• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

西藏班戈北部早白垩世火山岩:班公湖—怒江洋闭合的岩浆记录

吴昊, 翟庆国, 胡培远, 唐跃, 朱志才, 王伟, 谢超明, 强巴扎西

吴昊, 翟庆国, 胡培远, 唐跃, 朱志才, 王伟, 谢超明, 强巴扎西. 西藏班戈北部早白垩世火山岩:班公湖—怒江洋闭合的岩浆记录[J]. 中国地质, 2021, 48(5): 1623-1638. DOI: 10.12029/gc20210522
引用本文: 吴昊, 翟庆国, 胡培远, 唐跃, 朱志才, 王伟, 谢超明, 强巴扎西. 西藏班戈北部早白垩世火山岩:班公湖—怒江洋闭合的岩浆记录[J]. 中国地质, 2021, 48(5): 1623-1638. DOI: 10.12029/gc20210522
WU Hao, ZHAI Qingguo, HU Peiyuan, TANG Yue, ZHU Zhicai, WANG Wei, XIE Chaoming, QIANGBA Zhaxi. Early Cretaceous volcanic rocks in northern Baingoin, Tibet: Magmatic record of the closure of the Bangong-Nujiang Ocean[J]. GEOLOGY IN CHINA, 2021, 48(5): 1623-1638. DOI: 10.12029/gc20210522
Citation: WU Hao, ZHAI Qingguo, HU Peiyuan, TANG Yue, ZHU Zhicai, WANG Wei, XIE Chaoming, QIANGBA Zhaxi. Early Cretaceous volcanic rocks in northern Baingoin, Tibet: Magmatic record of the closure of the Bangong-Nujiang Ocean[J]. GEOLOGY IN CHINA, 2021, 48(5): 1623-1638. DOI: 10.12029/gc20210522

西藏班戈北部早白垩世火山岩:班公湖—怒江洋闭合的岩浆记录

基金项目: 

国家自然科学基金项目 14072268

国家自然科学基金项目 42002069

国家自然科学基金项目 41872240

第二次青藏高原综合科学考察 2019QZKK0703

中国地质调查局项目 DD20190370

中国地质调查局项目 DD20190060

详细信息
    作者简介:

    吴昊, 男, 1993年生, 硕士, 构造地质学专业; E-mail: 2757717424@qq.com

    通讯作者:

    翟庆国, 男, 1980年生, 研究员, 博士生导师, 从事青藏高原区域构造与大地构造研究; E-mail: zhaiqingguo@126.com

  • 中图分类号: P588.142;P588.144

Early Cretaceous volcanic rocks in northern Baingoin, Tibet: Magmatic record of the closure of the Bangong-Nujiang Ocean

Funds: 

National Natural Science Foundation 14072268

National Natural Science Foundation 42002069

National Natural Science Foundation 41872240

The Second Comprehensive Scientific Investigation of the Tibetan Plateau 2019QZKK0703

China Geological Survey ProgramChina Geological Survey Program DD20190370

China Geological Survey ProgramChina Geological Survey Program DD20190060

More Information
    Author Bio:

    WU Hao, male, born in 1993, master candidate, majoring in structural geology; E-mail: 2757717424@qq.com

    Corresponding author:

    ZHAI Qingguo, male, born in 1980, Ph.D supervisor, engaged in the research on regional structure of Tibet Plateau and geotectonics; E-mail: zhaiqingguo@126.com

  • 摘要:

    对班戈县北部马前乡地区的早白垩世安山岩和英安岩进行了详细的地质填图及岩石学、年代学、地球化学和Hf同位素研究。锆石U-Pb定年获得安山岩年龄分别为(108.0±1.5)Ma和(113.6±0.9)Ma;英安岩年龄为(106.7±1.9)Ma和(113.6±0.8)Ma。安山岩富集Th和U,亏损Nb、Ta和Ti,具有变化范围较大的Mg#值(25~63),锆石εHft)值(-8.6~+1.5)以负值为主,应当为幔源镁铁质熔体与壳源熔体的混合产物。英安岩具有与安山岩类似的微量元素成分特征及负的锆石εHft)值(-12.3~-8.1),应当是地壳部分熔融的产物。结合前人研究成果认为,这些早白垩世岩浆岩是约110 Ma沿班公湖-怒江缝合带岩浆大爆发的产物,可能与班公湖-怒江洋闭合之后的拉萨与羌塘地块陆-陆碰撞有关。

    Abstract:

    The petrological, zircon U-Pb dating, whole-rock geochemical, and zircon Hf isotopic data of the Early Cretaceous andesites and dacites in the Maqianxiang area of Baingoin County, Tibet, are reported. The zircon U-Pb ages of andesite are (108.0±1.5)Ma and (113.6±0.9) Ma, and those of dacite are (106.7±1.9) Ma and (113.6±0.8) Ma. The andesites are enriched in Th and U and depleted in Nb, Ta, and Ti, have variable Mg# values (25-63), and show mainly negative zircon εHf(t) values (-8.6 to +1.5). They are probably generated by mixing of mantle- and crust-derived melts. Dacite shares similar trace element features with the coeval andesite, and has negative zircon εHf(t) values (-12.3 to -8.1). It is interpreted as a product of partially melting crust. The andesite and dacite are interpreted as a product of the ca.110 Ma magmatism along the Bangong-Nujiang suture zone, and may be related to the continent-continent collision process after the closure of the Bangong-Nujiang Ocean.

  • 锗(Ge)是一种典型的稀散元素,其地壳丰度为1.5×10-6,主要富集在煤和铅锌矿床中。统计结果显示,闪锌矿是铅锌矿床中Ge的主要载体矿物,但不同类型铅锌矿床闪锌矿中Ge的含量存在差异。除热液脉型和浅成热液型铅锌矿床闪锌矿中Ge的含量较高(可达2500×10-6)外,其他主要类型(如喷流沉积型,SEDEX;火山块状硫化物型,VMS;密西西比河谷型,MVT,等)铅锌矿床闪锌矿中Ge的平均含量通常 < 300×10-6。本次发现贵州贵定竹林沟锌矿床闪锌矿中Ge的显著超常富集现象,现报道如下。

    在细致深入的矿床学和矿物学研究基础上,利用激光剥蚀等离子质谱仪(LA-ICP-MS)对竹林沟锌矿床主要金属矿物闪锌矿进行原位微量元素组成分析。统计闪锌矿中Ge等元素的富集特征,结合相关分析和以往研究成果,揭示竹林沟锌矿床中Ge的超常富集机制。

    竹林沟锌矿床闪锌矿中Ge的含量为592×10-6~1100×10-6(平均764×10-6表 1),锌矿石中Ge的平均品位97.9×10-6。闪锌矿LA-ICP-MS微区原位Ge含量分析资料显示,扬子板块及其周缘地区MVT铅锌矿床,如牛角塘、会泽、毛坪、富乐等,其闪锌矿中Ge的含量均 < 652×10-6,即便富乐矿床闪锌矿中Ge的含量最高,但其平均含量也仅为191×10-6,明显比竹林沟锌矿床闪锌矿中Ge的含量(特别是Ge的平均含量)低。

    表  1  竹林沟锌矿床闪锌矿部分元素含量(10-6)
    Table  1.  The part elemental contents of sphalerite from the Zhulingou Zn deposit(10-6)
    下载: 导出CSV 
    | 显示表格

    与世界上主要类型铅锌矿床闪锌矿LA-ICP-MS微区原位Ge含量分析资料相比,竹林沟矿床闪锌矿中Ge的含量比SEDEX(Ge含量通常 < 50×10-6)、VMS(Ge含量多数 < 100×10-6)和MVT(Ge含量n×10-6~n×102×10-6,Ge平均含量 < 300×10-6)等闪锌矿中Ge的含量高出一个数量级。竹林沟矿床闪锌矿中Ge的含量与法国Noailhac-Saint Salvy热液脉型Zn-Ge-Ag-Pb-Cd矿床(Ge平均含量750×10-6)和玻利维亚Porco浅成热液型Ag-Zn-Pb-Sn-Ge矿床(n×102×10-6~2500×10-6)等少数类型铅锌矿床闪锌矿中Ge的含量(特别是Ge的平均含量)相当。

    可见,竹林沟锌矿床闪锌矿中Ge的含量比目前已知扬子板块及其周缘地区MVT矿床闪锌矿中Ge的含量(特别是Ge的平均含量)都高,且明显高出全球主要类型(除岩浆热液型和热液脉型外)铅锌矿床闪锌矿中Ge的含量(特别是Ge的平均含量)一个数量级,具有显著超常富集特征(接近Ge地壳丰度的1000倍)。

    初步分析显示,竹林沟锌矿床闪锌矿中Zn与Ga和Cd之间具有正相关关系;相反,Fe与Ga和Cd之间均具有负相关关系,这表明该矿床闪锌矿中Ga和Cd很可能不是直接替代Zn而是替代Fe,与笔者前期认识基本一致。然而,不难发现该矿床闪锌矿中Zn与Ge之间呈一定的负相关关系,但Fe和Ge之间则呈一定的正相关关系,进一步地Zn与Fe之间具有显著的负相关关系,且Zn与Fe+Ge之间负相关性更显著(图 1)。目前,闪锌矿中主要有六种Ge替代Zn的方式:(1)2Cu++Cu2++Ge4+↔4Zn2+;(2)Ge2+↔Zn2+;(3)2Ag++Ge4+↔3Zn2+;(4)2Cu++Ge4+↔3Zn2+;(5)□(晶体空位)+Ge4+↔2Zn2+;(6)nCu+Ge↔(n+1)Zn。可见,这六种替代方式均不能解释竹林沟锌矿床闪锌矿Zn和Fe+Ge之间的强烈负相关关系。因此,笔者推测该矿床中Ge很可能是与Fe一起共同替代Zn进入闪锌矿晶格(Fe+Ge↔2Zn),是一种新的Ge替代方式。

    图  1  竹林沟锌矿床闪锌矿Zn-(Fe+Ge)相关图解
    Figure  1.  Relationship diagram of sphalerite Zn-(Fe+Ge)in the Zhulingou Zn deposit

    竹林沟锌矿床闪锌矿中显著超常富集锗,锗的富集程度接近1000倍,且锗与铁一起共同替代锌进入闪锌矿晶格,是一种新的锗替代方式。初步估算竹林沟锌矿床锗金属储量超过400 t,而竹林沟锌矿床外围还有半边街等锌矿床,初步预测研究区锗资源量可能达到超大型规模(>1000 t),一个新的国家级乃至世界级锗资源基地曙光已现。

    感谢科技部、国家自然科学基金委、云南省科技厅和云南大学对本项目的支持。

    致谢: 锆石LA-ICP-MS U-Pb定年和Hf同位素分析得到了中国地质科学院矿产资源研究所侯可军副研究员的帮助,在此致以衷心的感谢。
  • 图  1   青藏高原构造划分简图(a, 据Hu et al., 2017)和西藏班戈县马前乡地区地质简图(b)

    BNSZ—班公湖—怒江缝合带;LSSZ—龙木错—双湖缝合带;IYZSZ—雅鲁藏布江缝合带;JSSZ—金沙江缝合带;1—第四系;2—古近系牛堡组;3—白垩系去申拉组安山岩;4—白垩系去申拉组英安岩;5—白垩系去申拉组砂岩;6—侏罗系接奴群;7—三叠系确哈拉群;8—三叠纪花岗岩;9—蛇绿岩;10—断层;11—不整合接触;12—年龄采样点;13—产状

    Figure  1.   Tectonic framework of the Tibetan Plateau (a, after Hu et al., 2017) and simplified geological map (b) of Maqian Town, Baingoin County

    BNSZ-Bangong Co-Nujiang suture zone; LSSZ-Longmu Co-Shuanghu suture zone; IYZSZ-Yarlung Zangbo suture zone; JSSZ-Jinshajiang suture zone; 1-Quaternary; 2-The Paleogene Niubao Formation; 3-The Cretaceous andesite of Qushenla Formation; 4-The Cretaceous dacite of Qushenla Formation; 5-The Cretaceous sandstone of Qushenla Formation; 6-The Jurassic Jienu Group; 7-The Triassic Quehala Group; 8-The Triassic granite; 9-Ophiolite; 10-Fault; 11-Unconformable contact; 12-Sampling site; 13-Occurrence

    图  2   西藏班戈县马前乡火山岩野外露头及显微照片

    a—安山岩远景;b—安山岩夹火山角砾岩;c, d, e—火山岩与砂岩界限;f—安山岩近景;g—英安岩近景;h—安山岩镜下照片;i—英安岩镜下照片;Pl—斜长石;Px—辉石;Ser—绢云母;Q—石英

    Figure  2.   Field photographs and microphotographs of the volcanic rocks in Maqian Town of Baingoin County, Tibet

    a-Distant view of andesites; b-Andesites intermingled with volcanic breccia; c, d, e-The boundary between volcanic rock and sandstone; f-Tight shot of andesites; g-Tight shot of dacites; h-Microphotographs of andesites; i-Microphotographs of dacites; Pl-Plagioclase; Px-Pyroxene; SerSericite; Q-Quartz

    图  3   西藏班戈县马前乡安山岩(a,b)和英安岩(c,d)的LA-ICP-MS锆石U-Pb谐和图(比例尺代表100 μm)

    Figure  3.   LA-ICP-MS zircon U-Pb concordant diagrams of the andesite (a, b) and dacite (c, d) in Maqian Town of Baingoin County, Tibet (The scale bar on the CL images representing 100 μm)

    图  4   西藏班戈县马前乡火山岩的Zr/TiO2*0.0001-SiO2(a)和Co-Th图解(b)

    Figure  4.   Zr/TiO2*0.0001-SiO2(a) and Co-Th diagrams (b) of the volcanic rocks in Maqian Town of Baingoin County, Tibet

    图  5   西藏班戈县马前乡安山岩(a,b)和英安岩(c,d)的微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化配分曲线标准化数据和上地壳数据引自参考文献(据Sun and McDonough, 1989

    Figure  5.   Primitive-mantle-normalized trace elements spidergrams and Chondrite-normalized rare-earth element patterns of the andesite (a, b) and dacites (c, d) in Maqian Town of Baingoin County, Tibet (Normalizing and upper crust data from reference, after Sun and McDonough, 1989)

    图  6   西藏班戈县马前乡火山岩的εHf(t)-U-Pb年龄图解

    Figure  6.   Plots of εHf(t) vs. U-Pb ages of the volcanic rocks in Maqian Town of Baingoin County, Tibet

    图  7   西藏班戈县马前乡火山岩的MgO-TFeO图解(据Zorpi et al., 1989)(a)和La-La/Sm图解(据Schiano et al., 2010)(b)

    Figure  7.   MgO-TFeO (a) and La-La/Sm diagrams (b) (after Zorpi et al., 1989) and La-La/Sm diagrams (after Schiano et al., 2010) of the volcanic rocks in Maqian Town of Baingoin County, Tibet

    表  1   西藏班戈县马前乡火山岩锆石U-Th-Pb同位素数据

    Table  1   LA-ICP-MS zircon U-Th-Pb data of the volcanic rocks in Maqian Town of Baingoin County, Tibet

    下载: 导出CSV

    表  2   西藏班戈县马前乡火山岩主量(%)和微量元素(10-6)成分分析结果

    Table  2   Major (%) and trace (10-6) elements data of the volcanic rocks in the Maqianxiang area, Baingoin County, Tibet

    下载: 导出CSV

    表  3   西藏班戈县马前火山岩的锆石Hf同位素分析结果

    Table  3   Zircon Hf isotopic data of the volcanic rocks in the Maqianxiang area, Baingoin County, Tibet

    下载: 导出CSV
  • Bacon C R, Oruitt T H. 1988. Compositional evolution of the zoned cal-calkaline magma chamber of mount Mazama, Crater Lake, Oregon[J]. Contribution to Mineralogy and Petrology, 98: 224-256. doi: 10.1007/BF00402114

    Chen Weiwei, Zhang Shihong, Ding Jikai, Zhang Junhong, Zhao Xixi, Zhu Lidong, Yang Wenguang, Yang Tiansui, Li Haiyan, Wu Huaichun. 2017. Combined paleomagnetic and geochronological study on Cretaceous 1 strata of the Qiangtang terrane, central Tibet[J]. Gondwana Reserach, 241: 373-389.

    Chen Yulu, Jiang Yuansheng. 2002. Age and significance of volcanic rock of Early Cretaceous in the Ban Ge-Qielicuo areaa in Tibet[J]. Journal of Geomechanics, 8(1): 43-49. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200201004.htm

    Fan Jianjun, Li Cai, Xie Chaoming, Wang Ming, Chen Jingwen. 2015. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks fromthe Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 227: 148-160. doi: 10.1016/j.lithos.2015.03.021

    Fan Jianjun, Li Cai, Xie Chaoming, Wang Ming. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Bang gong co-Nujiang oceanic arm of Neo-Tethys[J]. International Geology Review, 56: 1504-1520. doi: 10.1080/00206814.2014.947639

    Girardeau J, Marcoux J, Allegre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 307: 27-31. doi: 10.1038/307027a0

    Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Lin D. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34: 505-508. doi: 10.1130/G22453.1

    Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram[J]. Journal of Petrology, 48: 2341-2357. doi: 10.1093/petrology/egm062

    Heiken G, Eichelberger J C. 1980. Eruptions at Chaos Crags, Lassen Volcanic National Park, California[J]. Volcanology and Geothermal Research, 7: 443-481. doi: 10.1016/0377-0273(80)90042-6

    Hou Kejun, Li Yanhe, Tian Youyong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract).

    Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectollic setting, tempo-spatial distribution and ore deposit types[J]. Geology in China, 33(2): 341-351(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi200602013

    Hou Zengqian, Zhong Dalai, Deng Wanming. 2004. A tectonic model for porphyry copper-molybdenum-gold metallogenic belts on the eastern margin of the Qinghai-Tibet Plateau[J]. Geology in China, 31(1): 1-14. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200401000.htm

    Hu Peiyuan, Zhai Qingguo, Jahn Bor-ming, Wang Jun, Li Cai, Chung Sunli, Lee Haoyang, Tang Suohan. 2017. Late early cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan plateau: Evidence of lithospheric delamination[J]. Gondwana Research, 44: 116-138. doi: 10.1016/j.gr.2016.12.005

    Hu Peiyuan, Zhai Qingguo, Wang Jun, Tang Yue, Wang Haitao, Hou Kejun. 2018. Ediacaran magmatism in the North Lhasa terrane, Tibet and its tectonic implications[J]. Precambrian Research, 307: 137-154. doi: 10.1016/j.precamres.2018.01.012

    Ingle S, Weis D, Frey F A. 2002. Indian continental CruSt recovered from Elan Bank, Kerguelen Plateau(ODP Leg 183, Site 1137)[J]. Journal of Petrology, 43(7): 1241-1257. doi: 10.1093/petrology/43.7.1241

    Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 211: 47-69. doi: 10.1016/j.chemgeo.2004.06.017

    Kapp P, DeCelles P G, Gehrels G E, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 119: 917-932. doi: 10.1130/B26033.1

    LeBas M J L, Streckeisen A L. 1991. The IUGS systematics of igneous rocks[J]. Journal of the Geological Society, 148(5): 825-833. doi: 10.1144/gsjgs.148.5.0825

    Leier A L, Decelles P G, Kapp P, Gehrels G E. 2007. Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau[J]. Sedimentary Research, 77: 809-825. doi: 10.2110/jsr.2007.078

    Li Haibing, Vauj F, Xu Zhiqin, Yang Jingsui, Tapponnier P, Lacassin R, Chen Songyong, Qi Xuexiang, Chevalier M L. 2006. Deformation and tectonic evolution of the Karakorum falut, western Tibet[J]. Geology in China, 33(2): 239-255(in Chinese with English abstract).

    Lippert P C, van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia[J]. Geology Society of America Special Paper, 507: 1-21.

    Liu Min, Zhu Dicheng, Zhao Zhidan, Mo Xuanxue, Guan Qi, Zhang Liangliang, Yu Feng, Liu Meihua. 2010. Magma mixing of Late Early Jurassic age from Nyainrong, northern Tibet and its tectonic significance[J]. Acta Petrologica Sinica, 26: 3117-3130(in Chinese with English abstract).

    Liu Weiliang, Huang Qiangtai, Gu Man, Zhong Yun, Zhou Renjie, Gu Xiaodong, Zheng Hao, Liu Jingnan, Lu Xingxin, Xia Bin. 2018. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet[J]. Gondwana Research, 60: 1-14. doi: 10.1016/j.gr.2018.03.017

    Liu Weiliang, Xia Bin, Zhong Yun, Cai Jiaxin, Li Jianfeng, Liu Fenghong, Cai Zhourong, Sun Zhilei. 2014. Age and composition of the Rebang Co and Julu ophiolites, central Tibet: implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 56: 430-447. doi: 10.1080/00206814.2013.873356

    Ludwig K R, 2003. ISOPLOT 3: ageochronological toolkit for Microsoft excel[J]. Berkeley Geochronology Centre Special Publication, 4: 74.

    Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac J P, Vidal P, Liu Q, Pan Y S, Wang Y. 1996. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 142: 311-330. doi: 10.1016/0012-821X(96)00086-6

    McCarron J J, Smellie J L. 1998. Tectonic implications of fore-arc magmatism and generation of high- magnesian andesites: Alexander Island, Antarctica[J]. Journal of the Geological Society, London, 155: 269-280. doi: 10.1144/gsjgs.155.2.0269

    Muntener O, Kelemen P B, Grove T L. 2001. The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study[J]. Contributions to Mineralogy and Petrology, 141: 643-658. doi: 10.1007/s004100100266

    Raterman N S, Robinson A C, Cowgill E S. 2014. Structure and detrital zircon geochronology of the Domar fold-thrust belt: Evidence of pre-Cenozoic crustal thickening of the western Tibetan Plateau[J]. Geology Society of America Specical Paper, 507: 89-114.

    Roberts M P, ClemensJ D. 1993. Origin of high-potassium calc-alkaline Ⅰ-type granitoids[J]. Geology, 21(9): 825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    Schiano P, Monzier M, Eissen J P, Martin H, Koga K T. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 160: 297-312. doi: 10.1007/s00410-009-0478-2

    Sisson T W, Grove T L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 113: 143-166. doi: 10.1007/BF00283225

    Smith D R, Leeman W P. 1987. Petrogenesis of Mount St. Helens dacitic magmas[J]. Geophysical Research, 92: 10313-10334. doi: 10.1029/JB092iB10p10313

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publication, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, Ⅱ. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters, 60: 305-317. doi: 10.1016/0012-821X(82)90009-7

    Tepper J H, Nelson B K, Bergantz G W, Irving A J. 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: Generation of calc-alkaline grardtoids by melting of mafic lower chast with variable water fugacity[J]. Contribution to Mineralogy and Petrology, l13: 333-351. doi: 10.1007%2FBF00286926.pdf

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234: 105-126. doi: 10.1016/j.chemgeo.2006.05.003

    Wu Hao, Li Cai, Hu Peiyuan, Fan Jianjun, Zhang Hongyu, Li Jiao. 2013. The discovery of Qushenla volcanic rocks in Tasepule area of Nyima Country, Tibet, and its geological significance[J]. Geological Bulletin of China, 32(7): 1014-1026(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201307006.htm

    Wu Hao, Li Cai, Xu Mengjing, Li Xingkai. 2015. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 97: 51-66. doi: 10.1016/j.jseaes.2014.10.014

    Xu Ronghua, Schärer U, Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A Geochronological study[J]. The Journal of Geology, 93: 41-57. doi: 10.1086/628918

    Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zeng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1): 1-42(in Chinese with English abstract).

    Xu Zhiqin, Yang Jingsui, Li Haibing, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 33(2): 222-238(in Chinese with English abstract). http://www.researchgate.net/publication/284372537_The_Qinghai-Tibet_plateau_and_continental_dynamics_A_review_on_terrain_tectonics_collisional_orogenesis_and_processes_and_mechanisms_for_the_rise_of_the_plateau

    Yang Jingsui, Wang Xibin, Shi Rendeng, Xu Zhiqin, Wu Cailai. 2004. The Durngoi ophiolite in East Kunlun, northern Qinghai-Tibet Plateau: a fragment of paleo-Tethyan oceanic crust[J]. Geology in China, 31(3): 226-229(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dizi200403000.htm

    Zhang Kaijun, Xia Bin, Zhang Yuxiu, Liu Weiliang, Zeng Lu, Li Jianfeng, Xu Lifeng. 2014. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 210-211: 278-288. doi: 10.1016/j.lithos.2014.09.004

    Zhang Kaijun, Xia Bangdong, Wang Guanmin, Li Yongtie. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 116: 1202-1222. doi: 10.1130/B25388.1

    Zhao Hui, Yang Jingsui, Liu Fei, Xiong Fahui, Zhang Lan, Lian Dongyang. 2015. Geochemical and chronological studies of the alkaline basalt in Saga along the Yarlung Zangbo suture zone, Tibet[J]. Geology in China, 42(5): 1242-1256(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201505006.htm

    Zhu Dicheng, Li Shimin, Cawood Peter A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, WangLiquan, Liu Yongsheng, Wu Fuyuan. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268: 298-312. doi: 10.1016/j.chemgeo.2009.09.008

    Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Dong Guochen, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous grodynamic setting in middle-northern Gangdese: New insights from volcanic rocks[J]. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200603002.htm

    Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung Sunli, Cawood Peter A, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5: 14289. doi: 10.1038/srep14289

    Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    Zorpi M J, Coulon C, Orsini J B, Cocirta C. 1989. Magmamingling, zoning and emplacement in calc-alkaline granitoid plutons[J]. Tectonophysics, 157: 315-329. doi: 10.1016/0040-1951(89)90147-9

    陈玉禄, 江元生. 2002. 西藏班戈一切里错地区早白垩世火山岩的时代确定及意义[J]. 地质力学学报, 8(1): 43-49. doi: 10.3969/j.issn.1006-6616.2002.01.005
    侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
    侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 33(2): 341-351. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20060213&flag=1
    侯增谦, 钟大赉, 邓万明. 2004. 青藏高原东缘斑岩铜钼金成矿带的构造模式[J]. 中国地质, 31(1): 1-14. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20040101&flag=1
    李海兵, Franck Vauj, 许志琴, 杨经绥, Paul Tapponnier, Robin Lacassin, 陈松永, 戚学祥, Marie-Luce Chevalier. 2006. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 33(2): 239-255. doi: 10.3969/j.issn.1000-3657.2006.02.002
    吴浩, 李才, 胡培远, 范建军, 张红雨, 李娇. 2013. 西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J]. 地质通报, 32(7): 1014-1026. doi: 10.3969/j.issn.1671-2552.2013.07.007
    许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1-42. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160101&flag=1
    许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学-地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 33(2): 222-238. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20060201&flag=1
    杨经绥, 王希斌, 史仁灯, 徐志琴, 吴才来. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被支解了的古特提斯洋壳[J]. 中国地质, 31(3): 226-229. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20040301&flag=1
    赵慧, 杨经绥, 刘飞, 熊发挥, 张岚, 连东洋. 2015. 西藏雅鲁藏布江缝合带萨嘎碱性玄武岩地球化学和年代学研究[J]. 中国地质, 42(5): 1243-1256. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150506&flag=1
    朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
  • 期刊类型引用(7)

    1. 程涌,周家喜,孙国涛,黄智龙. 贵州半边街锗锌矿床锗的富集特征及其地质意义. 岩石学报. 2024(01): 43-59 . 百度学术
    2. 何叶,周高明,钟华,程涌,岳正鹏,刘和松,周家喜. 云南毛坪铅锌矿床新发现Ⅵ号矿带硫化物稀散元素富集特征及其地质意义. 岩石学报. 2023(10): 2985-3001 . 百度学术
    3. 黄亮,周家喜,孙载波,熊波,龙天祥,王晓林,吴嘉林. 滇西漕涧地区发现流纹岩型铌矿化. 矿物岩石地球化学通报. 2022(01): 185-187 . 百度学术
    4. 杨昌华,周家喜,罗开,姜永果,李晓红,杨丰铭,陶永林. 云南省兰坪-思茅盆地发现钴超常富集矿化点. 大地构造与成矿学. 2022(06): 1167-1169 . 百度学术
    5. 杨德智,周家喜,孔志岗,吴越,黄智龙,金中国. 闪锌矿矿物结构对Ge超常富集的制约:以贵州竹林沟Ge-Zn矿床为例. 大地构造与成矿学. 2022(06): 1120-1136 . 百度学术
    6. 罗开,周家喜,徐畅,贺康建,王永彬,孙国涛. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义. 岩石学报. 2021(09): 2761-2777 . 百度学术
    7. 周家喜,杨德智,余杰,周祖虎,罗开,徐阳东. 贵州黄丝背斜地区实现大型共(伴)生锗矿床找矿突破. 矿物学报. 2020(06): 772 . 百度学术

    其他类型引用(0)

图(7)  /  表(3)
计量
  • 文章访问数:  2150
  • HTML全文浏览量:  900
  • PDF下载量:  3405
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-08-13
  • 修回日期:  2019-12-22
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-10-24

目录

/

返回文章
返回
x 关闭 永久关闭