Heavy metal deposition and its impact on ecological environment in Sanduao Bay of Fujian Province during the past century under the influence of human activities
-
摘要:
因重金属难以被生物降解,易形成毒害环境因子,沉积物中的重金属污染演变是工业化以来全球共同面临的生态环境问题。为揭示福建三都澳地区人类活动与重金属沉积的关系,对采集自三都澳海域的6根岩心柱进行了系统的粒度分析、210Pb测年以及重金属元素测试。研究结果表明:(1)近百年来,三都澳海域沉积物重金属含量呈现显著增加趋势,顶部比底部增加1.01~2.8倍,并表现出3个明显演变阶段:1900-1950年,沉积物中的重金属含量相对稳定;1950-2000年,重金属含量开始缓慢增加;2000年以来,远岸区重金属含量急剧增加。这种变化趋势与人口、经济发展密切相关。(2)三都澳近岸区沉积物重金属含量总体大于远岸区,自2000年以来,近岸区和远岸区沉积物重金属含量的演变趋势呈现差异性,表现为近岸区重金属含量有所降低,远岸区重金属含量急剧升高,这种时空差异与沉积物粒度变化及地区产业分布有密切关系。(3)重金属对三都澳海洋生态环境影响较大,在湾内渔业养殖强度越来越高的背景之下,应对近期以来湾内重金属含量的快速升高给予足够重视,提高保护和修复治理力度,避免海洋生态破坏。
Abstract:Heavy metals are difficult to be biodegraded, meanwhile easy to form toxic environmental factors. The evolution of heavy metals pollution in sediments is a common global ecological environmental problem since industrialization. To reveal the relationship between human activities and heavy metals deposition in Sanduao Bay of Fujian Province, 6 sediment cores were collected in the Bay for grain size testing, 210Pb dating and assay of Cu, Pb, Zn, Cr, As, Cd and Hg contents. The results show that over the past century, heavy metal contents in sediments of Sanduao Bay exhibit a significant increase trend. The top is 1.01-2.8 times higher than the bottom, and the evolution process can be divided into three stages, relatively stable period during 1900-1950s, slowly increasing during 1950-2000s, and sharply increasing since the 2000s. Those changes are closely related to population and economic development. The content of heavy metals in landward zone is generally higher than that in seaward zone, and the evolution trend of sediments in landward zone has been different from the sediments in seaward zone since 2000s. The heavy metals content of sediments in landward zone has decreased, while the heavy metals content of sediments in seaward zone has increased sharply in Sanduao Bay. This spatial difference is closely related to the change of grain size and regional industry distribution. Heavy metals have a great impact on the marine ecological environment of Sanduao Bay. As the increasing intensity of fish farming in the Bay, enough attention should be paid to the rapid increase of heavy metal contents in the Bay in recent years, so as to improve the management and remediation to avoid marine ecological damage.
-
1. 引言
赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989;陈郑辉等,2006;毛景文等,2007;郭春丽等,2007;许建祥等,2008;刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989;张文兰等,2006;王登红,2019;杨斌等,2021;秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981;李建康,2012;李建康等,2014;王登红等,2017;王成辉等,2019;Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。
2. 矿区地质特征
赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007;裴荣富和熊群尧,1999;刘善宝等,2010)。
石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。
矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。
表 1 ZKn11-11云英岩W、Sn、Li测试分析结果Table 1. The W, Sn, Li analysis results of greisen samples of ZKn11-11(1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。
图 2 石雷矿区钨锡锂多金属矿体特征a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿Figure 2. Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining areaa, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite(2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。
3. 含锂云母成分分析和初步认识
本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-AlⅥ-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。
表 2 石雷矿区云英岩中云母LA-ICP-MS原位分析结果Table 2. LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018;王正军等,2018;张勇等,2020;Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。
4. 南岭钨锡矿中云英岩型锂矿成矿潜力及找矿方向
随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020;娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。
以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。
总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019;陈其慎等,2021;王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。
5. 结论
南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。
-
表 1 宁德市近50年来人口、GDP和产业发展趋势
Table 1 Differences in heavy metals average contents(mg/kg)from cores in landward zone and cores in seaward zone
表 2 三都澳沉积物岩心重金属与中值粒径的相关性系数
Table 2 Correlation coefficient of the heavy metals contents in sediment cores and the median grain sizes from Sanduao Bay
表 3 三都澳沉积物岩心顶部重金属含量(mg/kg)质量等级
Table 3 The quality grade of the heavy metals contents(mg/kg)at the top of sediment cores in Sanduao Bay
-
Appleby P G, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment[J]. Catena, 5(1): 1-8. doi: 10.1016/S0341-8162(78)80002-2
Chai Sheli, Gao Lina, Qiu Dianming, Chai Yuan, Guo Jia, Xu Xuechun. 2013. 210Pb and 137Cs dating of the sediment core and its recent accumulation rates in Yueliang Lake in West Jilin Province[J]. Journal of Jilin University(Earth Science Edition), 43(1): 134-141(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247967404.html
Chen Jingsheng, Wang Feiyue, Chen Jianglin. 1994. Relation of aquatic particulate grain size to heavy metals concentrations in Eastern Chinese Rivers[J]. Acta Scientiae Circumstantiae, 14(4): 419-425(in Chinese with English abstract). http://www.cqvip.com/qk/91840X/199404/1385370.html
Chen Shiyue, Wang Sumin, Chen Yingying, Zhang Enlou, Chen Yongjin, Zhu Yuxin. 2009. Vertical distribution and chronological implication of 210Pb and 137Cs in sediments of dongping lake, Shandong Province[J]. Quaternary Sciences, 29(5): 981-987(in Chinese with English abstract). http://www.dsjyj.com.cn/EN/abstract/abstract8464.shtml
De Groot A J, De Goeij J J M, Zegers C. 1971. Contents and behaviour of mercury as compared with other heavy metals in sediments from the rivers Rhine and Ems[J]. Geologie en Mijnbouw, 50: 393-398. http://www.researchgate.net/publication/27710980_Contents_and_behaviour_of_mercury_as_compared_with_other_heavy_metals_in_sediments_from_rivers_Rhine_and_Ems
Du Rongbin, Liu Liming, Wang Aimin, Wang Yongqiang. 2013. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by rhodophyte gracilaria asiatica[J]. Chinese Journal of Oceanology and Limnology, 31(2): 353-365. doi: 10.1007/s00343-013-2114-2
Fu Haixia, Liu Yi, Dong Zhiying, Li Ye. 2016. Progress in research on ecological toxicity of combined pollution of antibiotics and heavy metals[J]. Environmental Engineering, 34(4): 60-63(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJGC201604013.htm
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2002. Marine Sediment Quality (GB 18868-2002)[S]. Beijing: China Standards Press, 242-245(in Chinese).
Helmke P A, Koons R D, Schomberg P J, Iskandar I K. 1977. Determination of trace element contamination of sediments by multielement analysis of clay-size fraction[J]. Environmental Science and Technology, 11(10): 984-989. doi: 10.1021/es60133a015
Hong Yajun, Feng Cheng lian, Xu Zuxin, Liao Wei, Yan Zhenfei, Liu Daqing, Fu Zhiyou. 2019. Advances on ecotoxicity effects of heavy metals to aquatic organisms and the mechanisms[J]. Environmental Engineering, 37(11): 1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJGC201911002.htm
Huang Biao, Qian Lumin, Liu Jiafu. 2002. Nutrient salts content and eutrophication assessment for Sanduao Sea Area, Fujian[J]. Journal of Oceanography in Taiwan Strait, 21(4): 411-415(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TWHX200204004.htm
Liu Jiafu, Zheng Qinhua, Chen Hongqing, Yu Zuojian, Lin Yongtian. 2003. Water quality condition in Sansha Bay[J]. Journal of Oceanography in Taiwan Strait, 22(2): 201-204(in Chinese with English abstract).
Liu Yong, Yu Junqing, Zhang Lisha, Gao Chunliang, Cheng Aiying. 2012. Heavy metal pollution record of Xingyun Lake in the past 60 years[J]. Journal of Salt Lake Research, 20(2): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YHYJ201202003.htm
Lu Xiaotian, Lu Yonglong, Chen Deliang, Su Chao, Song Shuai, Wang Tieyu, Tian Hanqin, Liang Ruoyu, Zhang Meng, Khan Kifayatullah. 2019. Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve[J]. Journal of Environmental Sciences, 75(1): 359-369.
Luo Wei, Lu Yonglong, Wang Tieyu, Kong Peiru, Jiao Wentao, Hu Wenyou, Jia Junmei, Naile J E, Khim J S, Giesy J P. 2013. Environmental concentrations and bioaccumulations of cadmium and zinc in coastal watersheds along the Chinese northern Bohai and Yellow Seas[J]. Environmental Toxicology and Chemistry, 32(4): 831-840. doi: 10.1002/etc.2136
Mahler B J, Van Metre P C, Callender E. 2006. Trends in metals in urban and reference lake sediments across the United States[J]. Environmental Toxicology and Chemistry, 25(7): 1698-1709. doi: 10.1897/05-459R.1
Ningde Municipal Statistical Bureau. 2018. Ningde Statistical Yearbook[M]. Beijing: China Statistics Press, 1-535(in Chinese).
Presley B, Trefry J, Shokes R. 1980. Heavy metal inputs to Mississippi Delta sediments[J]. Water, Air, & Soil Pollution, 13(4): 481-494. http://www.onacademic.com/detail/journal_1000034385384210_1e64.html
Qiao Lei, Yuan Xuyin, Li A'mei. 2005. Heavy metals in littoral zone of Jiangsu Province and an ecological risk evaluation of heavy metals to this zone[J]. Journal of Agro-Environment Science, 24(supp. ): 178-182(in Chinese with English abstract). http://www.researchgate.net/publication/288894355_Heavy_metals_in_littoral_zone_of_Jiangsu_Province_and_an_ecological_risk_evaluation_of_heavy_metals_to_this_zone
Shi Yong, Liu Zhishuai, Gao Jianhua, Wang Xiaoyong. 2015. An approach for correcting "grain size effect" base on the size-frequency distribution[J]. Marine Environmental Science, 34(4): 606-610(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYHJ201504024.htm
State Oceanic Administration. 2018. Bulletin of China Marine Ecological Environment Status[R]. (in Chinese).
Sun Deyao, Zang Shuying, Sun Huajie, Zhang Nannan, Zhang Ke, Sun Li. 2018. Pollution history and potential ecological risk assessment of heavy metals in core sediments in Hulun Lake during the past 150 years[J]. Journal of Agro-Environment Science, 37(1): 137-147(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_nyhjbh201801017.aspx
Wang Fu, Yang Biao, Tian Lizhu, Li Jianfen, Shang Zhiwen, Chen Yongshen, Jiang Xinyu, Yang Jilong, Wang Hong. 2016. The choice of CIC and CRS models of 210Pbexc dating for tidal flat area[J]. Earth Science, 41(6): 971-981(in Chinese with English abstract). http://www.researchgate.net/publication/305417632_The_choice_of_CIC_and_CRS_models_of_210Pbexc_dating_for_tidal_flat_area
Wang Xian, Li Wenquan, Zhang Fan. 2002. Assessment on present status and quality of sediment in Fujian shore bay[J]. Acta Oceanologica Sinica, 24(4): 127-131(in Chinese with English abstract).
Wang XiaoLei, Yang Hao, Ding ZhaoYun, Yang Benjun, Zhang Mingli. 2011. Modern sedimentation rates of Fuxian Lake by 210Pb and 137Cs dating[J]. Acta Geographica Sinica, 66(11): 1551-1561(in Chinese with English abstract). http://www.researchgate.net/publication/285860654_Modern_sedimentation_rates_of_Fuxian_Lake_by_210Pb_and_137Cs_dating
Whitney P R. 1975. Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments[J]. Journal of Geochemical Exploration, 4(2): 251-263. doi: 10.1016/0375-6742(75)90005-9
Xu Fangjian, Liu Zhaoqing, Cao Yingchang, Qiu Longwei, Feng Jianwei, Xu Feng, Tian Xu. 2017. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China[J]. Catena, 150: 9-16. doi: 10.1016/j.catena.2016.11.004
Xu Yingjiang, Liu Ge, Cui Yanmei, Jiang Fang, Cao Wei, Wang Minglei, Len Nan, Yang Yufang, Gong Xianghong, Tian Xiuhui. 2020. Application of omics in marine ecotoxicology: A Review[J]. Modern Food Science and Technology, 329-336(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0166445X20304288
Youssef M, EL-Sobogy A, Kahtany K AL, Otiaby N A L. 2015. Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia)[J]. Marine Pollution Bulletin, 96: 424-433. doi: 10.1016/j.marpolbul.2015.05.010
Zhang Chaosheng, Wang Lijun, Li Guosheng, Dong Shuangshuang, Yang Jingrong, Wang Xiuli. 2002. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China[J]. Applied Geochemistry, 17(1): 59-68. doi: 10.1016/S0883-2927(01)00079-8
Zhang Yuan, Tao Ran, Yu Tao, Zhang Yan. 2013. Sediment particle size and the distribution of heavy metals in the typical districts of Dianchi Lake[J]. Research of Environmental Sciences, 26(4): 370-379(in Chinese with English abstract). http://www.researchgate.net/publication/288104282_Sediment_particle_size_and_the_distribution_of_heavy_metals_in_the_typical_districts_of_Dianchi_Lake
Zhao Weihong. 2006. The current situation of water quality of the sea areas adjacent to the coast in Fujian Province and pollution-prevention countermeasures[J]. Fujian Geography, 21(2): 107-109(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDL200602032.htm
Zheng Huang, Yang Dan, Xing XinLi, Zhang Zezhou, Shu Quanlai. 2016. Historical records, distribution characteristics and sources of heavy metals from sediment core in Honghu Lake, China[J]. China Environmental Science, 36(7): 2139-2145(in Chinese with English abstract). http://www.researchgate.net/publication/306145405_Historical_records_distribution_characteristics_and_sources_of_heavy_metals_from_sediment_core_in_Honghu_Lake_China
Zheng Qinhua. 2010. Water environment monitoring and evaluation of fisheries waters of Sandu Bay[J]. Journal of Ningde Teachers College(Natural Science), 22(3): 250-254(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NDSX201003011.htm
Zhu Qingqing, Wang Zhongliang. 2012. Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China[J]. Earth and Environment, 40(3): 305-313(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201203003.htm
柴社立, 高丽娜, 邱殿明, 柴源, 郭佳, 徐学纯. 2013. 吉林省西部月亮湖沉积物的210Pb和137Cs测年及沉积速率[J]. 吉林大学学报(地球科学版), 43(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201301017.htm 陈静生, 王飞越, 陈江麟. 1994. 论小于63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转化模型研究[J]. 环境科学学报, 14(4): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX404.004.htm 陈诗越, 王苏民, 陈影影, 张恩楼, 陈永金, 朱瑜馨. 2009. 东平湖沉积物210Pb、137Cs垂直分布及年代学意义[J]. 第四纪研究, 29(5): 981-987. doi: 10.3969/j.issn.1001-7410.2009.05.16 傅海霞, 刘怡, 董志英, 李烨. 2016. 抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 34(4): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201604013.htm 国家海洋局. 2018. 2017年中国海洋生态环境状况公报[R]. 洪亚军, 冯承莲, 徐祖信, 廖伟, 闫振飞, 刘大庆, 符志友. 2019. 重金属对水生生物的毒性效应机制研究进展[J]. 环境工程, 37(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201911002.htm 黄标, 钱鲁闽, 刘家富. 2002. 福建三沙湾水产养殖区水体氮磷含量及潜在性富营养化程度分析[J]. 台湾海峡, 21(4): 411-415. doi: 10.3969/j.issn.1000-8160.2002.04.004 刘家富, 郑钦华, 陈洪清, 余祚溅, 林永添. 2003. 三沙湾的水质状况[J]. 台湾海峡, 22(2): 201-204. doi: 10.3969/j.issn.1000-8160.2003.02.012 刘永, 余俊清, 张丽莎, 高春亮, 成艾颖. 2012. 近60年来星云湖沉积物中重金属污染记录[J]. 盐湖研究, 20(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201202003.htm 宁德市统计局. 2018. 宁德统计年鉴[M]. 北京: 中国统计出版社, 1-535. 乔磊, 袁旭音, 李阿梅. 2005. 江苏海岸带的重金属特征及生态风险分析[J]. 农业环境科学学报, 24(增刊): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH2005S1041.htm 石勇, 刘治帅, 高建华, 汪小勇. 2015. 一种基于粒度频率分布的"粒度效应"校正方法[J]. 海洋环境科学, 34(4): 606-610. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201504024.htm 孙德尧, 臧淑英, 孙华杰, 张囡囡, 张科, 孙丽. 2018. 近150年呼伦湖重金属污染历史及潜在生态风险[J]. 农业环境科学学报, 37(1): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201801017.htm 王福, 杨彪, 田立柱, 李建芬, 商志文, 陈永胜, 姜兴钰, 杨吉龙, 王宏. 2016. 开放潮坪地区210Pbexc测年CIC和CRS计算模式的选择[J]. 地球科学, 41(6): 971-981. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201606005.htm 王宪, 李文权, 张钒. 2002. 福建省近岸港湾沉积物质量状况[J]. 海洋学报, 24(4): 127-131. doi: 10.3321/j.issn:0253-4193.2002.04.015 王小雷, 杨浩, 丁兆运, 杨本俊, 张明礼. 2011. 云南抚仙湖近现代沉积速率变化研究[J]. 地理学报, 66(11): 1551-1561. doi: 10.11821/xb201111011 徐英江, 刘鸽, 崔艳梅, 姜芳, 曹伟, 王明磊, 冷男, 杨玉芳, 宫向红, 田秀慧. 2020. 组学技术在海洋生态毒理学研究中的应用[J]. 现代食品科技, 36(5): 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP202005043.htm 张远, 陶然, 于涛, 张彦. 2013. 滇池典型湖区沉积物粒径与重金属分布特征[J]. 环境科学研究, 26(4): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201304005.htm 赵卫红. 2006. 福建近岸海域水质现状及污染防治对策[J]. 福建地理, 21(2): 107-109. doi: 10.3969/j.issn.1673-7105.2006.02.033 郑煌, 杨丹, 邢新丽, 张泽洲, 舒全来. 2016. 洪湖沉积柱中重金属的历史分布特征及来源[J]. 中国环境科学, 36(7): 2139-2145. doi: 10.3969/j.issn.1000-6923.2016.07.035 郑钦华. 2010. 福建三都澳渔业水域水环境监测与评价[J]. 宁德师专学报(自然科学版), 22(3): 250-254. doi: 10.3969/j.issn.2095-2481.2010.03.007 中华人民共和国国家质量监督检验检疫总局. 2002. 海洋沉积物质量(GB 18868-2002)[S]. 北京: 中国标准出版社, 242-245. 朱青青, 王中良. 2012. 中国主要水系沉积物中重金属分布特征及来源分析[J]. 地球与环境, 40(3): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201203003.htm -
期刊类型引用(3)
1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术
其他类型引用(1)