。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件Glitter 4.4完成,详细仪器参数和测试过程参见李艳广等(2015)。采用锆石标准91500作为标样进行同位素分馏校正。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行了校正。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot Exver 3完成。
5. 分析结果
5.1 地球化学特征
从表 1可知,岩石中SiO2含量60.37% ~66.73%,平均63.75%,Al2O3含量15.65%~16.45%,平均16.01%,Na2O/K2O值7.47~9.96,平均8.38,Na2O高于K2O数倍,P2O5含量SiO2呈反比,与表明其源于贫钾的玄武质岩石(张旗等,2002),为I型花岗岩,里特曼指数(σ43)1.28~2.22,为低钾富钠钙碱性花岗岩,A/CNK为0.90~1.00,平均0.93,为准铝质,且经CIPW标准矿物计算出现刚玉,说明具有活动大陆边缘环境I-S过渡型花岗岩的特征(秦海鹏,2012)。MgO含量1.78~3.95,平均2.63;分异指数DI大于59.55,分异程度中等略高。
表 1 车路沟岩体主量元素(%)、微量元素(10-6)分析结果Table 1. Analytical results of major elements (%) and trace elements (10-6) of the Chelugou rock mass从微量元素原始地幔标准化蛛网图中可以看出(图 3、表 1),大离子亲石元素(LILE)富集Ba、Sr、Hf,高场强元素(HFSE)明显贫Nb、Ti、Yb,相对富集Zr。稀土总量33.40×10-6~39.27×10-6,平均35.99×10-6,远低于中性岩稀土总量196×10-6和花岗岩稀土总量290×10-6。LREE/HREE值3.95~6.51,轻稀土元素较富集,HREE含量较低,平均6.01×10-6,Y含量7.46×10-6~13.44×10-6,Yb含量0.58×10-6~1.36×10-6,(La/Yb)N值2.87~6.29(表 1),稀土元素球粒陨石标准化分配曲线为右倾型(图 3),轻、重稀土元素分异明显,δEu值1.23~1.49,Eu呈正异常,说明岩浆源区无残留斜长石。稀土元素特征与埃达克岩亏损重稀土、低Y、Yb及正铕异常的特征相符(Defant et al., 1990)。
5.2 U-Pb年代学特征
锆石多呈长柱状或菱形柱体,为典型的锆石晶体形状,多呈自形、半截状,锆石具有明显的震荡环带,部分锆石内部有继承核存在,生长纹路清晰,为典型的岩浆锆石(图 4),本次利用LA ICP-MS对锆石进行了测试,锆石Th/U比值0.07~1.73,平均0.57,具岩浆锆石的特征(表 2)。测试结果中,共有12个测试点具有谐和年龄,表面年龄分为2组(图 5),第一组有5个点,表面年龄406.2~422.9 Ma,获得加权平均年龄(416.6±9.5)M a,MSWD =1.7;第二组有7个点,表面年龄457.7~465 Ma,获得加权平均年龄(462.1±3.8)Ma,MSWD=0.15。第二组年龄应是岩浆侵位结晶年龄,第一组年龄可能反映了后期的岩浆热事件。
表 2 车路沟岩体中LA ICP-MS锆石U-Pb同位素测年结果Table 2. Zircon LA ICP-MS U-Pb isotopic data of the Chelugou pluton5.3 年代学讨论
宋忠宝等(2005)在车路沟岩体中采集英安斑岩同位素样品进行了U-Pb同位素年龄为(427.7±4.5)Ma,本次工作在开展区内地质调查过程中,结合薄片鉴定认为,前人所认为的英安斑岩即为车路沟岩体中的闪长玢岩,贾群子等(2007)在岩体西部二家台沟采集英云闪长玢岩进行了单颗粒锆石U-Pb年龄测定,获得加权平均年龄为(445.6±3.2)Ma,认为该年龄是锆石的结晶年龄,接近岩体的形成年龄。
结合前人测试结果,笔者认为车路沟岩体可能为复式岩体或者岩浆演化经历了较长的时间,岩体中两种岩性整体为同源岩浆演化,岩体演化早期阶段为英云闪长玢岩为主,伴随有中酸性—中性岩浆的分异,后期演化为闪长玢岩。因此,该岩体就位时间为(462.1±3.8)Ma,为中奥陶世。
6. 讨论
埃达克岩是一套具有特定地球化学特征的钙碱性中酸性喷出/侵入岩(Defant et al., 1990),具有高SiO2(≥56%)、高铝(Al2O3≥15%)、富钠(Na2O>K2O)、高Sr(>400×10-6)、低Y(<18×10-6)和Yb(<1.9×10-6)以及不明显的Eu异常等地球化学特征。车路沟岩体SiO2含量为60.37% ~66.31%,Al2O3含量15.72%~16.45%,Na2O含量4.86%~6.19%,K2O含量0.62%~0.72%,Na2O/K2O为7.47~9.96,Sr含量299.52×10-6~525.85×10-6,Y含量7.46×10-6~13.44×10-6,Yb含量0.58×10-6~1.36×10-6,Sr/Y值为30.90~70.48。该岩体轻稀土富集,轻重稀土分馏明显,亏损高场强元素,同时在Y-Sr/Y图解中(图 6a)全部落入埃达克岩区域。上述特征表明,车路沟岩体与典型埃达克岩的特征一致(Defant et al., 1990, 2002;毛启贵等, 2010;Zheng et al., 2018)。
埃达克岩最早被认为是由于年轻的俯冲大洋板片在榴辉岩相下熔融形成火山岩和侵入岩(Defant et al., 1990),随着研究的深入,越来越多与埃达克岩相似地球化学属性的岩石被发现。目前对埃达克岩的成因模式主要有以下4种:(1)俯冲洋壳的部分熔融,随后与上覆楔形地幔橄榄岩发生反应形成埃达克岩(Defant et al., 1990, 2002;Kay,1993;Martin et al., 2005;Wang et al., 2007, 2008a;Tang et al., 2010;毛启贵等, 2010;Zheng et al., 2018);(2)含水玄武质岩浆高/低压条件下发生结晶分异作用(Castillo et al., 1999, 2012;Macpherson et al., 2006);(3)受玄武质岩浆底侵作用或俯冲大陆地壳发生部分熔融产物(Wang et al., 2008b;Lai et al., 2013);(4)增厚下地壳拆沉作用导致部分熔融产生的流体和地幔橄榄岩相互作用形成的高Mg#埃达克岩(Rudnick et al., 1995;Wareham et al., 1997;Chung et al., 2003;Gao et al., 2004;Wang et al., 2006;朱涛等,2014;王楠等,2016)。
车路沟岩体岩石地球化学研究表明,K2O含量0.62%~0.72%,Na2O/K2O值7.47~9.96,与洋壳特征相似,其岩石类型为富Na2O的钙碱性岩浆,这与俯冲洋壳熔融形成的埃达克岩一致(Defant et al., 2002)。岩体具较高的Cr(27.30 × 10-6~70.79 × 10-6)、Ni(27.01×10-6~46.65×10-6)及Mg#值(52.24~59.79),应该是板片俯冲熔融产生的埃达克岩浆与地幔楔相互作用导致MgO加入的结果。车路沟岩体以较低的Nb(1.92×10-6~2.15×10-6)含量与洋岛玄武岩(>20×10-6)Nb值存在明显的差异,反映其并非含水玄武质岩浆结晶分异而成。俯冲大陆地壳发生部分熔融产生的埃达克岩,具有明显的富钾特征(K2O>Na2O),较高的Th含量、Th/U、Th/Ba和Rb/Ba比值,以及Sr的弱异常。车路沟岩体具富钠特征(Na2O>K2O),具有较低的Th含量(0.68 × 10-6~1.57×10-6),以及较低的Th/Ba(0.001~0.004)和Rb/Ba(0.02~0.04)比值和较高的Sr含量(299.52 ×10-6~525.85×10-6),可与俯冲大陆地壳发生部分熔融产生的埃达克岩相区别。拆沉下地壳熔融产生的埃达克岩浆在上升过程中与地幔橄榄岩发生反应从而获得较高的Mg#,拆沉下地壳来源的埃达克岩通常含有壳源继承锆石,而本次研究中锆石结构均一,没有继承性锆石。因此,车路沟岩体应为俯冲洋壳熔融形成的埃达克岩,而非其他成因的埃达克岩。
地球化学特征表明车路沟岩体源于贫钾的玄武质岩石,通过A/MF-C/MF图解对岩浆成因进行了判别,所有数据均落入基性岩的部分熔融(图 6b),推测岩浆来源与新生基性火山岩的部分熔融有关(Zhang et al., 2017),这一点,在野外地质分布特征中也可以分辨,岩体大部分侵入于奥陶系扣门子组弧后扩张型火山岩中,但未见到志留纪复理石建造中有侵入特征,说明其形成与俯冲作用有关。车路沟岩体δEu变化范围为1.10~1.49,平均1.285,表明在岩浆分离结晶过程中斜长石不占据元素总分配系数的主导地位,岩浆中应残留石榴子石或者角闪石。前人研究认为,岩浆源区中以角闪石为残留相时,形成的熔体具轻微上凹的HREE配分模式,且Y/Yb比值一般接近10;当源区中以石榴子石为残留相时,形成的熔体具有倾斜的HREE配分模式同时其Y/Yb比值明显大于10(Rollinson, 1993; 高永丰等,2003)。车路沟岩体Y/Yb比值为9.91~12.90,平均为11.34,稀土配分模式显示(图 3),其为基本向右倾斜的HREE配分模式,表明岩浆岩区残留相以石榴子石为主,由此推测车路沟埃达克岩体来源于基性玄武质岩浆的部分熔融。
在(Y+Nb)-Rb和Y-Nb构造判别图上(图 7),车路沟岩体分别落入火山弧花岗岩(VAG)和火山弧+同碰撞花岗岩(VAG+Sny+COLG)区域内,反映出与火山弧花岗岩的亲缘性。同时,岩体Nb、Ti的负异常其形成于俯冲背景下,Cr、Ni正异常代表有地幔物质的参与。由此推测,车路沟岩体可能是俯冲板片流体交代地幔楔诱发地壳富含石榴石相的基性玄武岩质岩石部分熔融,并在上升过程中混染了火山弧物质所形成的埃达克岩。
区域构造研究表明,北祁连从古元古代中期开始,大陆岩石圈拉伸、减薄,并发生裂谷化(左国朝等,1987;夏林圻等, 1996, 2000;葛肖虹等,1999); 至新元古代,裂谷作用进一步加强,发育以双峰式火山岩为特征的大陆裂谷火山作用;到晚寒武世,最终发生大陆裂解和分离,形成北祁连早古生代洋盆,于奥陶纪北祁连洋盆进入俯冲消减和弧后盆地协同演化阶段,发育大量岛弧和弧后盆地火山岩(左国朝等,1987;夏林圻等, 1991, 1996;葛肖虹等,1999;张旗等,2000;Xia et al., 2003;曾建元等,2007;夏小洪等,2010;Song et al., 2013),至445~424 Ma,洋盆闭合进入陆内碰撞和深俯冲过程(Xia et al., 2003;吴才来等,2006;Zhang et al., 2007)。夏林圻等认为,北祁连加里东造山带是在前寒武纪基底之上发生拉张(679~574 Ma), 至寒武纪末期到早奥陶世(522~495 Ma)形成洋盆,奥陶纪(469~445 Ma)自南西向北东往华北大陆板块之下俯冲,大洋板块持续俯冲致使洋盆闭合(445~428 Ma)。
前人在北祁连造山带中段毛藏寺、北祁连东段银硐梁、北祁连走廊南山北坡大野口均发现了埃达克岩,上述埃达克岩体同位素年龄集中在446~455.8 Ma,均为北祁连早古生代沟弧盆构造环境的产物(王金荣等,2006;赵辛敏等,2018;唐卓等,2018)。本文获得的车路沟岩体的结晶年龄为(462.1±3.8)Ma,与前人研究认为祁连洋向北俯冲的时间吻合,说明车路沟岩体是在奥陶纪祁连洋自南西往北东持续向华北板块之下俯冲过程中形成的。
如前文所述,车路沟岩体具埃达克岩特征,是奥陶纪时期与祁连洋持续向华北板块俯冲作用有关的俯冲洋壳部分熔融和壳幔岩浆混合成因的花岗岩。
7. 结论
(1)车路沟岩体为准铝质低钾钙碱性系列,具有富硅、富铝、富钠、高Mg#、高Sr、高Sr/Y和低HREE、低Y、低Yb的特征,具典型埃达克岩的地球化学特征。
(2)车路沟岩体中英云闪长玢岩的锆石LA -ICP-MS U-Pb测年结果表明,其结晶年龄为(462.1±3.8)Ma,属中奥陶世。
(3)根据岩石学、岩石地球化学研究,结合前人区域构造研究成果,推测车路沟岩体为奥陶纪祁连洋持续向华北板块俯冲,诱使俯冲洋壳部分熔融形成的埃达克岩。
-
图 1 大地构造位置(a)和区域地质略图(b)
1—白垩系;2—泥盆系至三叠系;3—寒武系至奥陶系;4—新元古界青白口系至震旦系;5—燕山期花岗岩;6—印支期花岗岩;7—加里东期花岗岩;8—新元古代晋宁期花岗闪长岩;9—地质界线;10—断层;11—U-Pb年龄样采样位置及编号;12—研究区范围
Figure 1. Tectonic location(a) and regional geological map(b)
1-Cretaceous system; 2-Devonian system to Triassic system; 3-Cambrian system to Ordovician system; 4-Neoproterozoic Qingbaikou system to Sinian system; 5-Yanshanian granite; 6-Indosinian granite; 7-Caledonian granite; 8-Neoproterozoic Jinningian granodiorite; 9-Geological boundary; 10-Fault; 11-U-Pb age sampling location and numbering; 12-The study area
图 2 加里东期不同侵入次花岗岩之间的典型接触特征
a—第五侵入次花岗岩侵入于第四侵入次花岗岩中;b—第六侵入次花岗岩侵入于第五侵入次花岗岩中
Figure 2. Representative contacts between the different episodes of Caledonian granites
a-A representative photo of the fifth episodic granites intruding into the fourth episodic granites; b-A representative photo of the sixth episodic granites intruding into the fifth episodic granites
图 3 加里东期第一、三侵入次花岗岩及包体的照片和显微照片
a—第一侵入次花岗岩露头;b—第一侵入次花岗岩显微照片;c—细粒暗色包体手标本;d—细粒暗色包体显微照片;e—第三侵入次花岗岩露头;f—第三侵入次花岗岩显微照片
Figure 3. Representative photographs and photomicrographs of the first and third episodic granites and enclaves from the Miao'ershan pluton
a-A representative outcrop of the first episodic granites; b-A representative photomicrograph of the first episodic granites; c-A representative hand specimen of the fine-grained dark enclaves; d-A representative photomicrograph of the fine dark enclaves; e-A representative outcrop of the third episodic granites; f-A representative photomicrograph of the third episodic granites
图 4 加里东期第五、六侵入次花岗岩的照片和显微照片
a—第五侵入次花岗岩露头; b—第五侵入次花岗岩显微照片; c—第六侵入次花岗岩手标本; d—第六侵入次花岗岩显微照片
Figure 4. Representative photographs and photomicrographs of the fifth and sixth episodic granites and enclaves from the Miao'ershan pluton
a-A representative outcrop of the fifth episodic granites; b-A representative photomicrograph of the fifth episodic granites; c-A representative outcrop of the sixth episodic granites; d-A representative photomicrograph of the sixth episodic granites
图 5 加里东期花岗岩SiO2-(K2O+Na2O)图解
Figure 5. SiO2-(K2O+Na2O) diagram of the Caledonian granites
(after Middlemost, 1994)
图 6 加里东期花岗岩地球化学分类图解(图例同图 4)
(a—c据Frost et al., 2001;d据Peccerillo et al., 1976)
Figure 6. Geochemical classification diagram of the Caledonian granites
(a—c, after Frost et al., 2001; d, after Peccerillo et al., 1976)
图 7 加里东期花岗岩微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石标准化分布型式图(b)
(原始地幔值据Sun and McDonough, 1989;球粒陨石值据Taylor and Mclennan, 1985)
Figure 7. Primitive mantle-normalized trace elements spider diagram (a) and chondrite-normalized REE distribution panttern diagram (b) of the Caledonian granites
(Primitive mantle value is after Sun and McDonough, 1989; Chondrite value is after Taylor and Mclennan, 1985)
图 10 加里东期花岗岩Rb/Sr-Rb/Ba图解(图例同图5;据Sylvester,1998)
Figure 10. Rb/Sr-Rb/Ba diagram of the Caledonian granites (Symbols as Fig.5;after Sylvester,1998)
图 12 加里东期花岗岩微量元素构造环境判别图解(图例同图 5,据Pearce et al., 1984)
VAG—火山弧花岗岩; WPC—板内花岗岩; S-COLG—同碰撞花岗岩; ORG—洋中脊花岗岩
Figure 12. Trace element tectonic environment discrimination diagram of the Caledonian granites (Symbols as Fig. 5, after Pearce et al., 1984)
VAG-Volcanic arc granite; WPC-Intraplate granite; S-COLG-Syn-collisional granite; ORG-Mid-ocean ridge granite
表 1 加里东期花岗岩主量元素组成(%)及部分特征参数
Table 1 Major element composition (%) and some characteristic parameters of the Caledonian granites
表 2 加里东期花岗岩微量元素丰度(Ag为10-9;其余为10-6)
Table 2 Trace element abundance of the Caledonian granites (Ag: 10-9, the other elements: 10-6)
表 3 加里东期花岗岩稀土元素丰度(10-6)及有关参数
Table 3 REE abundance (10-6) and its related parameters of the Caledonian granites
表 4 加里东期花岗岩样品D0026锆石U-Pb定年结果
Table 4 Zircon U-Pb dating results for the sample D0026 of Caledonian granite
表 5 加里东期花岗岩样品D0029锆石U-Pb定年结果
Table 5 Zircon U-Pb dating results for the sample D0029 of Caledonian granite
表 6 加里东期花岗岩样品D0035锆石U-Pb定年结果
Table 6 Zircon U-Pb dating results for the sample D0035 of Caledonian granite
表 7 加里东期花岗岩样品D0070锆石U-Pb定年结果
Table 7 Zircon U-Pb dating results for the sample D0070 of Caledonian granite
表 8 加里东期花岗岩的Sr-Nd同位素组成
Table 8 Sr-Nd isotopic composition of the Caledonian granites
表 9 加里东期花岗岩的O同位素分析结果
Table 9 Analysis results of O isotope for the Caledonian granites
-
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1): 59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X
Bai Daoyuan, Ma Tieqiu, Wang Xianhui, Zhang Xiaoyang, Chen Bihe. 2008. Progress in the study of Mesozoic tectono-magmatism and mineralization in the central segment of the Nanling Mountains-Summary of major achievements of the 1: 250000 geological survey in southeastern Hunan[J]. Geology in China, 35(3): 436-455(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_zgdizhi200803008.aspx
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 46: 605-626. doi: 10.1016/S0024-4937(98)00085-1
Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts[J]. Lithos, 80(1): 155-177. http://www.sciencedirect.com/science/article/pii/S0024493704002889
Barth M G, Mc Donough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 165(3/4): 197-213. http://www.geol.umd.edu/~rudnick/PDF/Barth2000_CHEMGE.pdf
Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x
Chen Jiangfeng, Jiang Boming. 1999. Nd, Sr, Pb isotope traces and evolution of continental crust of SE China[C]//Zheng Yongfei(ed.). Chemical Geodynamics. Beijing: Science Press, 262-287 (in Chinese with English abstract).
Chen Jun, Wang Rucheng, Zhu Jinchu, Lu Jianjun, Ma Dongsheng. 2014. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China[J]. Science in China (Series D), 41(1): 111-121(in Chinese). doi: 10.1007/s11430-013-4736-9
Cheng Shunbo, Fu Jianming, Ma Liyan, Chen Xiqing, Zhang Liguo, Lu Youyue. 2013b. Geochemical characteristics, petrogenesis and ore potential evaluation of Caledonian granitoids in Nanling Range, South China[J]. Geology & Mineral Resources of South China, 29(1): 1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201301002.htm
Du Yun, Luo Xiaoya, Huang Gefei, Tian Lei, Wang Jingyuan, Fan Hui, Zhou Litong. 2017a. Geological features and analysis of prospecting potential of Luojiachong tungsten deposit in Chengbu County, Hunan Province[J]. Geological Science and Technology Information, 36(5): 177-184(in Chinese with English abstract).
Du Yun, Luo Xiaoya, Huang Gefei, Tian Lei, Wang Jingyuan, Zhou Litong. 2017b. Geochemical characteristics and forming tectonic setting of Neoproterozoic granite in the northern section of Miaoershan Pluton in Southwestern Hunan[J]. Geological Science and Technology Information, 36(6): 143-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201706015.htm
Frost B R, Barnes C G, Collins W J. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zhidan. 1999. The structures and compositions of the crust in Eastern China[J]. Science in China (Series D), 29(3): 204-213(in Chinese).
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3/4): 347-359. http://www.researchgate.net/profile/Miao_Yu42/post/Please_I_need_some_information_about_niobium_and_tantalum_mobility_and_their_geochemical_behavior_Can_anyone_provide_any_useful_information/attachment/59d6202979197b807797ea1f/AS%3A289050595479552%401445926440605/download/Significance+of+NbTa+as+an+indicator+of+geochemical+processes+in.pdf
Han Yinwen, Ma Zhendong, Zhang Hongfei. 2003. Geochemistry[M]. Beijing: Geological Publishing House(in Chinese).
Hong Dawei, Xie Xilin, Zhang Jisheng. 2002. Geological signfficance of the Hangzhou-Zhuguangshan-Huashan high-εNd granite belt[J]. Geological Bulletin of China, 21(6): 348-354(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200206012.htm
Hu Shouxi, Ye Ying. 2006. Questions to "Cathaysia Old Land", "Cathaysia Block" and "United Yantze-Cathaysia Old Land" of South China[J]. Geological Journal of China Universities, 12(4): 432-439(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=23449414
Hua Renmin, Wang Denghong. 2012. Clarification of some basic concepts concerning the granite-related mineralization[J]. Mineral Deposits, 31(1): 165-175(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201201016.htm
Hua Renmin, Zhang Wenlan, Chen Peirong, Zhai Wei, Li Guanglai. 2013. Relationship between Caledonian granitoids and large-scale mineralization in South China[J]. Geological Journal of China Universities, 19(1): 1-11 (in Chinese with English abstract). http://www.researchgate.net/publication/285379873_Relationship_between_Caledonian_granitoids_and_large-scale_mineralization_in_South_China
Huang Jiqing. 1994. Major Geotectonic Units in China[M]. Beijing: Geological Publishing House, 1-87(in Chinese).
Harris N B W, Inger S. 1992. Trace element modeling pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46-56. doi: 10.1007/BF00310881
Hong Dawei, Xie Xilin, Zhang Jisheng. 1998. Isotope geochemistry of granitoids in South China and their metallogeny[J]. Res. Geol., 48(4): 251-263. doi: 10.1111/j.1751-3928.1998.tb00022.x
Li Jindong. 2005. Mesozoic Tectonic-Magma-Mineralization in Southeastern Hunan Province[D]. Geology University of China(Beijing) (in Chinese with English abstract).
Ling Hongfei, Shen Weizhou, Deng Ping, Jiang Shaoyong, Jiang Yaohui, Qiu Chensheng, Huang Guolong, Ye Haimin, Tan Zhengzhong. 2005. Study of geochemistry and petrogenesis of the Maofeng granite, northern Guangdong Province(in Chinese with English abstract).
Liu Wei, Liu Yaorong, Zhang Xiaoyang, Chen Bihe, Ni Yanjun, Zhong Xiang, He Chunping. 2011. New Progresses in 1: 50000 regional geological survey in Chengbu Area, Hunan Province[J]. Geology and Mineral Resources of South China, 27(4): 307-313(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201104008.htm
Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1): 34-43. http://cms.kdis.edu.cn/cms/geology_cug/achievements/fabiaowenzhang/resource/414f3b8022107c51b3554fd7277929d6.pdf
Ludwig K R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Berkely, California.
Ma Ruishi. 2006. New thought about the tectonic evolution of the South China: With discussion on several problems of the Cathaysian Old Land[J]. Geological Journal of China Universities, 12(4): 448-456(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604005.htm
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9
Patino Douce A E, Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107(2): 202-218. doi: 10.1007/BF00310707
Patino Douce A E, Beard J. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 36(3): 707-738. doi: 10.1093/petrology/36.3.707
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 58(1): 63-81. doi: 10.1007/BF00384745
Pei Rongfu, Hong Dawei. 1995. The granites of South China and their metallogeny[J]. Episodes, 18(1/2): 77-82.
Piao Chengzhe, Jin Dongxu, Zhao Yen, Jin Shouzhe, Jin Renzhe. 2016. Scoriae magma evolution at Paekdu volcano, Democratic People's Republic of Korea[J]. Acta Petrologica Sinica, 32(10): 3214-3224(in Chinese with English abstract). http://www.researchgate.net/publication/311648255_Scoriae_magma_evolution_at_Paekdu_volcano_Democratic_People'_s_Republic_of_Korea
Pitcher W S. 1993. The Nature and Origin of Granite[M]. London: Blackie Academic & Professional Publication.
Rudniek R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal Perspective[J]. Review of Geophysics, 33(3): 267-309. doi: 10.1029/95RG01302
Sheppard S.M.P. 1977. The Cornubian Batholith, SW England: D/H δ18O: δ16O studies of kaolinite and other alteration minerals[J]. Journa of the Geological Society, 133: 573-591. doi: 10.1144/gsjgs.133.6.0573
Sun Mingzhi, Xu Keqin. 1990. Caledonian granite in South China and its formation geological environment[J]. Journal of Nanjing University(Natural Sciences), (4): 10-22(in Chinese).
Sun S S, McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publication, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Sun Tao. 2006. New distribution map of granite in South China and its description[J]. Geological Bulletin of China, 25(3): 332-335, 426-427(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603002.htm
Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1): 29-44. http://www.researchgate.net/profile/Paul_Sylvester/publication/223458063_Post-collisional_strongly_peraluminous_granites._Lithos/links/00b7d51c4ff86b1f39000000.pdf
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit[J]. Economic Geology, 69: 843-883. doi: 10.2113/gsecongeo.69.6.843
Taylor P N, Moorbath S, Goodwin R, Petrykowski A C. 1980. Crustal contamination as an indicator of the extent of early Archaean continental crust: Pb isotopic evidence from the late Archaean gneisses of west Greenland[J]. Geochim. Cosmochim. Acta, 44(10): 1437-1453. doi: 10.1016/0016-7037(80)90109-X
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Black well Scientific Publications.
Tindle A G, Pearce J A. 1983. Assimilation and partial melting of continental crust: Evidence from the mineralogy and geochemistry of autoliths and xenoliths[J]. Lithos, 16(3): 185-202. doi: 10.1016/0024-4937(83)90023-3
Visonà, Lombardo B. 2002. Two-mica and tourmaline leucogarintes from the Everest-Makalu region (Nepal-Tibet), Himalayan leucogranite genesis by isobaric beating?[J]. Lithos, 62(3): 125-150. http://www.sciencedirect.com/science/article/pii/S0024493702001123
Wang Dezi, Lin Chengyi, Zhou Xinmin. 1978. Petrogenesis of the Cizhu Yingyun diorite pluton and its surrounding metamorphic rocks in Jiangxi Province[J]. Journal of Nanjing University(Natural Sciences), (1): 81-99(in Chinese).
Wang Henian, Zhou LiYa. 2006. A further understanding in geological structure of South China[J]. Geological Journal of China Universities, 12(4): 457-465. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604006.htm
Wu Jing, Liang Huaying, Huang Wenting, Wang Chunlong, Sun Weidong, Sun Yali, Li Jing, Moji Hai, Wang Xiuzhang. 2012. Isotopic age of rocks and deposits in the western part of Miaoershan-Yuechengling Mountains in Northeast Guangxi and metallogenic analysis of Indosinian Period in South China[J]. Chinese Science Bulletin, 57(13): 1126-1136(in Chinese). doi: 10.1360/csb2012-57-13-1126
Xiao Qinghui, Deng Jinfu, Ma Daquan. 2002. The Ways of Investigation on Granitoids[M]. Beijing: Geological Publishing House, 21-36 (in Chinese).
Xu Keqin, Liu Yingjun, Yu Yuyu, Wang Henian, Wei Xiuzhao. 1960. Discovery of granites of the Caledonian age in Southern Kiangsi[J]. Geological Review, 20(3): 112-114. http://ci.nii.ac.jp/naid/10030173350
Xu Keqin, Sun Nao, Wang Dezi, Hu Yixi. 1963. Investigation on the polycyclic intrusions of South China, with special notice on their ages of intrusions, distribution, characteristics, and their genetic relations to mineral deposits (continued)[J]. Acta Geologica Sinica, 43: 141-155(in Chinese with English abstract). http://www.researchgate.net/publication/312989559_Investigation_of_the_polycyclic_granite_intrusions_of_southern_China_with_special_notice_on_their_ages_of_intrusions_distribution_characteristics_and_their_grenetic_relations_to_mineral_deposits
Xu Deru, Chen Guanghao, Xia Bin, Li Pengchun, He Zhuanli. 2006. The Caledonian adakite-like granodiorites in Banshanpu area, eastern Hunan Province, South China: Petrogenesis and geological significance[J]. Geological Journal of China Universities, 12(4): 507-521 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604012.htm
Yang Minggui, Huang Shuibao, Lou Fasheng, Tang Weixin, Mao Subin. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area[J]. Geology in China, 36(3): 528-543 (in Chinese with English abstract). http://www.researchgate.net/publication/279695844_Lithospheric_structure_and_large-scale_metallogenic_process_in_Southeast_China_continental_area
Yu Jinhai, Wei Zhenyang, Wang Lijuan, Shu Liangshu, Sun Tao. 2006. Cathaysia Block: A young continent composed of ancient Materials[J]. Geological Journal of China Universities, 12(4): 440-447 (in Chinese with English abstract). http://www.airitilibrary.com/Publication/alDetailedMesh?docid=10067493-200612-12-4-440-447-a
Zhang Feifei, Wang Yuejun, Zhang Aimei, Fan Weiming, Zhang Yuzhi, Zi Jianwei. 2012. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block[J]. Lithos, 150(5): 188-208.
Zhao Kuidong, Jiang Shaoyong, Sun Tao, Chen Weifeng, Ling Hongfei, Chen Peirong. 2013. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao'ershan-Yuechengling batholith, South China: Implication for petrogenesis and tectonic-magmatic evolution[J]. Journal of Asian Earth Sciences, 74(Complete): 244-264. http://www.sciencedirect.com/science/article/pii/S1367912012005834
Zhou Jianxiong, Chen Zhenyu. 2007. Study on Cathodoluminescence of Zircon under Electron Probe[M]. Chengdu: University of Electronic Science and Technology Press (in Chinese).
Zhou Xinmin. 2003. My thinking about granite geneses of South China[J]. Geological Journal of China Universities, 9(4): 556-565 (in Chinese with English abstract). http://www.researchgate.net/publication/305387399_My_thinking_about_granite_geneses_of_South_China
柏道远, 马铁球, 王先辉, 张晓阳, 陈必河. 2008. 南岭中段中生代构造-岩浆活动与成矿作用研究进展[J]. 中国地质, 35(3): 436-455. doi: 10.3969/j.issn.1000-3657.2008.03.008 陈江峰, 江博明. 1999. Nd, Sr, Pb同位素示踪和中国东南大陆地壳演化[C]//郑永飞主编. 化学地球动力学. 北京: 科学出版社, 262-287. 陈骏, 王汝成, 朱金初, 陆建军, 马东升. 2014. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学: 地球科学, 41(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401012.htm 程顺波, 付建明, 马丽艳, 陈希清, 张利国, 卢友月. 2013. 南岭地区加里东期花岗岩地球化学特征、岩石成因及含矿性评价[J]. 华南地质与矿产, 29(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201301002.htm 杜云, 罗小亚, 黄革非, 田磊, 王敬元, 樊晖, 周立同. 2017a. 湖南省城步县落家冲钨矿床地质特征及找矿前景分析[J]. 地质科技情报, 36(5): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705025.htm 杜云, 罗小亚, 黄革非. 2017b. 湘西南苗儿山岩体北段新元古代花岗岩地球化学特征及其形成构造背景[J]. 地质科技情报, 36(6): 143-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706015.htm 高山, 骆庭川, 张本仁, 张宏飞, 韩吟文, 赵志丹. 1999. 中国东部地壳的结构和组成[J]. 中国科学(D辑), 29(3): 204-213. 韩吟文, 马振东, 张宏飞. 2003. 地球化学[M]. 北京: 地质出版社. 洪大卫, 谢锡林, 张季生. 2002. 试析杭州诸广山花山高εNd值花岗岩带的地质意义[J]. 地质通报, 21(6): 348-354. doi: 10.3969/j.issn.1671-2552.2002.06.012 胡受奚, 叶瑛. 2006. 对"华夏古陆"、"华夏地块"及"扬子-华夏古陆统一体"等观点的质疑[J]. 高校地质学报, 12(4): 432-439. doi: 10.3969/j.issn.1006-7493.2006.04.003 华仁民, 王登红. 2012. 关于花岗岩与成矿作用若干基本概念的再认识[J]. 矿床地质, 31(1): 165-175. doi: 10.3969/j.issn.0258-7106.2012.01.015 华仁民, 张文兰, 陈培荣, 翟伟, 李光来. 2013. 初论华南加里东花岗岩与大规模成矿作用的关系[J]. 高校地质学报, 19(1): 1-11. doi: 10.3969/j.issn.1006-7493.2013.01.003 黄汲清. 1994. [M]. 北京: 地质出版社, 1-87. 李金冬. 2005. 湘东南地区中生代构造-岩浆-成矿动力学研究[D]. 中国地质大学(北京). 凌洪飞, 沈渭洲, 邓平, 蒋少涌, 姜耀辉, 邱检生, 黄国龙, 叶海敏, 谭正中. 2005. 粤北帽峰花岗岩体地球化学特征及成因研究[J]. 岩石学报, 21(3): 677-687. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503010.htm 刘伟, 刘耀荣, 张晓阳, 陈必河, 倪艳军, 钟响, 贺春平. 2011. 湖南城步地区1: 5万区调主要成果与进展[J]. 华南地质与矿产, 27(4): 307-313. doi: 10.3969/j.issn.1007-3701.2011.04.008 马瑞士. 2006. 华南构造演化新思考兼论"华夏古陆"说中的几个问题. 高校地质学报, 12(4): 448-456. doi: 10.3969/j.issn.1006-7493.2006.04.005 朴成哲, 金东旭, 赵日元, 金守哲, 金仁哲. 2016. 白头山火山渣锥的岩浆演化研究[J]. 岩石学报, 32(10): 3214-3224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201610020.htm 孙明志, 徐克勤. 1990. 华南加里东花岗岩及其形成地质环境试析[J]. 南京大学学报(自然科学版), (4): 10-22. 孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332-335, 426-427. doi: 10.3969/j.issn.1671-2552.2006.03.002 王德滋, 林承毅, 周新民. 1978. 江西慈竹英云闪长岩体及其周围区域变质岩石的成因[J]. 南京大学学报(自然科学版), (1): 81-99. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ197801007.htm 王鹤年, 周丽娅. 2006. 华南地质构造的再认识. 高校地质学报, 12(4): 457-465. doi: 10.3969/j.issn.1006-7493.2006.04.006 伍静, 梁华英, 黄文婷, 王春龙, 孙卫东, 孙亚莉, 李晶, 莫济海, 王秀璋. 2012. 桂东苗儿山-越城岭西部岩体和矿床同位素年龄及华南印支期成矿分析[J]. 科学通报, 57(13): 1126-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201213011.htm 肖庆辉, 邓晋福, 马大铨. 2002. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 79. 徐克勤, 刘英俊, 俞受鋆, 王鹤年, 魏秀喆. 1960. 江西南部加里东花岗岩的发现[J]. 地质论评, 20(3): 112-114. doi: 10.3321/j.issn:0371-5736.1960.03.003 徐克勤, 孙鼐, 王德滋, 胡受奚. 1963. 华南多旋回的花岗岩的侵入时代、岩性特征、分布规律及其成矿专属性的探讨(续)[J]. 地质学报, 43: 141-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196302002.htm 许德如, 陈广浩, 夏斌, 李鹏春, 贺转利. 2006. 湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J]. 高校地质学报, 12 (4): 507-521. doi: 10.3969/j.issn.1006-7493.2006.04.012 杨明桂, 黄水保, 楼法生, 唐维新, 毛素斌. 2009. 中国东南陆区岩石圈结构与大规模成矿作用[J]. 中国地质, 36(3): 528-543. doi: 10.3969/j.issn.1000-3657.2009.03.004 于津海, 魏震洋, 王丽娟, 舒良树, 孙涛. 2006. 华夏地块: 一个由古老物质组成的年轻陆块[J]. 高校地质学报, 12(4): 440-447. doi: 10.3969/j.issn.1006-7493.2006.04.004 周剑雄, 陈振宇. 2007. 电子探针下锆石阴极发光的研究[M]. 成都: 电子科技大学出版社. 周新民. 2003. 对华南花岗岩研究的若干思考[J]. 高校地质学报, 9(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009 -
期刊类型引用(6)
1. 计波,李向民,黄博涛,王磊,王国强. 南祁连党河南山地区拐杖山岩群玄武岩年代学、地球化学及其构造环境. 中国地质. 2024(03): 965-977 . 本站查看
2. 杨彦,黄增保,郭小刚,许延龙,颜华. 北祁连榆树沟山金矿区花岗闪长斑岩脉锆石U-Pb年龄、地球化学特征及其地质意义. 黄金科学技术. 2024(03): 387-399 . 百度学术
3. 李平,高晓峰,吕鹏瑞,朱小辉,陈隽璐. 祁连山–柴北缘地区岩浆活动的时空分布、成因演变及构造岩浆演化. 西北地质. 2023(04): 283-317 . 百度学术
4. 白斌,俞胜,刘杰,边成辉,戴霜. 甘肃党河南山地区美丽沟岩体地球化学特征、锆石年代学及地质意义. 矿物学报. 2021(02): 181-189 . 百度学术
5. 杨镇熙,丁书宏,张晶,樊新祥,孔维琼,赵吉昌,荆德龙. 北山造山带早泥盆世埃达克岩的发现及地质意义. 岩石矿物学杂志. 2021(02): 185-201 . 百度学术
6. 刘建宏,叶得金,齐瑞荣,贾志磊,王海琦. 甘肃省地矿局“十三五”期间地质勘查进展与成果. 甘肃地质. 2021(02): 14-22 . 百度学术
其他类型引用(3)