• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

重大水利工程对长江中下游干流河槽和岸线地质环境影响研究

姜月华, 程和琴, 周权平, 倪化勇, 金阳, 梅世嘉, 张鸿, 顾轩, 施斌, 顾凯, 魏广庆, 李云, 杨国强, 齐秋菊

姜月华, 程和琴, 周权平, 倪化勇, 金阳, 梅世嘉, 张鸿, 顾轩, 施斌, 顾凯, 魏广庆, 李云, 杨国强, 齐秋菊. 重大水利工程对长江中下游干流河槽和岸线地质环境影响研究[J]. 中国地质, 2021, 48(6): 1681-1696. DOI: 10.12029/gc20210602
引用本文: 姜月华, 程和琴, 周权平, 倪化勇, 金阳, 梅世嘉, 张鸿, 顾轩, 施斌, 顾凯, 魏广庆, 李云, 杨国强, 齐秋菊. 重大水利工程对长江中下游干流河槽和岸线地质环境影响研究[J]. 中国地质, 2021, 48(6): 1681-1696. DOI: 10.12029/gc20210602
JIANG Yuehua, CHENG Heqin, ZHOU Quanping, NI Huayong, JIN Yang, MEI Shijia, ZHANG Hong, GU Xuan, SHI Bin, GU Kai, WEI Guangqing, LI Yun, YANG Guoqiang, QI Qiuju. The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River[J]. GEOLOGY IN CHINA, 2021, 48(6): 1681-1696. DOI: 10.12029/gc20210602
Citation: JIANG Yuehua, CHENG Heqin, ZHOU Quanping, NI Huayong, JIN Yang, MEI Shijia, ZHANG Hong, GU Xuan, SHI Bin, GU Kai, WEI Guangqing, LI Yun, YANG Guoqiang, QI Qiuju. The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River[J]. GEOLOGY IN CHINA, 2021, 48(6): 1681-1696. DOI: 10.12029/gc20210602

重大水利工程对长江中下游干流河槽和岸线地质环境影响研究

基金项目: 

中国地质调查局长江经济带地质环境综合调查工程 gp2015-03-02

中国地质调查局长江经济带地质环境综合调查工程 0531

中国地质调查局长江经济带地质环境综合调查工程 0802

中国地质调查局项目 DD20160246

中国地质调查局项目 DD20190260

详细信息
    作者简介:

    姜月华, 男, 1963年生, 博士, 研究员, 主要从事环境地质和水文地质工作; E-mail: 316664105@qq.com

  • 中图分类号: P737.1;TV147

The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River

Funds: 

the project of China Geological Survey "Geological Environment Comprehensive Survey Project of the Yangtze River Economic Zone" gp2015-03-02

the project of China Geological Survey "Geological Environment Comprehensive Survey Project of the Yangtze River Economic Zone" 0531

the project of China Geological Survey "Geological Environment Comprehensive Survey Project of the Yangtze River Economic Zone" 0802

the project of China Geological Survey DD20160246

the project of China Geological Survey DD20190260

More Information
    Author Bio:

    JIANG Yuehua, male, born in 1963, doctor, senior researcher, engaged in environmental geology and hydrogeology; E-mail: 316664105@qq.com

  • 摘要:

    本文主要采取历史水下地形和水位数据分析、干流河槽现场测量、室内测试和综合评价等方法对重大水利工程影响长江中下游干流河槽和岸线进行了分析和研究,取得如下新进展:(1)创新构建了一套多模态传感器系统,实现陆上和水下一体化水动力、沉积和地貌特征测量与数据采集。(2)调查研究发现,长江干流河槽冲刷强烈,岸线窝崩、条崩发育。(3)悬沙和床沙粗化,河床阻力下降,发育侵蚀型链珠状沙波,长江大桥主桥墩冲刷严重。(4)潮区界显著上移,潮区界变动河段地貌发生重要变化。在此基础上,研究认为应该加强长江中下游干流河槽、沿岸高陡岸坡、支流入汇干流河口、崩岸以及跨江大桥桥墩冲刷等调查、监测和成因机理分析。上述研究成果对长江岸滩防护和修复、航道整治、沿岸防洪、长江大桥桥墩维护等具有重要意义。

    Abstract:

    Based on the analysis of historical underwater topography and water level data, field measurement, laboratory test and comprehensive evaluation, the influence of major water conservancy projects on the channels and shorelines of the middle and lower reaches of the Yangtze River is studied. Some new progresses have been made. Firstly, a multi-mode sensor system was innovatively constructed to integrate the measurements of land and underwater hydrodynamic, sedimentary and geomorphic characteristics and data acquisition. Secondly, it was found that the main channel of the Yangtze River experienced strong erosion, arc collapse, and strip collapse. Thirdly, the hanging sand and bed sand were coarsened. The resistance of the river bed dropped, which caused the forming of the erosion type chain bead sand wave. The main piers of the Yangtze River Bridge were subjected to serious erosion. Finally, the tidal limit obviously moved up, and the geomorphology of the river changed significantly. On this basis, it is suggested that the investigation, monitoring and mechanism analysis should be strengthened on main river channel, high and steep slope along the bank, the estuary where the tributaries join the main stream, bank collapsing, cross-river bridge pier scour and so on. These results are of great significance to the protection and restoration of the bank and beach of the Yangtze River, the waterway regulation, the coastal flood control, and the maintenance of the piers of the Yangtze River Bridge.

  • 蛇绿岩是分布在板块缝合带的一套特殊类型的镁铁质-超镁铁质岩石组合,被认为是仰冲就位于陆地的大洋岩石圈板块残片,是板块汇聚最重要的标志之一。由于蛇绿岩的岩石单元可以和现代大洋岩石圈对比,记录了大洋的形成、扩张、消减到碰撞等一系列过程,因此蛇绿岩被认为蕴含了地球内部动力学和板块运动过程的丰富信息,是研究大洋岩石圈演化的最佳载体(Dilek and Furnes, 2011Rampone and Hofmann, 2012)。

    西藏雅鲁藏布构造带是印度板块和欧亚板块的分界线。狭窄的缝合带不连续分布有一系列蛇绿岩体,西段以大规模出露新鲜地幔橄榄岩和非常少的镁铁质岩石为特征,中段以普遍蛇纹石化的地幔橄榄岩伴生相对完整的镁铁质岩石单元为特征,东段以较少出露镁铁质岩石且地幔橄榄岩中赋存大规模铬铁矿床为特征。然而,雅鲁藏布构造带蛇绿岩体的形成环境目前仍然存在较大的争议(Bao et al., 2013)。一些学者认为雅鲁藏布蛇绿岩形于洋中脊慢速扩张中心(Nicolas et al., 1981Allegre et al., 1984Girardeau and Mercier, 1988吴福元等,2014Liu et al., 2014Zhang et al., 2016Zhang et al., 2016, 2017Liu et al., 2016)。然而,很多学者认为雅鲁藏布蛇绿岩形成于俯冲带环境(张旗等2003Dubois-Cote et al., 2005钟立峰等,2006Bedard et al., 2009Hebert et al., 2012Dai et al., 2012, 2013李文霞等,2012)。本研究展示新的地质和地球化学证据进一步探讨雅鲁藏布构造带中段日喀则蛇绿岩的形成构造环境。

    青藏高原由不同的地体拼接而成,由南向北包括拉萨地体、羌唐地体、松潘—甘孜地体、昆仑—祁连地体(Yin and Harrison, 2000)。雅鲁藏布构造带位于拉萨地体和印度大陆之间,一系列断续出露的蛇绿岩体东西向展布超过2500 km(图 1a)(Gansser, 1980)。前人对这些蛇绿岩体中镁铁质岩石开展了大量高精度U-Pb锆石年代学工作,定年结果表明这些镁铁质岩石形成时代在118~149 Ma范围内(图 1a)。根据地理分布和岩体特征,雅鲁藏布蛇绿岩带从西向东可以分为3段:西段、中段和东段(图 1a)。

    图  1  雅鲁藏布构造带及蛇绿岩简图
    a—雅鲁藏布蛇绿岩分布及镁铁质岩石锆石U-Pb年龄(修改自An et al., 2014吴福元等, 2014);b—日喀则蛇绿岩分布及这次研究的采样点位置(修改自王希斌等,1987
    Figure  1.  Simplified geological map of Yarlung -Zangbo suture zone and ophiolitic massifs
    a-Distribution of the Yarlung Zangbo ophiolites and their zircon U-Pb ages from mafic rocks (modified from An et al., 2014; Wu Fuyuan et al., 2014); b-Distribution of the Xigaze ophiolitic massifs and sampling locations of this study (modified from Wang Xibin et al., 1987)

    雅鲁藏布西段蛇绿岩主要以东波、普兰、休古嘎布、仲巴、萨嘎、桑桑等岩体为代表,以出露大量地幔橄榄岩及少量镁铁质岩石为特征(徐德明等,2007Bedard et al., 2009刘钊等,2011;Bezard et al., 熊发挥等,2011刘飞等,2013;2011; Liu et al., 2014; Liu et al., 2015)。东波、普兰、休古嘎布、仲巴岩体的地幔橄榄岩主要以新鲜的方辉橄榄岩为主,含少量二辉橄榄岩和纯橄岩,局部出露小规模豆荚状铬铁矿化。而萨嘎和桑桑岩体的地幔橄榄岩强烈蛇纹石化(Bedard et al., 2009)。这些岩体的地幔橄榄岩中普遍被不同规模的辉长岩和辉绿岩脉侵入,局部出露少量玄武岩。

    雅鲁藏布中段蛇绿岩分布于昂仁到仁布地区,从西向东包括昂仁、吉定、路曲、下鲁、冲堆、群让、得几、白朗、大竹曲和仁布等岩体,统称为日喀则蛇绿岩(图 1a)。日喀则蛇绿岩发育最为典型,研究程度也最高(吴福元等,2014)。日喀则蛇绿岩体以广泛出露地幔橄榄岩和相对完整的镁铁质岩石层序为特征(Nicolas et al., 1981; 王希斌等,1987)。蛇绿岩层序从南向北,大致以地幔橄榄岩-辉长岩-辉绿岩-玄武岩-硅质岩的岩性变化。新鲜的地幔橄榄岩主要分布在路曲和大竹曲岩体,主要由方辉橄榄岩和少量二辉橄榄岩和纯橄岩组成,部分橄榄岩中含豆荚状铬铁矿化,而其他岩体的地幔橄榄岩多已不同程度的蛇纹石化。日喀则蛇绿岩的吉定、白朗、大竹曲等岩体发育洋壳,主要有层状辉长岩、块状辉长岩、辉绿岩席、枕状熔岩组成。而昂仁、路曲、下鲁、冲堆、群让、得几、仁布等岩体则缺失辉长岩,仅仅包含相对较薄的辉绿岩席和枕状熔岩。在壳幔过渡带可见一定规模的辉绿岩和辉长岩脉侵入到下覆的地幔橄榄岩中(陈根文等, 2003, 2015牛晓露等,2006李文霞等,2012Liu et al., 2016Zhang et al., 2016Zhang et al., 2017)。

    雅鲁藏布东段蛇绿岩主要包括泽当、罗布莎等岩体,以大量地幔橄榄岩和发育纯橄岩和铬铁矿床为特征。泽当岩体由地幔橄榄岩及一套镁铁质杂岩组成,但是与日喀则蛇绿岩不同的是,泽当岩体的地幔橄榄岩部分位于北侧,南侧出现少量辉绿岩及硅质岩。罗布莎岩体主要由地幔橄榄岩、辉长岩-辉绿岩、玄武岩组成。辉绿岩和辉长岩规模延伸较大,位于地幔橄榄岩体的北侧,玄武岩不发育,少量玄武岩位于地幔橄榄岩体的北侧(韦栋梁等,2004钟立峰等,2006Zhang et al., 2016;Xiong et al., 2016;刘良志等,2018)。

    路曲岩体位于日喀则市区向南10 km左右(图 1b)。岩体北侧与古近—新近纪日喀则组磨拉石建造和第四纪堆积物呈构造接触,岩体南侧与厚层的三叠纪嘎学群复理石建造呈断层接触。路曲岩体最底部为蛇绿混杂岩,主要为强烈蛇纹石化的地幔橄榄岩和少量异剥钙榴岩脉组成(图 2a)。新鲜的橄榄岩主要位于地幔橄榄岩段中部,岩性为方辉橄榄岩和少量二辉橄榄岩。壳幔过渡带橄榄岩强烈蛇纹石化,其中被少量不同规模的辉绿岩脉侵入(图 2b)。路曲岩体镁铁质岩石主要为辉绿岩和少量枕状玄武岩(图 2f),缺失辉长岩。辉绿岩位于地幔橄榄岩和玄武岩之间,与上覆玄武岩过渡接触,与下覆地幔橄榄岩呈侵入接触关系。玄武岩呈枕状和气孔-杏仁状构造,主要位于岩体北侧,与顶部硅质岩整合接触。

    图  2  日喀则蛇绿岩野外照片
    a—路曲岩体蛇绿混杂岩;b—路曲岩体辉绿岩脉侵入地幔橄榄岩(蛇纹岩);c—大竹曲岩体层状辉长岩;d—大竹曲岩体块状辉长岩和辉绿岩;e—大竹曲岩体含斜长石斑晶的辉绿岩;f—路曲岩体枕状玄武岩
    Figure  2.  Field photos of the Xigaze ophiolite
    a-Ophiolitic mélange of the Luqu massif; b-Diabase dike that intruded into mantle peridotite (serpentinite) of the Luqu massif; c-Layered gabbro of the Dazhuqu massif; d-Massive gabbro and diabase of the Dazhuqu massif; e-Plagioclase phenocrysts in diabase of the Dazhuqu massif; f-Pillow basalts of the Luqu massif

    大竹曲岩体位于日喀则蛇绿岩东部,紧邻仁布岩体,距日喀则市区80 km左右(图 1b)。岩体北侧为古近—新近纪日喀则组,南侧为侏罗—白垩系深海沉积物,为断层接触关系。大竹曲岩体的地幔橄榄岩部分主要由方辉橄榄岩和和少量纯橄岩组成。壳幔过渡带的地幔橄榄岩强烈蛇纹石化且被辉绿岩和辉长岩脉侵入。而洋壳序列底部为镁铁质-超镁铁质堆积杂岩,包括橄长岩、辉石岩、层状辉长岩、块状辉长岩,但是难以观察到这些岩石的界限和接触关系(王希斌等,1987)。层状辉长岩具典型的暗示辉长岩和浅色辉长岩交替韵律层结构(图 2c)。暗色辉长岩一般含有60%~70%单斜辉石和30%~40%斜长石,而浅色辉长岩含50%~60%斜长石和40%~50%单斜辉石。斜长石多呈自形—半自形晶,中-粗粒结构,多已蚀变,单斜辉石多呈半自形粒状,并与斜长石组成典型的辉长结构(图 3a)。

    图  3  日喀则蛇绿岩镁铁质岩石显微照片
    a—辉长岩中半自形单斜辉石和自形-半自形斜长石构成辉长结构;b—辉长岩中粗粒单斜辉石中包裹自形—半自形的斜长石晶体;c—辉绿岩中细粒辉石和自形斜长石组成典型的辉绿结构;d—辉绿岩中自形斜长石斑晶;e—玄武岩中自形斜长石和他形单斜辉石;f—玄武岩中自形斜长石和他形单斜辉石斑晶
    Figure  3.  Petrographic microphotos of the mafic rocks from the Xigaze ophiolite
    a-Gabbro texture consisting of subhedral clinopyroxene and subhedral to euhedral plagioclase in gabbro; b-Subhedral-euhedral plagioclase enclosed by coarse-grain clinopyroxene in gabbro; c-Diabasic texture consisting of fine grained clinopyroxene and euhedral plagioclase in diabase; d-Euhedral plagioclase phenocrysts in diabase; e-Fine grained plagioclase and clinopyroxene in basalt; f-Euhedral plagioclase and anhedral clinopyroxene phenocrysts in basalt

    常见粗大的单斜辉石晶体包裹自形—半自形的斜长石晶体(图 3b)。块状辉长岩常显示块状构造,中粒结构,岩石常被辉绿岩顺层侵入切割(图 2d)。块状辉长岩主要组成为半自形的单斜辉石和已蚀变的自形-半自形的斜长石。大竹曲辉绿岩多为顺层侵入的辉绿岩席,且这些辉绿岩席也普遍侵入到下部的地幔橄榄岩中。部分侵入地幔橄榄岩的辉绿岩发生了异剥钙榴岩化。这些辉绿岩一般粒度较细,呈典型的辉绿结构(图 3c),辉绿岩中常出现自形—半自形的斜长石斑晶(图 2e图 3d)。在辉绿岩席的上部为一定厚度的玄武岩,这些玄武质喷出岩粒度变化较大(图 3e~f),部分玄武岩出现斑晶,以自形—半自形斜长石为主,单斜辉石较少且自形程度较低(图 3f)。

    全岩主量元素分析在澳实分析检测(广州)有限公司完成,分析仪器为荷兰帕纳科公司生产的X荧光光谱仪,型号为PANalytical MagXFast。通过XRF射线光谱仪对制成四硼酸锂玻璃进行分析,分析精度优于5%。分析方法为:首先将已扣除烧失量的准确称量的粉末样品和Li2B4O7-LiBO2助熔剂,混合均匀,转移至铂金坩埚中,在1200℃下使样品完全熔融,再将熔体倒入铂金模具,冷却后制成玻璃再上机测试。全岩氧化亚铁(FeO)含量分析在澳实分析检测(广州)有限公司完成,根据强酸消解、重铬酸钾滴定测定样品中Fe2+含量。

    全岩微量元素测试分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,测试仪器为Perkin-Elmer Sciex ELAN DRC-e电感耦合等离子体质谱仪(ICP-MS),分析精度优于10%。准确称取50 mg粉末(200目)样品放入Teflon杯中,加入1 mL亚沸HF,并在电热板上蒸干以去除大部分SiO2,再加入1 mL亚沸HF和0.5 mL亚沸HNO3,然后用不锈钢钢套密封后放入烘箱中,温度185℃加热36 h。冷却至室温后在电热板上150℃蒸干去除HF,然后再加入1 mL亚沸HNO3再次蒸干,并重复一次全部除去HF。最后加入2 mL HNO3、5 mL去离子水和500 ng Rh内标溶液,重新放入不锈钢钢套密封放入烘箱,温度140℃加热8 h,冷却至室温后吸取其中400 μL溶液移到10 mL离心管,加入去离子水定容至10 mL,最后上机测试。

    Pb同位素分析在中国地质科学院地质研究所国土资源部同位素地质研究重点实验室完成。化学流程如下:吸取样品溶液0.2 mL转移至AG1-X8阴离子交换树脂,并用1 mol/L HBr溶液淋洗5次,每次1 mL,然后用2mol/L HCl溶液0.5 mL淋洗1次,然后再用6 mol/L HCl溶液1 mL淋洗1次并接Pb,最后继续用6 mol/L HCl溶液0.5 mL淋洗1次并接Pb。Pb同位素比值用多接收器等离子体质谱法(MC-ICPMS)测定,所用仪器为英国Nu Plasma HR,仪器的质量分馏以Tl同位素外标校正。样品中Tl的加入量约为铅含量的1/2。国际标样NBS 981长期测定的统计结果:208Pb/206Pb =2.16736 ± 0.00066 (± 2σ),207Pb/206Pb =0.91488 ± 0.00028 (± 2σ),206Pb/204Pb=16.9386 ± 0.0131 (± 2σ),207Pb/204Pb=15.4968±0.0107 (±2σ),208Pb/204Pb= 36.7119±0.0331 (± 2σ)。详细的化学分离方法和质谱测定方法见何学贤等(2007)

    日喀则蛇绿岩路曲和大竹曲岩石样品主微量元素分析结果见表 1。路曲和大竹曲岩体的玄武岩、辉绿岩、辉长岩均有一定程度的蚀变,烧失量分别为2.28%~3.20%、2.32%~3.42 %、3.06%~3.24%。路曲镁铁质岩石的SiO2含量在49.38%~50.62%,Na2O含量为2.73% ~4.35%,K2O含量为0.25% ~1.14%。TAS投图显示路曲样品均落在玄武岩/辉长岩区域(图 4)。大竹曲岩体镁铁质岩石的SiO2含量为48.89%~51.17%,Na2O含量为2.38%~4.71%,K2O含量为0.07%~1.32 %。TAS投图显示大竹曲样品也全部落在玄武岩/辉长岩范围之内(图 4)。

    表  1  日喀则蛇绿岩路曲和大竹曲岩体镁铁质岩石全岩主量元素(%)和微量元素(10-6)成分
    Table  1.  The compositions of whole-rock major (%) and trace (10-6) elements of the mafic rocks from the Luqu and Dazhuqu massifs of the Xigaze ophiolite
    下载: 导出CSV 
    | 显示表格
    图  4  日喀则蛇绿岩路曲和大竹曲镁铁质岩石全岩TAS图解
    Figure  4.  Diagram of TAS for whole rock composition of the mafic rocks of the Luqu and Dazhuqu massifs from the Xigaze ophiolite

    路曲和大竹曲岩石样品的球粒陨石标准化REE配分模式整体上显示LREE轻微亏损和HREE相对平坦,其特征与N-MORB非常相似(图 5a5c)。在球粒陨石标准化REE配分模式中,路曲所有样品均无明显的Eu异常(图 5a),大竹曲岩体除了辉长岩样品显示轻微Eu正异常外,玄武岩和辉绿岩样品均没有明显的Eu异常(图 5c)。由于Rb、Ba、Cs、U、K、Sr、P等元素容易受到后期海水和热液的影响发生迁移,而高场强元素Nb、Ta、Zr、Hf、Ti和REE元素在后期热液活动过程中相对不容易发生迁移,它们主要受地幔源区和岩浆演化过程控制(Pearce et al., 2014)。因此,本次研究不选取这些容易受后期影响的元素进行标准化作图。在NMORB标准化微量元素配分模式中,所有路曲样品具有相似的微量元素特征且均显示弱Nb-Ta负异常,而Th、Zr、Hf、Ti、REE等元素特征与N-MORB一致(图 5b)。在大竹曲岩体中,大部分样品的微量元素特征保持一致,均显示弱Nb-Ta负异常(图 5d)。大竹曲玄武岩和辉绿岩的配分模式总体上相似于N-MORB,辉长岩相对于N-MORB显示略低的微量元素含量,但配分图形状接近于N-MORB。

    图  5  日喀则蛇绿岩路曲和大竹曲岩石球粒陨石标准化REE配分模式(a,c)及N-MORB标准化微量元素配分模式(b,d)
    (球粒陨石和N-MORB标准化值据Sun and McDonough, 1989; 用于对比的OIB、E-MORB、N-MORB数值据Sun and McDonough, 1989
    Figure  5.  Chlondrite-normalized REE patterns (a, c) and N-MORB normalized trace elements patterns (b, d)of Xigaze ophiolite
    Normalized values, and N-MORB, OIB, E-MORB values after Sun and McDonough (1989)

    路曲和大竹曲样品全岩Pb同位素比值结果见表 2。路曲和大竹曲岩体样品的Pb同位素比值变化范围相对较小,其206Pb/204Pb的变化范围为17.54~18.05,207Pb/204Pb变化范围为15.42~15.56,208Pb/204Pb变化范围为37.67~38.17。根据样品中Th、U、Pb含量对Pb同位素比值的时间校正计算(t=140 Ma),校正结果显示(206Pb/204Pb)t的变化范围为17.46~17.94,(207Pb/204Pb)t变化范围为15.42~15.56,(208Pb/204Pb)t变化范围为37.35~38.13。在(208Pb/204Pb)t-(206Pb/204Pb)t和(207Pb/204Pb)t-(206Pb/204Pb)t图解上(图 6a6b),路曲和大竹曲样品Pb同位素比值接近于雅鲁藏布蛇绿岩带其他岩体镁铁质岩石,且完全落入印度洋MORB区域。这些特征表明这些镁铁质岩石的地幔源区具有印度洋MORB型同位素组成特征。而雅鲁藏布蛇绿岩镁铁质岩石的Pb同位素比值则明显区别于现代大洋沉积物(Ben Othman et al., 1989)。

    表  2  日喀则蛇绿岩路曲和大竹曲镁铁质岩石Pb同位素成分
    Table  2.  The compositions of Pb isotope of mafic rocks from the Luqu and Dazhuqu massifs of the Xigaze ophiolite
    下载: 导出CSV 
    | 显示表格
    图  6  全岩Pb同位素比值图解
    a-(208Pb/204Pb)t-(206Pb/204Pb)t; b-(207Pb/204Pb)t-(206Pb/204Pb)t;矫正年龄为t=140 Ma。太平洋和北大西洋MORB和印度洋MORB范围据Mahoney et al.1998Zhang et al. 2005。现代大洋沉积物(GLOSS, 据Ben Othman et al., 1989, 北半球参考线(NHRL)据Hart, 1984。用于对比的雅鲁藏布蛇绿岩的Pb同位素数据源自文献(牛晓露等, 2006; 钟立峰等, 2006; 徐德明等, 2007; 刘飞等, 2013; Liu et al., 2015
    Figure  6.  Plots of Pb isotope ratios
    a-(208Pb/204Pb)tversus (206Pb/204Pb)t; b-(207Pb/204Pb)t versus (206Pb/204Pb)t at 140 Ma. Fields of Pacific and North Atlantic MORB, and India MORB after Mahoney et al. (1998) and Zhang et al. (2005). Field of GLOSS after Ben Othman et al., 1898 and NHRL after Hart (1984). The data of Pb isotope of the Yarlung-Zangbo ophiolite after Niu et al. (2006), Zhong et al. (2006), Xu et al. (2007), Liu et al.(2013, 2015)

    由于单斜辉石相对富集HREE,因此单斜辉石分离结晶将会导致残余岩浆亏损HREE而相对富集LREE(Hauri et al., 1994)。然而,路曲和大竹曲岩石样品的球粒陨石标准化REE配分模式均显示轻微LREE亏损(图 5a5c),说明岩浆就位之前在深部没有经历重要的单斜辉石分离结晶。此外,路曲和大竹曲镁铁质岩石的球粒陨石标准化REE配分模式没有明显Eu负异常,而Eu相容于斜长石(Aigner-Torres et al., 2007),这说明形成这些镁铁质岩石的岩浆在深部没有经历重要的斜长石分离结晶(5a,5c)。这些特征说明经地幔部分熔融产生而聚集的岩浆在上升过程中没有经历明显的结晶分异作用,因此它们的微量元素能够反演地幔源区性质和部分熔融程度。

    路曲和大竹曲岩体的玄武岩、辉绿岩、辉长岩均显示相似的球粒陨石标准化REE配分模式和NMORB标准化微量元素配分模式(图 5),说明形成这些岩石的岩浆来自同一地幔源区。此外,这些岩石的REE与N-MORB的REE配分模式非常接近(图 5a5c),且N-MORB标准化微量元素配分模式也非常平坦且接近于1(图 5b5d),表明形成这些岩石的岩浆来自亏损地幔源区。路曲和大竹曲岩石样品的Pb同位素均落在印度洋MORB范围之内(图 6),一方面说明这些岩石起源于亏损地幔,另一方面暗示新特提斯地幔源区与印度洋地幔域有相似的地球化学特征(Mahoney et al., 1998Xu and Castillo, 2004Zhang et al., 2005牛晓露等,2006)。尖晶石二辉橄榄岩部分熔融过程中熔融残留物和熔体之间不会发生中稀土(如Sm)和重稀土(如Yb)分异,但轻稀土(如La)和中稀土(如Sm)之间会随着地幔部分熔融程度的增高而发生明显分异(Aldanmaz et al., 2000)。据图 7所示,大竹曲和路曲岩体样品均落在尖晶石二辉橄榄岩熔融趋势线上,其部分熔融程度约在10%。

    图  7  全岩La/Sm-Sm/Yb图解(据Aldanmaz et al., 2000
    PM、N-MORB、E-MORB数据源自Sun and McDonough (1989)
    Figure  7.  Diagram of La/Sm versus Sm/Yb (after Aldanmaz et al., 2000)
    PM, N-MORB, E-MORB data after Sun and McDonough (1989)

    作为雅鲁藏布蛇绿岩带上重要的组成部分,日喀则蛇绿岩的形成环境一直是众多学者关注的焦点(吴福元等,2014)。从野外地质关系来看,路曲岩体洋壳部分缺失堆晶岩,表明路曲岩体洋壳形成过程中可能不存在岩浆房。而路曲辉绿岩大多以岩席的形式顺层侵入,甚至少量辉绿岩脉侵入到下部的地幔橄榄岩中(图 2b)。这些特征与慢速扩张脊特征一致(Purdy and Detrick, 1986)。大竹曲岩体的辉绿岩和玄武岩野外特征与路曲岩体类似,但是发育规模较小的层状辉长岩和块状辉长岩(图 2c2d),表明大竹曲岩体洋壳形成过程中存在一定规模的岩浆房。层状辉长岩显示浅色辉长岩层和暗色辉长岩层的韵律交替结构(图 2c),表明岩浆房发生一定程度的分异。辉长岩中常见粗粒单斜辉石包裹自形斜长石晶体(图 3b),说明斜长石结晶明显早于单斜辉石。此外,大竹曲辉绿岩和玄武岩中常出现自形—半自形的斜长石斑晶(图 2d2f),这些特征都说明斜长石较早结晶并被上升岩浆捕获到浅部。实验岩石学研究表明玄武质岩浆中水增加将降低斜长石结晶温度,从而推迟斜长石结晶时间,然而在无水环境下,斜长石则较早从玄武质岩浆中结晶(Sisson and Grove, 1993; Botcharnikov et al., 2008)。因此,可以推断形成大竹曲镁铁质岩石的岩浆是一种起源于大洋中脊扩张中心的无水玄武质岩浆。

    传统上判断蛇绿岩形成于俯冲带(SSZ)环境主要是根据蛇绿岩石序列中镁铁质岩石地球化学特征而没有其他直接地质证据(Miyashiro et al., 1973; Pearce et al., 1984, 2014)。然而,从Zr-Zr/Y图解来看(图 8a),日喀则蛇绿岩路曲和大竹曲岩体大部分岩石覆盖于洋中脊玄武岩范围,明显区别于弧前玄武岩,但是不能与弧后盆地玄武岩区别。在(Nb/Yb)N-(Th/Yb)N相关图中(图 8b),路曲和大竹曲岩体岩石分布范围和趋势与洋中脊玄武岩一致,而弧后盆地玄武岩则显示明显更高(Nb/Yb)N和(Th/Yb)N比值。在(Nb/Th)N-(Th/La)N相关图中(图 8c),路曲和大竹曲样品明显区别于弧前和弧后盆地玄武岩,完全落入洋中脊玄武岩区域。这些特征再次表明路曲和大竹曲镁铁质岩体岩石形成于洋中脊环境。此外,路曲和大竹曲岩体岩石的球粒陨石标准化REE配分模式与N-MORB配分模式完全一致(图 5a5c),也暗示这些岩石形成于洋中脊环境。在NMORB标准化微量元素配分模式图中(图 5b5d),路曲和大竹曲镁铁质岩石微量元素特征除了相对于Th和LREE显示轻微Nb-Ta负异常,而Th、LREE、Zr、Hf、Ti总体上与N-MORB保持一致。

    图  8  微量元素构造环境判别图
    a-Zr/Y-Zr(据Pearce, 2000);b-Nb/Yb-Th/Yb(据Pearce, 2008);c-Nb/Th-Th/La(据Godard et al., 2006);弧后盆地、洋中脊扩张中心、弧前玄武岩数据源自于PETDB数据库(http://www.petdb.org
    Figure  8.  Discriminant diagrams of tectonic setting
    a-Zr/Y versus Zr (after Pearce, 2000), b-Nb/Yb versus Th/Yb(after Pearce, 2008); c-Nb/Th versus Th/La(after Godard et al., 2006). The data of back-arc basalt, mid-oceanic ridge basalt, fore-arc basalt after PETDB database

    虽然路曲和大竹曲样品普遍存在轻微Nb-Ta负异常,而Nb-Ta负异常也被众多学者认为是SSZ成因的主要印记(Hebert et al., 2012李文霞等,2012)。然而,值得注意的是路曲和大竹曲岩石的Pb同位素结果均落入印度洋MORB地幔域,而这些岩石的Nb-Ta负异常可能与印度洋MORB地幔域的地球化学不均一性有关(Moores et al., 2000)。先前的研究表明,青藏高原晚震旦世以来的蛇绿岩镁铁质岩石的同位素特征与现代印度洋MORB的同位素地球化学特征一致,明显区别于太平洋和北大西洋洋中脊玄武岩,表明现代印度洋MORB地幔域继承了特提斯洋地幔原来的空间位置和地球化学特征(Mahoney et al., 1998; Xu and Castillo, 2004; Zhang et al., 2005)。然而,在地质演化期间,特提斯洋岩石圈地幔域曾发生过大陆地壳、古老俯冲带物质混入(Castillo, 1988Klein et al., 1988Le Roex et al., 1989Storey et al., 1989Rehkamper and Hofmann, 1997)。由于在俯冲过程中Th容易迁移而Nb-Ta相对不易迁移,因此大多数与岛弧有关的岩石显示较高的Th/Nb和Th/Ta比值。此外,大陆地壳也显示较高的Th/Nb比值(Pearce et al., 2008),因此若地幔源区交代古老俯冲带物质或大陆地壳物质,则交代地幔形成的岩浆可能显示Nb-Ta负异常。而路曲和大竹曲镁铁质岩石的Pb同位素结果均落入印度洋MORB范围之内,暗示这些镁铁质岩石的地幔源区可能属于与现代印度洋MORB地幔域相似的异常地幔。因此,路曲和大竹曲镁铁质岩石中轻微的Nb-Ta负异常可能是继承而来。

    (1)日喀则蛇绿岩路曲和大竹曲岩体镁铁质岩石的母岩浆起源亏损地幔源区,其地幔源区部分熔融程度在10%左右。这些镁铁质岩石的地幔源区的地球化学特征与印度洋MORB地幔域相似。

    (2)路曲和大竹曲岩体镁铁质岩石的野外地质特征、岩相学特征和地球化学特征均支持这些岩石起源于大洋中脊扩张中心。微量元素比值也接近洋中脊玄武岩且明显区别于弧后盆地玄武岩和弧前玄武岩。N-MORB标准化微量元素配分模式显示弱Nb-Ta负异常可能是由于其地幔源区交代了古老俯冲物质。

  • 图  1   多模态传感器系统工作示意图

    Figure  1.   Working schematic diagram of the multimodal sensor system

    图  2   野外测量工作照片

    a—正在遥控搭载多波束测深系统、浅地层剖面仪、声学多普勒流速剖面仪和差分定位仪等设备的无人船测量;b—安放浅地层剖面仪;c, d—数据采集

    Figure  2.   Photos of field measurement work

    a - Remote control unmanned vessel survey with multi-beam sounding system, sub-bottom profiler, acoustic doppler current profiler, real time kinematics and so on; b- Placement of sub-bottom profiler; c and d - Data acquisition

    图  3   长江汉口至湖口(a)、湖口至大通(b)、大通至吴淞口(c)河段深泓线变化特征

    Figure  3.   Variation characteristics of the depth line from Hankou to Hukou (a), Hukou to Datong (b) and Datong to Wusongkou (c) along the Yangtze River

    图  4   长江与鄱阳湖汇流河段冲淤变化与微地貌特征

    a—河道冲淤地形图;b—0 m等值线;c—5 m等值线;d—10 m等值线

    Figure  4.   Changes in erosion, deposition and microgeomorphic features of the confluence of the Yangtze River and Poyang Lake

    a-Scouring and silting topographic maps; b-0 m isobath; c-5 m isobath; d-10 m isobath

    图  5   铜陵太阳洲窝崩陆上和水下一体化高精度地貌图

    a—基于反距离权重法的陆上水下3维地形数据融合图;b—TIN模型;c—坡度模型;d—高程等值线;e~h—窝崩区域典型断面图

    Figure  5.   Terrestrial and underwater high accuracy geomorphology of the arc collapse in Taiyangzhou, Tongling

    a-Three-dimensional terrain point cloud data of non-submerged portions of the slope are integrated with submerged portions based on the method of IDW; b-Model of TIN; c-Model of slope; d-Contour map; e-h- Profile diagram of the Arc collapsing

    图  6   扬中指南村利用声学多普勒流速剖面仪(ADCP)测得的崩岸三维地表水流场图

    Figure  6.   A three-dimensional surface flow field map of bank collapsing measured by acoustic doppler current profiler (ADCP) in Zhinan Village, Yangzhong

    图  7   江都嘶马利用浅地层剖面仪测得的崩岸水下地形图

    Figure  7.   Underwater topographic map of bank collapse measured by sub-bottom prsofiler in Jiangdu Sima

    图  8   扬中指南村窝崩图片

    (a—窝崩卫星影像图片;b—窝崩现场照片)

    Figure  8.   Arc collapsing pictures in Zhinan Village, Yangzhong

    (a-Arc collapsing satellite image picture; b-Arc collapsing site photograph)

    图  9   扬中指南村水陆一体化地形坡向(a)和坡度(b)分类图

    Figure  9.   Classification map of integrated land and water topographic slope direction (a) and slope gradient (b) in Zhinan Village, Yangzhong

    图  10   扬中指南村沿江工程地质剖面图

    Figure  10.   Geological profile of Zhinan Village, Yangzhong along the river

    图  11   地下水渗流引起的光纤传感器温度变化图

    Figure  11.   Temperature variation of fiber optic sensor caused by groundwater seepage flow

    图  12   2015年和2003年长江下游河道沙粒阻力(a)和沙波阻力(b)变化图

    Figure  12.   Changes of sand grain resistance (a) and sand wave resistance (b) in the lower reaches of the Yangtze River in 2015 and 2003

    图  13   链珠状沙波多波束图像

    a—椭圆形凹坑发育于次级沙波间;b—椭圆形凹坑发育于沙波脊线上;c—椭圆形凹坑发育于波峰两侧,形成了某些"孤立"于其他沙波的链珠状沙波;d—椭圆形凹坑的发育造成相邻两组沙波在形态上连接在一起的"错觉"

    Figure  13.   Multi-beam image of chain beaded sand wave

    a-Oval pits developed between secondary sand waves; b-Oval pits developed on the sand ridge; c-Oval pits developed on both sides of the crest, forming some "isolated" chains of sand waves; d-The development of oval pits creates an "illusion" that two adjacent groups of sand waves are morphologically connected

    图  14   典型巨型沙波形状与几何参数

    Figure  14.   Typical shapes and geometric parameters of giant sand waves

    图  15   长江跨江大桥主桥墩冲刷坑在平面和剖面上形态

    (a,c—南京长江第四大桥;b,d—南京长江第二大桥)

    Figure  15.   The plane and sectional shape of scour pit on the main pier of the Yangtze

    (a, c-The Fourth Nanjing Yangtze River Bridge; b, d-The Second Nanjing Yangtze River Bridge)

    图  16   上海—铜陵长江大桥桥墩冲刷坑形态

    a—上海长江大桥;b—南京长江第三大桥;c—南京长江大桥;d—铜陵长江大桥

    Figure  16.   Shape of scour pit on piers of Shanghai to Tongling Yangtze River Bridge

    a-Shanghai Yangtze River Bridge; b-The Third Nanjing Yangtze River Bridge; c-Nanjing Yangtze River Bridge; d-Tongling Yangtze River Bridge

    图  17   九江张家洲南水道(a)和安庆太子矶水道(b)断面变化

    Figure  17.   Cross sections of the southern Zhangjiazhou waterway in Jiujiang (a) and the Taiziji waterway in Anqing (b)

  • Allen J R L. 1980. Sand waves: A model of origin and internal structure[J]. Sedimentary Geology, 26(4): 281-328. doi: 10.1016/0037-0738(80)90022-6

    Barnard P L, Erikson L H, Kvitek R G. 2011. Small-scale sediment transport patterns and bedform morphodynamics: New insights from high-resolution multibeam bathymetry[J]. Geo-Marine Letters, 31(4): 227-236. doi: 10.1007/s00367-011-0227-1

    Carriquiry J D, Sánchez A, Camacho-Ibar V F. 2001. Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge[J]. Sedimentary Geology, 144(1/2): 37-62. http://www.onacademic.com/detail/journal_1000034153333910_d59d.html

    Chen Min, Shen Huazhong, Feng Yuan, Sun Changcheng. 2017. Emergency management of river bank collapsing in the middle and lower reaches of Yangtze River in recent years[J]. Water Resources and Hydropower Express, 38(11): 15-19(in Chinese with English abstract).

    Cheng Heqin, Jiang Yuehua. 2021. Physical Processes of River Channels in the Middle and Lower Reaches of the Yangtze River[M]. Beijing: Science Press(in Chinese).

    Cheng Heqin, Li Maotian, Zhou Tianyu, Xue Yuanzhong. 2002. Modern microtopography and its movement characteristics of the Yangtze estuary[J]. Ocean Engineering, 20: 91-95(in Chinese with English abstract).

    Chen Jiyu, Yun Caixing, Xu Haigen, Dong Yongfa. 1979. The developmental model of the Chang Jiang river estuary during last 2000 years[J]. Acta Oceanologica Sinica, (1): 103-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC197901008&dbcode=CJFD&year=1979&dflag=pdfdown

    Dai Shibao, Yang Shilun, Zhao Huayun, Li Ming. 2005. Response of middle and lower reaches of Yangtze river to the initial operation stage of the Three Gorges project[J]. Journal of Sediment Research, (5): 35-39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ200505005.htm

    Franzetti M, Le R P, Delacourt C, Garlan T, Cancouët R, Sukhovich A, Deschamps A. 2013. Giant dune morphologies and dynamics in a deep continental shelf environment: Example of the banc du four (Western Brittany, France)[J]. Marine Geology, 346: 17-30. doi: 10.1016/j.margeo.2013.07.014

    Han Jianqiao, Sun Zhaohua, Huang Ying, Li Yitian. 2014. Features and causes of sediment deposition and erosion in Jingjiang reach after impoundment of the Three Gorges Project[J]. Journal of Water Conservancy, 45(3): 277-285(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB201403004.htm

    Han Qiwei, He Mingbing. 1979. Tendency of river channel evolution in Yangtze river's middle and lower reaches after Three Gorges project being completed[J]. Journal of Yangtze River Scientific Research Institute, 14(1): 62-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB701.002.htm

    Hou Chengcheng. 2013. Numerical Study on the Response of Tidal Current Limit and Tidal Limit as well as Saltwater Intrusion to Runoff Change in Yangtze River[D]. Shanghai: East China Normal University(in Chinese with English abstract).

    Huang Sheng. 1986. The evolution characteristics of the Chang Jiang estuary[J]. Journal of Sediment Research, (4): 1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ198604000.htm

    Jiang Yuehua, Lin Liangjun, Chen Lide, Ni Huayong, Ge Weiya, Cheng Hangxin, Zhai Gangyi, Wang Guiling, Ban Yizhong, Li Yuan, Lei Mingtang, Tan Chengxuan, Su Jingwen, Zhou Quanping, Zhang Taili, Li Yun, Liu Hongying, Peng Ke, Wang Hanmei. 2017. Research on conditions of resources and environment and major geological problems in the Yangtze river economic zone[J]. Geology in China, 44(6): 1045-1061(in Chinese with English abstract). http://www.researchgate.net/publication/324013797_Research_on_conditions_of_resources_and_environment_and_major_geological_problems_in_the_Yangtze_River_Economic_Zone

    Jiang Y H, Lin L J, Chen L D, Ni H Y, Ge W Y, Cheng H X, Zhai G Y, Wang G L, Ban Y Z, Li Y, Lei M T, Tan C X, Su J W, Zhou Q P, Zhang T L, Li Y, Liu H Y, Peng K, Wang H M. 2018. An overview of the resources and environment conditions and major geological problems in the Yangtze river economic zone, China[J]. China Geology, 1(3): 435-449. http://doc.paperpass.com/journal/20180050zgdz-e.html

    Jiang Yuehua, Zhou Quanping, Chen Lide, Ni Huayong, Lei Mingtang, Cheng Hangxin, Shi Bin, Ma Teng, Ge Weiya, Su Jingwen, Li Yun, Tan Jianmin. 2019. Progresses and main achievements of geological environment comprehensive survey project in the Yangtze river economic zone[J]. Geological Survey of China, 6(5): 1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201905001.htm

    Knaapen M A F. 2005. Sandwave migration predictor based on shape information[J]. Journal of Geophysical Research, 110(F4): 312-321. doi: 10.1029/2004JF000195/pdf

    Knaapen MAF, Hulscher SJMH, Vriend HJ, Stolk A. 2001. A new type of sea bed waves[J]. Geophysical Research Letters, 28(7): 1323-1326. doi: 10.1029/2000GL012007

    Li H W, Cheng H Q, Li J F, Dong P. 2008. Temporal and spatial changes of dunes in the Changjiang (Yangtze) estuary, China[J]. Estuarine, Coastal and Shelf Science, 219(77): 169-174. http://www.onacademic.com/detail/journal_1000035040796610_9a62.html

    Li Jia. 2004. The Tidal Limit and Tidal Current Limit of Yangtze Estuary and Its Response to Major Projects[D]. Shanghai: East China Normal University(in Chinese with English abstract).

    Li Jianyong. 2007. Study on the Characteristics of Water Sand and Riverbed Evolution in the Datong-Xuliujing River Section of the Yangtze River[D]. Nanjing: Hohai University (in Chinese with English abstract).

    Liu Hongxing, Wang Yongping. 2003. Basic model of bank slope deformation and instability in the middle and lower reaches of the Yangtze River[C]//Construction Administration Bureau of Important Embankment Concealment Works of the Yangtze River. Collection of Papers on Bank Revetment and Embankment Seep-proof Engineering of the Yangtze River. Beijing: China Water Conservancy and Hydropower Press: 78-82(in Chinese with English abstract).

    Lu Xuejun, Cheng Heqin, Zhou Quanping, Jiang Yuehua, Guo Xingjie, Zheng Shuwei, Wu Suaihu. 2016. Features and mechanism of asymmetric double-kindneys scoured geomorphology of pier in tidal estuary[J]. Acta Oceanologica Sinica, 38(9): 118-125(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201609012&dbcode=CJFD&year=2016&dflag=pdfdown

    Luo Xiangxin. 2006. Spatiotemporal Variations in Sediment Size in the Middle and Lower Reaches of the Yangtze River, Estuaries, and Adjacent Sea Areas: Natural Mechanisms and Effects of Human Activities[D]. Shanghai: East China Normal University (in Chinese with English abstract).

    Luo X X, Yang S L, Wang R S, Zhang C Y, Li P. 2017. New evidence of Yangtze delta recession after closing of the Three Gorges Dam[J]. Scientific Reports, 7: 41735. doi: 10.1038/srep41735

    Ma Xiaochuan. 2013. The Formation and Evolution of Seabed Sand Ridge in the Southwest Sea Area of Hainan Island and Its Engineering Significance[D]. Graduate School of Chinese Academy of Sciences (in Chinese with English abstract).

    Naqshband S, Ribberink J S, Hurther D, Hulscher S J M H. 2014. Bed load and suspended load contributions to migrating sand dunes in equilibrium[J]. Journal of Geophysical Research Earth Surface, 119(5): 1043-1063. doi: 10.1002/2013JF003043

    Osman A M, Thorne C R. 1988. Riverbank Stability Analysis I: Theory[J]. Journal of Hydraulic Engineering, 114(2): 134-150. doi: 10.1061/(ASCE)0733-9429(1988)114:2(134)

    Qi Meilan. 2005. Riverbed scouring around bridge piers in river section with sand pits[J]. Journal of Water Conservancy, 36(7): 835-839(in Chinese with English abstract). http://www.researchgate.net/publication/291703965_Riverbed_scouring_around_bridge_piers_in_river_section_with_sand_pits

    Rinaldi M. 2010. Recent channel adjustments in alluvial rivers of Tuscany, central Italy[J]. Earth Surface Processes & Landforms, 28(6): 587-608. http://www.onacademic.com/detail/journal_1000033837313110_d21d.html

    Samoylov, Xie J Z (trans. ). 1958. The Theory and Method of the Evolution Processes of the Estuaries[M]. Beijing: Science Press, 81-91.

    Shen Huanting, Zhu J R, Wu H L. 2008. The Pattern of Development of the Yangtze Estuary in the Past Two Thousand Years[M]. Beijing: Ocean Press: 40-54(in Chinese with English abstract).

    Shi Shengyu, Cheng Heqin, Zheng Shuwei, Xu Wenxiao, Lu Xuejun, Jiang Yuehua, Zhou Quanping. 2017. Erosional topography of the tidal limit in the Yangtze river in flood seasons after the river closure at Three Gorges[J]. Acta Oceanologica Sinica, 39(3): 85-95 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201703008&dbcode=CJFD&year=2017&dflag=pdfdown

    Shi S Y, Cheng H Q, Xuan X N, Hu F X, Yuan X T, Jiang Y H, Zhou Q P. 2018. Fluctuations in the tidal limit of the Yangtze River estuary in the last decade[J]. Science China (Earth Sciences), 61(8): 832-841. http://www.scichina.org/doi/pdf/3c6619847f244cfeb980cbbebdf5bc9c

    Surian N. 2002. Downstream variation in grain size along an Alpine river: Analysis of controls and processes[J]. Geomorphology, 43(1): 137-149. http://www.researchgate.net/profile/Nicola_Surian/publication/223157707_Downstream_variation_in_grain_size_along_an_Alpine_river_Analysis_of_controls_and_processes/links/0c96053803c3615485000000.pdf

    Tang Jinwu, Deng Jinyun, You Xingying, Wang Fei. 2012. Forecast method for bank collapse in middle and lower Yangtze river[J]. Journal of Sichuan University (Engineering Science Edition), 44(1): 75-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH201201013.htm

    Thorne C R, Abt S R. 1993. Velocity and scour prediction in river bends[R]. Contract Report HL-93-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 39180: 66.

    Van Landeghem K J J, Wheeler A J, Mitchell N C, Sutton G D. 2009. Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe[J]. Marine Geology, 263: 108-119. doi: 10.1016/j.margeo.2009.04.003

    Wang Jian, Liu Ping, Gao Zhengrong, Bai Shibiao, Cao Guangjie, Qu Gguixian. 2007. Temporal-spatial Variation of the Channel in Jiangsu reach of the Yangtze river during the Last 44 Years[J]. Acta Geographica Sinica, 62(11): 1185-1193(in Chinese with English abstract). http://www.researchgate.net/publication/289163689_Temporal-spatial_variation_of_the_channel_in_Jiangsu_reach_of_the_Yangtze_River_during_the_last_44_years

    Wang Jiayun, Dong Gguanglin. 1998. Analysis on damage and bank collapse of Yangtze river revetment project in Anhui Province[J]. Water Conservancy Construction and Management, 18(1): 62-64(in Chinese).

    Wang Lujun. 2005. Large-scale Laboratory Experimental Study on the Mechanism of Bank Collapsing in the Middle and Lower Reaches of the Yangtze River[D]. Nanjing: Hehai University: 1-90(in Chinese with English abstract).

    Wang Yong. 1999. Analysis on the cause and control measures of bank collapse in Anhui section of Yangtze river[J]. Yangtze River, 30(10): 19-20(in Chinese).

    Wang Yuan, Li Dongtian. 2008. Exploration of distributed law of bank collapsing and plane eddy mechanism of arc collapsing along middle-lower Yangtze River[J]. Rock and Soil Mechanics, 29(4): 919-924(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200804015.htm

    Wang Zhangqiao. 2006. Sediment Distribution and Before-Dam Study in Middle and Lower Yangtze River Stability[D]. Shanghai: East China Normal University (in Chinese with English abstract).

    Wang Zhe, Chen Zhongyuan, Shi Yafeng, Li Maotian, Zhang Qiang, Wei Tiaoyuan. 2007. Pattern and dynamic mechanism of sand wave of bottom bed in the middle and lower reaches of Yangtze River (Wuhan-Estuary Section)[J]. Science China (series D): Earth Sciences, 37(9): 1223-1234 (in Chinese).

    Williams G P, Wolman M G. 1984. Downstream effect of dams on alluvial rivers[J]. USGS Professional Paper 1286. http://htext.stanford.edu/dd-ill/downstream.pdf

    Wu J X, Wang Y H, Cheng H Q. 2009. Bedforms and bed material transport pathways in the Changjiang (Yangtze) Estuary[J]. Geomorphology, 104(3-4): 175-184 doi: 10.1016/j.geomorph.2008.08.011

    Wu Suaihu, Cheng Heqin, Li Jiufa, Mo Chuanyu. 2016. Recent processes of morphology and micro-topography in south passage of the Yangtze Estuary[J]. Journal of Sediment Research, 41(2): 47-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ201605009.htm

    Wu Yuhua, Su Aijun, Cui Zhengquan, Xu Fuxing. 1997. Analysis on causes of bank collapse of Mahu dike in Pengze County, Jiangxi Province[J]. Yangtze River, 28(4): 27-30(in Chinese).

    Wu Zhonghai, Zhou Chunjing, Huang Xiaolong, Zhao Genmo, Tan Chengxuan. 2020. Main active faults and seismic activity along the Yangtze River Economic Belt: Based on remote sensing geological survey[J]. China Geology, 3: 314-338. doi: 10.31035/2020041.

    Xu Hanxing, Fan Lianfa, Gu Mingjie. 2012. On tidal mark and tidal current mark in the Yangtze river[J]. Port & Waterway Engineering, 42(6): 15-20(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGC201206011.htm

    Xu Quanxi, Zhu Lingling, Yuan Jing. 2013. Study on the erosion and deposition characteristics of water sand and riverbed in the middle and lower reaches of the Yangtze river[J]. The People of the Yangtze River, 44(23): 16-21(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201303027.htm

    Xu Xiaojun, Yang Sshilun, Zhang Zhen. 2010. Variation in grain size of sediment in middle and lower Chang Jiang river since impoundment of Three Gorges reservoir[J]. Scientia Geographica Sinica, 30(1): 103-107(in Chinese with English abstract). http://www.researchgate.net/profile/Shilun_Yang/publication/284580763_Variation_in_grain_size_of_sediment_in_middle_and_lower_Changjiang_River_since_impoundment_of_Three_Gorges_Reservoir/links/5684b42b08ae1e63f1f1d570.pdf

    Xue Jiawei, Zhao Shuang. 2018. Construction of a legal system for joint prevention and control of illegal sand mining in the Yangtze River Basin[J]. Yangtze River Forum, 148(1): 66-73(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-CJJJ201803006.htm

    Yang Yunping, Li Yitian, Han Jianqiao, Wang Dong. 2012. Variation of tide limit and tidal current limit in Yangtze estuary and its impact on projects[J]. Journal of Sediment Research, 37(6): 46-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ201206006.htm

    Yangtze River Basin Planning Office. 1978. Experience of Bank Revetment in the Middle and Lower Reaches of Yangtze River[M]. Beijing: Science Press, 168(in Chinese with English abstract).

    Youdeowei P O. 1997. Bank collapse and erosion at the upper reaches of the Ekole creek in the Niger delta area of Nigeria[J]. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 55(1): 167-172.

    Yu Wentao, Su Changcheng. 2007. Formation process and flow structure of "pocket type" arc collapsing in the middle and lower reaches of Yangtze river[J]. Yangtze River, 38(8): 156-159(in Chinese).

    Zhang Xiaohe, Li Jiufa, Zhu Wenwu, Cheng Heqin, Chen Wei. 2015. Recent research on the evolution process and automatic adjustment mechanism of erosion and deposition in Yangtze river estuary[J]. Acta Oceanologica Sinica, 34(7): 123-130(in Chinese with English abstract). doi: 10.1007/s13131-015-0699-3

    Zhang Zhen. 2011. Quantitative Estimation of the Influence of Three Gorges Project on Water Level and Water Sand Flux of the Yangtze river[D]. Shanghai: East China Normal University (in Chinese with English abstract).

    Zheng S W, Cheng H Q, Shi S Y, Xu W, Zhou Q P, Jiang Y H, Zhou F N, Cao M X. 2018. Impact of anthropogenic drivers on subaqueous topographical change in the Datong to Xuliujing reach of the Yangtze River[J]. Science China (Earth Sciences), 61(7): 940-950. doi: 10.1007/s11430-017-9169-4

    Zheng S W, Cheng H Q, Wu S H, Shi S Y, Xu W, Zhou Q P, Jiang Y H. 2017. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China[J]. Continental Shelf Research, 139(1): 54-61. http://www.onacademic.com/detail/journal_1000039670250510_1e65.html

    Zhuang Zhenyi, Cao Lihua, Liu Shengfa, Hu Guangyuan. 2008. Activity level and balance signs of subaqueous Dunes (Waves) in the Continental Shelf[J]. Periodical of Ocean University of China, 38(6): 1001-1007(in Chinese with English abstract).

    长江流域规划办公室汇. 1978. 长江中下游护岸工程经验选编[M]. 科学出版社, 168.
    陈吉余, 恽才兴, 徐海根, 董永发. 1979. 两千年来长江河口发育的模式[J]. 海洋学报, (1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC197901008.htm
    陈敏, 沈华中, 冯源, 孙长城. 2017. 长江中下游河道近年崩岸应急整治[J]. 水利水电快报, 38(11): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSK201711003.htm
    程和琴, 李茂田, 周天瑜, 薛元忠. 2002. 长江口现代微地貌及其运动特征[J]. 海洋工程, 20: 91-95.
    程和琴, 姜月华. 2021. 长江中下游河槽物理过程[M]. 北京: 科学出版社.
    戴仕宝, 杨世伦, 赵华云, 李明. 2005. 三峡水库蓄水运用初期长江中下游河道冲淤响应[J]. 泥沙研究, 5(5): 35-39. doi: 10.3321/j.issn:0468-155X.2005.05.006
    韩剑桥, 孙昭华, 黄颖, 李义天. 2014. 三峡水库蓄水后荆江沙质河段冲淤分布特征及成因[J]. 水利学报, 45(3): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201403004.htm
    韩其为, 何明民. 1997. 三峡水库建成后长江中下游河道演变的趋势[J]. 长江科学院院报, 14(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB701.002.htm
    侯成程. 2013. 长江潮流界和潮区界以及河口盐水入侵对径流变化响应的数值研究[D]. 上海: 华东师范大学: 1-118.
    黄胜. 1986. 长江河口演变特征[J]. 泥沙研究, (4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198604000.htm
    姜月华, 林良俊, 陈立德, 倪化勇, 葛伟亚, 成杭新, 翟刚毅, 王贵玲, 班宜忠, 李媛, 雷明堂, 谭成轩, 苏晶文, 周权平, 张泰丽, 李云, 刘红樱, 彭柯, 王寒梅. 2017. 长江经济带资源环境条件与重大地质问题[J]. 中国地质, 44(6): 1045-1061. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170601&flag=1
    姜月华, 周权平, 陈立德, 倪化勇, 雷明堂, 程和琴, 施斌, 马腾, 葛伟亚, 苏晶文, 李云, 谭建民. 2019. 长江经济带地质环境综合调查工程进展与主要成果[J]. 中国地质调查, 6(5): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201905001.htm
    李佳. 2004. 长江河口潮区界和潮流界及其对重大工程的响应[D]. 上海: 华东师范大学: 1-55.
    李键庸. 2007. 长江大通-徐六泾河段水沙特征及河床演变研究[D]. 南京: 河海大学, 1-160.
    刘红星, 王永平. 2003. 长江中下游干流河段岸坡变形失稳的基本模式[C]//长江重要堤防隐蔽工程建设管理局. 长江护岸及堤防防渗工程论文选集. 北京: 中国水利水电出版社, 78-82.
    陆雪骏, 程和琴, 周权平, 姜月华, 郭兴杰, 郑树伟, 吴帅虎. 2016. 强潮流作用下桥墩不对称"双肾型"冲刷地貌特征与机理[J]. 海洋学报, 38(9): 118-125. doi: 10.3969/j.issn.0253-4193.2016.09.012
    罗向欣. 2013. 长江中下游、河口及邻近海域底床沉积物粒径的时空变化: 自然机制和人类活动的影响[D]. 上海: 华东师范大学: 1-159.
    马小川. 2013. 海南岛西南海域海底沙波沙脊形成演化及其工程意义[D]. 中国科学院研究生院(海洋研究所): 1-211.
    齐梅兰. 2005. 采沙河床桥墩冲刷研究[J]. 水利学报, 36(7): 835-839. doi: 10.3321/j.issn:0559-9350.2005.07.012
    萨莫依洛夫, 谢金赞译. 1958. 河口演变过程的理论及其研究方法. 北京: 科学出版社: 22-30.
    沈焕庭, 朱建荣, 吴华林. 2008. 长江河口陆海相互作用界面[M]. 北京: 海洋出版社, 40-54.
    石盛玉, 程和琴, 郑树伟, 徐文晓, 陆雪骏, 姜月华, 周权平. 2017. 三峡截流以来长江洪季潮区界变动河段冲刷地貌[J]. 海洋学报, 39(3): 85-95. doi: 10.3969/j.issn.0253-4193.2017.03.008
    唐金武, 邓金运, 由星莹, 汪飞. 2012. 长江中下游河道崩岸预测方法[J]. 四川大学学报(工程科学版), 44(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201201013.htm
    王家云, 董光林. 1998. 安徽省长江护岸工程损坏及崩岸原因分析[J]. 水利建设与管理, (1): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJS199801027.htm
    王建, 刘平, 高正荣, 白世彪, 曹光杰, 屈贵贤. 2007. 长江干流江苏段44年来河道冲淤变化的时空特征[J]. 地理学报, 62(11): 1185-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200711010.htm
    王路军. 2005. 长江中下游崩岸机理的大型室内试验研究[D]. 南京: 河海大学: 1-90.
    王永. 1999. 长江安徽段崩岸原因及治理措施分析[J]. 人民长江, 30(10): 19-20. doi: 10.3969/j.issn.1001-4179.1999.10.008
    王媛, 李冬田. 2008. 长江中下游崩岸分布规律及窝崩的平面旋涡形成机制[J]. 岩土力学, 29(4): 919-924. doi: 10.3969/j.issn.1000-7598.2008.04.013
    王张峤. 2006. 三峡封坝前长江中下游河床沉积物分布及河床稳定性模拟研究[D]. 上海: 华东师范大学: 1-100.
    王哲, 陈中原, 施雅风, 李茂田, 张强, 韦桃源. 2007. 长江中下游(武汉-河口段)底床沙波型态及其动力机制[J]. 中国科学D辑: 地球科学, 37(9): 1223-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709010.htm
    吴帅虎, 程和琴, 李九发, 莫传玉. 2016. 近期长江河口南槽冲淤变化与微地貌特征[J]. 泥沙研究, (2): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201605009.htm
    吴玉华, 苏爱军, 崔政权, 徐福兴. 1997. 江西省彭泽县马湖堤崩岸原因分析[J]. 人民长江, (4): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE704.010.htm
    许全喜, 朱玲玲, 袁晶. 2013. 长江中下游水沙与河床冲淤变化特性研究[J]. 人民长江, 44(23): 16-21. doi: 10.3969/j.issn.1001-4179.2013.23.004
    徐汉兴, 樊连法, 顾明杰. 2012. 对长江潮区界与潮流界的研究[J]. 水运工程, (6): 15-20. doi: 10.3969/j.issn.1002-4972.2012.06.003
    徐沛初, 刘开平. 1993. 长江的潮区界和潮流界[J]. 河流, (2): 24-29. https://cdmd.cnki.com.cn/Article/CDMD-10269-2004087559.htm
    徐晓君, 杨世伦, 张珍. 2010. 三峡水库蓄水以来长江中下游干流河床沉积物粒度变化的初步研究[J]. 地理科学, 30(1): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201001015.htm
    薛嘉伟, 赵爽. 2018. 长江流域非法采砂联防联控法律制度的构建[J]. 长江论坛, 148(1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLT201801013.htm
    杨云平, 李义天, 韩剑桥, 王冬. 2012. 长江口潮区和潮流界面变化及对工程响应[J]. 泥沙研究, (6): 46-51. doi: 10.3969/j.issn.0468-155X.2012.06.007
    余文畴, 苏长城. 2007. 长江中下游"口袋型"崩窝形成过程及水流结构[J]. 人民长江, 38(8): 156-159. doi: 10.3969/j.issn.1001-4179.2007.08.058
    张晓鹤, 李九发, 朱文武, 程和琴, 陈伟. 2015. 近期长江河口冲淤演变过程及自动调整机理研究[J]. 海洋学报, 34(7): 123-130. doi: 10.3969/j.issn.0253-4193.2015.07.012
    张珍. 2011. 三峡工程对长江水位和水沙通量影响的定量估算[D]. 上海: 华东师范大学: 1-130.
    庄振业, 曹立华, 刘升发, 胡广元. 2008. 陆架沙丘(波)活动量级和稳定性标志研究[J]. 中国海洋大学学报: 自然科学版, 38(6): 1001-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200806027.htm
图(17)
计量
  • 文章访问数:  2418
  • HTML全文浏览量:  881
  • PDF下载量:  2575
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-04-05
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-12-24

目录

/

返回文章
返回
x 关闭 永久关闭