The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River
-
摘要:
本文主要采取历史水下地形和水位数据分析、干流河槽现场测量、室内测试和综合评价等方法对重大水利工程影响长江中下游干流河槽和岸线进行了分析和研究,取得如下新进展:(1)创新构建了一套多模态传感器系统,实现陆上和水下一体化水动力、沉积和地貌特征测量与数据采集。(2)调查研究发现,长江干流河槽冲刷强烈,岸线窝崩、条崩发育。(3)悬沙和床沙粗化,河床阻力下降,发育侵蚀型链珠状沙波,长江大桥主桥墩冲刷严重。(4)潮区界显著上移,潮区界变动河段地貌发生重要变化。在此基础上,研究认为应该加强长江中下游干流河槽、沿岸高陡岸坡、支流入汇干流河口、崩岸以及跨江大桥桥墩冲刷等调查、监测和成因机理分析。上述研究成果对长江岸滩防护和修复、航道整治、沿岸防洪、长江大桥桥墩维护等具有重要意义。
Abstract:Based on the analysis of historical underwater topography and water level data, field measurement, laboratory test and comprehensive evaluation, the influence of major water conservancy projects on the channels and shorelines of the middle and lower reaches of the Yangtze River is studied. Some new progresses have been made. Firstly, a multi-mode sensor system was innovatively constructed to integrate the measurements of land and underwater hydrodynamic, sedimentary and geomorphic characteristics and data acquisition. Secondly, it was found that the main channel of the Yangtze River experienced strong erosion, arc collapse, and strip collapse. Thirdly, the hanging sand and bed sand were coarsened. The resistance of the river bed dropped, which caused the forming of the erosion type chain bead sand wave. The main piers of the Yangtze River Bridge were subjected to serious erosion. Finally, the tidal limit obviously moved up, and the geomorphology of the river changed significantly. On this basis, it is suggested that the investigation, monitoring and mechanism analysis should be strengthened on main river channel, high and steep slope along the bank, the estuary where the tributaries join the main stream, bank collapsing, cross-river bridge pier scour and so on. These results are of great significance to the protection and restoration of the bank and beach of the Yangtze River, the waterway regulation, the coastal flood control, and the maintenance of the piers of the Yangtze River Bridge.
-
1. 引言
赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989;陈郑辉等,2006;毛景文等,2007;郭春丽等,2007;许建祥等,2008;刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989;张文兰等,2006;王登红,2019;杨斌等,2021;秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981;李建康,2012;李建康等,2014;王登红等,2017;王成辉等,2019;Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。
2. 矿区地质特征
赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007;裴荣富和熊群尧,1999;刘善宝等,2010)。
石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。
矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。
表 1 ZKn11-11云英岩W、Sn、Li测试分析结果Table 1. The W, Sn, Li analysis results of greisen samples of ZKn11-11(1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。
图 2 石雷矿区钨锡锂多金属矿体特征a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿Figure 2. Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining areaa, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite(2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。
3. 含锂云母成分分析和初步认识
本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-AlⅥ-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。
表 2 石雷矿区云英岩中云母LA-ICP-MS原位分析结果Table 2. LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018;王正军等,2018;张勇等,2020;Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。
4. 南岭钨锡矿中云英岩型锂矿成矿潜力及找矿方向
随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020;娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。
以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。
总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019;陈其慎等,2021;王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。
5. 结论
南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。
-
图 2 野外测量工作照片
a—正在遥控搭载多波束测深系统、浅地层剖面仪、声学多普勒流速剖面仪和差分定位仪等设备的无人船测量;b—安放浅地层剖面仪;c, d—数据采集
Figure 2. Photos of field measurement work
a - Remote control unmanned vessel survey with multi-beam sounding system, sub-bottom profiler, acoustic doppler current profiler, real time kinematics and so on; b- Placement of sub-bottom profiler; c and d - Data acquisition
图 5 铜陵太阳洲窝崩陆上和水下一体化高精度地貌图
a—基于反距离权重法的陆上水下3维地形数据融合图;b—TIN模型;c—坡度模型;d—高程等值线;e~h—窝崩区域典型断面图
Figure 5. Terrestrial and underwater high accuracy geomorphology of the arc collapse in Taiyangzhou, Tongling
a-Three-dimensional terrain point cloud data of non-submerged portions of the slope are integrated with submerged portions based on the method of IDW; b-Model of TIN; c-Model of slope; d-Contour map; e-h- Profile diagram of the Arc collapsing
图 13 链珠状沙波多波束图像
a—椭圆形凹坑发育于次级沙波间;b—椭圆形凹坑发育于沙波脊线上;c—椭圆形凹坑发育于波峰两侧,形成了某些"孤立"于其他沙波的链珠状沙波;d—椭圆形凹坑的发育造成相邻两组沙波在形态上连接在一起的"错觉"
Figure 13. Multi-beam image of chain beaded sand wave
a-Oval pits developed between secondary sand waves; b-Oval pits developed on the sand ridge; c-Oval pits developed on both sides of the crest, forming some "isolated" chains of sand waves; d-The development of oval pits creates an "illusion" that two adjacent groups of sand waves are morphologically connected
-
Allen J R L. 1980. Sand waves: A model of origin and internal structure[J]. Sedimentary Geology, 26(4): 281-328. doi: 10.1016/0037-0738(80)90022-6
Barnard P L, Erikson L H, Kvitek R G. 2011. Small-scale sediment transport patterns and bedform morphodynamics: New insights from high-resolution multibeam bathymetry[J]. Geo-Marine Letters, 31(4): 227-236. doi: 10.1007/s00367-011-0227-1
Carriquiry J D, Sánchez A, Camacho-Ibar V F. 2001. Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge[J]. Sedimentary Geology, 144(1/2): 37-62. http://www.onacademic.com/detail/journal_1000034153333910_d59d.html
Chen Min, Shen Huazhong, Feng Yuan, Sun Changcheng. 2017. Emergency management of river bank collapsing in the middle and lower reaches of Yangtze River in recent years[J]. Water Resources and Hydropower Express, 38(11): 15-19(in Chinese with English abstract).
Cheng Heqin, Jiang Yuehua. 2021. Physical Processes of River Channels in the Middle and Lower Reaches of the Yangtze River[M]. Beijing: Science Press(in Chinese).
Cheng Heqin, Li Maotian, Zhou Tianyu, Xue Yuanzhong. 2002. Modern microtopography and its movement characteristics of the Yangtze estuary[J]. Ocean Engineering, 20: 91-95(in Chinese with English abstract).
Chen Jiyu, Yun Caixing, Xu Haigen, Dong Yongfa. 1979. The developmental model of the Chang Jiang river estuary during last 2000 years[J]. Acta Oceanologica Sinica, (1): 103-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC197901008&dbcode=CJFD&year=1979&dflag=pdfdown
Dai Shibao, Yang Shilun, Zhao Huayun, Li Ming. 2005. Response of middle and lower reaches of Yangtze river to the initial operation stage of the Three Gorges project[J]. Journal of Sediment Research, (5): 35-39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ200505005.htm
Franzetti M, Le R P, Delacourt C, Garlan T, Cancouët R, Sukhovich A, Deschamps A. 2013. Giant dune morphologies and dynamics in a deep continental shelf environment: Example of the banc du four (Western Brittany, France)[J]. Marine Geology, 346: 17-30. doi: 10.1016/j.margeo.2013.07.014
Han Jianqiao, Sun Zhaohua, Huang Ying, Li Yitian. 2014. Features and causes of sediment deposition and erosion in Jingjiang reach after impoundment of the Three Gorges Project[J]. Journal of Water Conservancy, 45(3): 277-285(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB201403004.htm
Han Qiwei, He Mingbing. 1979. Tendency of river channel evolution in Yangtze river's middle and lower reaches after Three Gorges project being completed[J]. Journal of Yangtze River Scientific Research Institute, 14(1): 62-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB701.002.htm
Hou Chengcheng. 2013. Numerical Study on the Response of Tidal Current Limit and Tidal Limit as well as Saltwater Intrusion to Runoff Change in Yangtze River[D]. Shanghai: East China Normal University(in Chinese with English abstract).
Huang Sheng. 1986. The evolution characteristics of the Chang Jiang estuary[J]. Journal of Sediment Research, (4): 1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ198604000.htm
Jiang Yuehua, Lin Liangjun, Chen Lide, Ni Huayong, Ge Weiya, Cheng Hangxin, Zhai Gangyi, Wang Guiling, Ban Yizhong, Li Yuan, Lei Mingtang, Tan Chengxuan, Su Jingwen, Zhou Quanping, Zhang Taili, Li Yun, Liu Hongying, Peng Ke, Wang Hanmei. 2017. Research on conditions of resources and environment and major geological problems in the Yangtze river economic zone[J]. Geology in China, 44(6): 1045-1061(in Chinese with English abstract). http://www.researchgate.net/publication/324013797_Research_on_conditions_of_resources_and_environment_and_major_geological_problems_in_the_Yangtze_River_Economic_Zone
Jiang Y H, Lin L J, Chen L D, Ni H Y, Ge W Y, Cheng H X, Zhai G Y, Wang G L, Ban Y Z, Li Y, Lei M T, Tan C X, Su J W, Zhou Q P, Zhang T L, Li Y, Liu H Y, Peng K, Wang H M. 2018. An overview of the resources and environment conditions and major geological problems in the Yangtze river economic zone, China[J]. China Geology, 1(3): 435-449. http://doc.paperpass.com/journal/20180050zgdz-e.html
Jiang Yuehua, Zhou Quanping, Chen Lide, Ni Huayong, Lei Mingtang, Cheng Hangxin, Shi Bin, Ma Teng, Ge Weiya, Su Jingwen, Li Yun, Tan Jianmin. 2019. Progresses and main achievements of geological environment comprehensive survey project in the Yangtze river economic zone[J]. Geological Survey of China, 6(5): 1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201905001.htm
Knaapen M A F. 2005. Sandwave migration predictor based on shape information[J]. Journal of Geophysical Research, 110(F4): 312-321. doi: 10.1029/2004JF000195/pdf
Knaapen MAF, Hulscher SJMH, Vriend HJ, Stolk A. 2001. A new type of sea bed waves[J]. Geophysical Research Letters, 28(7): 1323-1326. doi: 10.1029/2000GL012007
Li H W, Cheng H Q, Li J F, Dong P. 2008. Temporal and spatial changes of dunes in the Changjiang (Yangtze) estuary, China[J]. Estuarine, Coastal and Shelf Science, 219(77): 169-174. http://www.onacademic.com/detail/journal_1000035040796610_9a62.html
Li Jia. 2004. The Tidal Limit and Tidal Current Limit of Yangtze Estuary and Its Response to Major Projects[D]. Shanghai: East China Normal University(in Chinese with English abstract).
Li Jianyong. 2007. Study on the Characteristics of Water Sand and Riverbed Evolution in the Datong-Xuliujing River Section of the Yangtze River[D]. Nanjing: Hohai University (in Chinese with English abstract).
Liu Hongxing, Wang Yongping. 2003. Basic model of bank slope deformation and instability in the middle and lower reaches of the Yangtze River[C]//Construction Administration Bureau of Important Embankment Concealment Works of the Yangtze River. Collection of Papers on Bank Revetment and Embankment Seep-proof Engineering of the Yangtze River. Beijing: China Water Conservancy and Hydropower Press: 78-82(in Chinese with English abstract).
Lu Xuejun, Cheng Heqin, Zhou Quanping, Jiang Yuehua, Guo Xingjie, Zheng Shuwei, Wu Suaihu. 2016. Features and mechanism of asymmetric double-kindneys scoured geomorphology of pier in tidal estuary[J]. Acta Oceanologica Sinica, 38(9): 118-125(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201609012&dbcode=CJFD&year=2016&dflag=pdfdown
Luo Xiangxin. 2006. Spatiotemporal Variations in Sediment Size in the Middle and Lower Reaches of the Yangtze River, Estuaries, and Adjacent Sea Areas: Natural Mechanisms and Effects of Human Activities[D]. Shanghai: East China Normal University (in Chinese with English abstract).
Luo X X, Yang S L, Wang R S, Zhang C Y, Li P. 2017. New evidence of Yangtze delta recession after closing of the Three Gorges Dam[J]. Scientific Reports, 7: 41735. doi: 10.1038/srep41735
Ma Xiaochuan. 2013. The Formation and Evolution of Seabed Sand Ridge in the Southwest Sea Area of Hainan Island and Its Engineering Significance[D]. Graduate School of Chinese Academy of Sciences (in Chinese with English abstract).
Naqshband S, Ribberink J S, Hurther D, Hulscher S J M H. 2014. Bed load and suspended load contributions to migrating sand dunes in equilibrium[J]. Journal of Geophysical Research Earth Surface, 119(5): 1043-1063. doi: 10.1002/2013JF003043
Osman A M, Thorne C R. 1988. Riverbank Stability Analysis I: Theory[J]. Journal of Hydraulic Engineering, 114(2): 134-150. doi: 10.1061/(ASCE)0733-9429(1988)114:2(134)
Qi Meilan. 2005. Riverbed scouring around bridge piers in river section with sand pits[J]. Journal of Water Conservancy, 36(7): 835-839(in Chinese with English abstract). http://www.researchgate.net/publication/291703965_Riverbed_scouring_around_bridge_piers_in_river_section_with_sand_pits
Rinaldi M. 2010. Recent channel adjustments in alluvial rivers of Tuscany, central Italy[J]. Earth Surface Processes & Landforms, 28(6): 587-608. http://www.onacademic.com/detail/journal_1000033837313110_d21d.html
Samoylov, Xie J Z (trans. ). 1958. The Theory and Method of the Evolution Processes of the Estuaries[M]. Beijing: Science Press, 81-91.
Shen Huanting, Zhu J R, Wu H L. 2008. The Pattern of Development of the Yangtze Estuary in the Past Two Thousand Years[M]. Beijing: Ocean Press: 40-54(in Chinese with English abstract).
Shi Shengyu, Cheng Heqin, Zheng Shuwei, Xu Wenxiao, Lu Xuejun, Jiang Yuehua, Zhou Quanping. 2017. Erosional topography of the tidal limit in the Yangtze river in flood seasons after the river closure at Three Gorges[J]. Acta Oceanologica Sinica, 39(3): 85-95 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201703008&dbcode=CJFD&year=2017&dflag=pdfdown
Shi S Y, Cheng H Q, Xuan X N, Hu F X, Yuan X T, Jiang Y H, Zhou Q P. 2018. Fluctuations in the tidal limit of the Yangtze River estuary in the last decade[J]. Science China (Earth Sciences), 61(8): 832-841. http://www.scichina.org/doi/pdf/3c6619847f244cfeb980cbbebdf5bc9c
Surian N. 2002. Downstream variation in grain size along an Alpine river: Analysis of controls and processes[J]. Geomorphology, 43(1): 137-149. http://www.researchgate.net/profile/Nicola_Surian/publication/223157707_Downstream_variation_in_grain_size_along_an_Alpine_river_Analysis_of_controls_and_processes/links/0c96053803c3615485000000.pdf
Tang Jinwu, Deng Jinyun, You Xingying, Wang Fei. 2012. Forecast method for bank collapse in middle and lower Yangtze river[J]. Journal of Sichuan University (Engineering Science Edition), 44(1): 75-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH201201013.htm
Thorne C R, Abt S R. 1993. Velocity and scour prediction in river bends[R]. Contract Report HL-93-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 39180: 66.
Van Landeghem K J J, Wheeler A J, Mitchell N C, Sutton G D. 2009. Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe[J]. Marine Geology, 263: 108-119. doi: 10.1016/j.margeo.2009.04.003
Wang Jian, Liu Ping, Gao Zhengrong, Bai Shibiao, Cao Guangjie, Qu Gguixian. 2007. Temporal-spatial Variation of the Channel in Jiangsu reach of the Yangtze river during the Last 44 Years[J]. Acta Geographica Sinica, 62(11): 1185-1193(in Chinese with English abstract). http://www.researchgate.net/publication/289163689_Temporal-spatial_variation_of_the_channel_in_Jiangsu_reach_of_the_Yangtze_River_during_the_last_44_years
Wang Jiayun, Dong Gguanglin. 1998. Analysis on damage and bank collapse of Yangtze river revetment project in Anhui Province[J]. Water Conservancy Construction and Management, 18(1): 62-64(in Chinese).
Wang Lujun. 2005. Large-scale Laboratory Experimental Study on the Mechanism of Bank Collapsing in the Middle and Lower Reaches of the Yangtze River[D]. Nanjing: Hehai University: 1-90(in Chinese with English abstract).
Wang Yong. 1999. Analysis on the cause and control measures of bank collapse in Anhui section of Yangtze river[J]. Yangtze River, 30(10): 19-20(in Chinese).
Wang Yuan, Li Dongtian. 2008. Exploration of distributed law of bank collapsing and plane eddy mechanism of arc collapsing along middle-lower Yangtze River[J]. Rock and Soil Mechanics, 29(4): 919-924(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200804015.htm
Wang Zhangqiao. 2006. Sediment Distribution and Before-Dam Study in Middle and Lower Yangtze River Stability[D]. Shanghai: East China Normal University (in Chinese with English abstract).
Wang Zhe, Chen Zhongyuan, Shi Yafeng, Li Maotian, Zhang Qiang, Wei Tiaoyuan. 2007. Pattern and dynamic mechanism of sand wave of bottom bed in the middle and lower reaches of Yangtze River (Wuhan-Estuary Section)[J]. Science China (series D): Earth Sciences, 37(9): 1223-1234 (in Chinese).
Williams G P, Wolman M G. 1984. Downstream effect of dams on alluvial rivers[J]. USGS Professional Paper 1286. http://htext.stanford.edu/dd-ill/downstream.pdf
Wu J X, Wang Y H, Cheng H Q. 2009. Bedforms and bed material transport pathways in the Changjiang (Yangtze) Estuary[J]. Geomorphology, 104(3-4): 175-184 doi: 10.1016/j.geomorph.2008.08.011
Wu Suaihu, Cheng Heqin, Li Jiufa, Mo Chuanyu. 2016. Recent processes of morphology and micro-topography in south passage of the Yangtze Estuary[J]. Journal of Sediment Research, 41(2): 47-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ201605009.htm
Wu Yuhua, Su Aijun, Cui Zhengquan, Xu Fuxing. 1997. Analysis on causes of bank collapse of Mahu dike in Pengze County, Jiangxi Province[J]. Yangtze River, 28(4): 27-30(in Chinese).
Wu Zhonghai, Zhou Chunjing, Huang Xiaolong, Zhao Genmo, Tan Chengxuan. 2020. Main active faults and seismic activity along the Yangtze River Economic Belt: Based on remote sensing geological survey[J]. China Geology, 3: 314-338. doi: 10.31035/2020041.
Xu Hanxing, Fan Lianfa, Gu Mingjie. 2012. On tidal mark and tidal current mark in the Yangtze river[J]. Port & Waterway Engineering, 42(6): 15-20(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGC201206011.htm
Xu Quanxi, Zhu Lingling, Yuan Jing. 2013. Study on the erosion and deposition characteristics of water sand and riverbed in the middle and lower reaches of the Yangtze river[J]. The People of the Yangtze River, 44(23): 16-21(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201303027.htm
Xu Xiaojun, Yang Sshilun, Zhang Zhen. 2010. Variation in grain size of sediment in middle and lower Chang Jiang river since impoundment of Three Gorges reservoir[J]. Scientia Geographica Sinica, 30(1): 103-107(in Chinese with English abstract). http://www.researchgate.net/profile/Shilun_Yang/publication/284580763_Variation_in_grain_size_of_sediment_in_middle_and_lower_Changjiang_River_since_impoundment_of_Three_Gorges_Reservoir/links/5684b42b08ae1e63f1f1d570.pdf
Xue Jiawei, Zhao Shuang. 2018. Construction of a legal system for joint prevention and control of illegal sand mining in the Yangtze River Basin[J]. Yangtze River Forum, 148(1): 66-73(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-CJJJ201803006.htm
Yang Yunping, Li Yitian, Han Jianqiao, Wang Dong. 2012. Variation of tide limit and tidal current limit in Yangtze estuary and its impact on projects[J]. Journal of Sediment Research, 37(6): 46-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSYJ201206006.htm
Yangtze River Basin Planning Office. 1978. Experience of Bank Revetment in the Middle and Lower Reaches of Yangtze River[M]. Beijing: Science Press, 168(in Chinese with English abstract).
Youdeowei P O. 1997. Bank collapse and erosion at the upper reaches of the Ekole creek in the Niger delta area of Nigeria[J]. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 55(1): 167-172.
Yu Wentao, Su Changcheng. 2007. Formation process and flow structure of "pocket type" arc collapsing in the middle and lower reaches of Yangtze river[J]. Yangtze River, 38(8): 156-159(in Chinese).
Zhang Xiaohe, Li Jiufa, Zhu Wenwu, Cheng Heqin, Chen Wei. 2015. Recent research on the evolution process and automatic adjustment mechanism of erosion and deposition in Yangtze river estuary[J]. Acta Oceanologica Sinica, 34(7): 123-130(in Chinese with English abstract). doi: 10.1007/s13131-015-0699-3
Zhang Zhen. 2011. Quantitative Estimation of the Influence of Three Gorges Project on Water Level and Water Sand Flux of the Yangtze river[D]. Shanghai: East China Normal University (in Chinese with English abstract).
Zheng S W, Cheng H Q, Shi S Y, Xu W, Zhou Q P, Jiang Y H, Zhou F N, Cao M X. 2018. Impact of anthropogenic drivers on subaqueous topographical change in the Datong to Xuliujing reach of the Yangtze River[J]. Science China (Earth Sciences), 61(7): 940-950. doi: 10.1007/s11430-017-9169-4
Zheng S W, Cheng H Q, Wu S H, Shi S Y, Xu W, Zhou Q P, Jiang Y H. 2017. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China[J]. Continental Shelf Research, 139(1): 54-61. http://www.onacademic.com/detail/journal_1000039670250510_1e65.html
Zhuang Zhenyi, Cao Lihua, Liu Shengfa, Hu Guangyuan. 2008. Activity level and balance signs of subaqueous Dunes (Waves) in the Continental Shelf[J]. Periodical of Ocean University of China, 38(6): 1001-1007(in Chinese with English abstract).
长江流域规划办公室汇. 1978. 长江中下游护岸工程经验选编[M]. 科学出版社, 168. 陈吉余, 恽才兴, 徐海根, 董永发. 1979. 两千年来长江河口发育的模式[J]. 海洋学报, (1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC197901008.htm 陈敏, 沈华中, 冯源, 孙长城. 2017. 长江中下游河道近年崩岸应急整治[J]. 水利水电快报, 38(11): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSK201711003.htm 程和琴, 李茂田, 周天瑜, 薛元忠. 2002. 长江口现代微地貌及其运动特征[J]. 海洋工程, 20: 91-95. 程和琴, 姜月华. 2021. 长江中下游河槽物理过程[M]. 北京: 科学出版社. 戴仕宝, 杨世伦, 赵华云, 李明. 2005. 三峡水库蓄水运用初期长江中下游河道冲淤响应[J]. 泥沙研究, 5(5): 35-39. doi: 10.3321/j.issn:0468-155X.2005.05.006 韩剑桥, 孙昭华, 黄颖, 李义天. 2014. 三峡水库蓄水后荆江沙质河段冲淤分布特征及成因[J]. 水利学报, 45(3): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201403004.htm 韩其为, 何明民. 1997. 三峡水库建成后长江中下游河道演变的趋势[J]. 长江科学院院报, 14(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB701.002.htm 侯成程. 2013. 长江潮流界和潮区界以及河口盐水入侵对径流变化响应的数值研究[D]. 上海: 华东师范大学: 1-118. 黄胜. 1986. 长江河口演变特征[J]. 泥沙研究, (4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198604000.htm 姜月华, 林良俊, 陈立德, 倪化勇, 葛伟亚, 成杭新, 翟刚毅, 王贵玲, 班宜忠, 李媛, 雷明堂, 谭成轩, 苏晶文, 周权平, 张泰丽, 李云, 刘红樱, 彭柯, 王寒梅. 2017. 长江经济带资源环境条件与重大地质问题[J]. 中国地质, 44(6): 1045-1061. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170601&flag=1 姜月华, 周权平, 陈立德, 倪化勇, 雷明堂, 程和琴, 施斌, 马腾, 葛伟亚, 苏晶文, 李云, 谭建民. 2019. 长江经济带地质环境综合调查工程进展与主要成果[J]. 中国地质调查, 6(5): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201905001.htm 李佳. 2004. 长江河口潮区界和潮流界及其对重大工程的响应[D]. 上海: 华东师范大学: 1-55. 李键庸. 2007. 长江大通-徐六泾河段水沙特征及河床演变研究[D]. 南京: 河海大学, 1-160. 刘红星, 王永平. 2003. 长江中下游干流河段岸坡变形失稳的基本模式[C]//长江重要堤防隐蔽工程建设管理局. 长江护岸及堤防防渗工程论文选集. 北京: 中国水利水电出版社, 78-82. 陆雪骏, 程和琴, 周权平, 姜月华, 郭兴杰, 郑树伟, 吴帅虎. 2016. 强潮流作用下桥墩不对称"双肾型"冲刷地貌特征与机理[J]. 海洋学报, 38(9): 118-125. doi: 10.3969/j.issn.0253-4193.2016.09.012 罗向欣. 2013. 长江中下游、河口及邻近海域底床沉积物粒径的时空变化: 自然机制和人类活动的影响[D]. 上海: 华东师范大学: 1-159. 马小川. 2013. 海南岛西南海域海底沙波沙脊形成演化及其工程意义[D]. 中国科学院研究生院(海洋研究所): 1-211. 齐梅兰. 2005. 采沙河床桥墩冲刷研究[J]. 水利学报, 36(7): 835-839. doi: 10.3321/j.issn:0559-9350.2005.07.012 萨莫依洛夫, 谢金赞译. 1958. 河口演变过程的理论及其研究方法. 北京: 科学出版社: 22-30. 沈焕庭, 朱建荣, 吴华林. 2008. 长江河口陆海相互作用界面[M]. 北京: 海洋出版社, 40-54. 石盛玉, 程和琴, 郑树伟, 徐文晓, 陆雪骏, 姜月华, 周权平. 2017. 三峡截流以来长江洪季潮区界变动河段冲刷地貌[J]. 海洋学报, 39(3): 85-95. doi: 10.3969/j.issn.0253-4193.2017.03.008 唐金武, 邓金运, 由星莹, 汪飞. 2012. 长江中下游河道崩岸预测方法[J]. 四川大学学报(工程科学版), 44(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201201013.htm 王家云, 董光林. 1998. 安徽省长江护岸工程损坏及崩岸原因分析[J]. 水利建设与管理, (1): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJS199801027.htm 王建, 刘平, 高正荣, 白世彪, 曹光杰, 屈贵贤. 2007. 长江干流江苏段44年来河道冲淤变化的时空特征[J]. 地理学报, 62(11): 1185-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200711010.htm 王路军. 2005. 长江中下游崩岸机理的大型室内试验研究[D]. 南京: 河海大学: 1-90. 王永. 1999. 长江安徽段崩岸原因及治理措施分析[J]. 人民长江, 30(10): 19-20. doi: 10.3969/j.issn.1001-4179.1999.10.008 王媛, 李冬田. 2008. 长江中下游崩岸分布规律及窝崩的平面旋涡形成机制[J]. 岩土力学, 29(4): 919-924. doi: 10.3969/j.issn.1000-7598.2008.04.013 王张峤. 2006. 三峡封坝前长江中下游河床沉积物分布及河床稳定性模拟研究[D]. 上海: 华东师范大学: 1-100. 王哲, 陈中原, 施雅风, 李茂田, 张强, 韦桃源. 2007. 长江中下游(武汉-河口段)底床沙波型态及其动力机制[J]. 中国科学D辑: 地球科学, 37(9): 1223-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709010.htm 吴帅虎, 程和琴, 李九发, 莫传玉. 2016. 近期长江河口南槽冲淤变化与微地貌特征[J]. 泥沙研究, (2): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201605009.htm 吴玉华, 苏爱军, 崔政权, 徐福兴. 1997. 江西省彭泽县马湖堤崩岸原因分析[J]. 人民长江, (4): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE704.010.htm 许全喜, 朱玲玲, 袁晶. 2013. 长江中下游水沙与河床冲淤变化特性研究[J]. 人民长江, 44(23): 16-21. doi: 10.3969/j.issn.1001-4179.2013.23.004 徐汉兴, 樊连法, 顾明杰. 2012. 对长江潮区界与潮流界的研究[J]. 水运工程, (6): 15-20. doi: 10.3969/j.issn.1002-4972.2012.06.003 徐沛初, 刘开平. 1993. 长江的潮区界和潮流界[J]. 河流, (2): 24-29. https://cdmd.cnki.com.cn/Article/CDMD-10269-2004087559.htm 徐晓君, 杨世伦, 张珍. 2010. 三峡水库蓄水以来长江中下游干流河床沉积物粒度变化的初步研究[J]. 地理科学, 30(1): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201001015.htm 薛嘉伟, 赵爽. 2018. 长江流域非法采砂联防联控法律制度的构建[J]. 长江论坛, 148(1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLT201801013.htm 杨云平, 李义天, 韩剑桥, 王冬. 2012. 长江口潮区和潮流界面变化及对工程响应[J]. 泥沙研究, (6): 46-51. doi: 10.3969/j.issn.0468-155X.2012.06.007 余文畴, 苏长城. 2007. 长江中下游"口袋型"崩窝形成过程及水流结构[J]. 人民长江, 38(8): 156-159. doi: 10.3969/j.issn.1001-4179.2007.08.058 张晓鹤, 李九发, 朱文武, 程和琴, 陈伟. 2015. 近期长江河口冲淤演变过程及自动调整机理研究[J]. 海洋学报, 34(7): 123-130. doi: 10.3969/j.issn.0253-4193.2015.07.012 张珍. 2011. 三峡工程对长江水位和水沙通量影响的定量估算[D]. 上海: 华东师范大学: 1-130. 庄振业, 曹立华, 刘升发, 胡广元. 2008. 陆架沙丘(波)活动量级和稳定性标志研究[J]. 中国海洋大学学报: 自然科学版, 38(6): 1001-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200806027.htm -
期刊类型引用(3)
1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术
其他类型引用(1)