Natural radioactive level and ecological health assessment of coal-bearing strata in the East China
-
摘要:
本次研究基于地表γ辐射剂量率、氡放射性测量及238U、232Th、226Ra、40K放射性核素测试,识别华东地区含煤岩系的放射性异常地层,评价区域典型煤矿区空气、固体、水体、植物介质的天然放射性水平。结果显示:赋存于石炭系、二叠系的普通煤田与赋存于寒武系的石煤矿区呈现显著差异的天然放射性水平。普通煤田矿区地表γ辐射剂量率、氡放射性测量值总体上处于本底水平范围,矿区固体介质、水体、植物样品核素含量处于正常水平,不存在放射性污染。华东地区石煤分布带,属于放射性γ辐射高背景区,石煤矿区的原煤、煤矸石、土壤、岩石等固体介质的238U、226Ra核素富集明显,并显示更为显著的空间变异性。区域石煤条带监测矿区居民源于γ外照射引起的吸收剂量均超过国际标准限值1 mSv/a,总有效剂量均超过了2 mSv/a,地下水总α、总β浓度为限值的10~30倍,放射性污染不容忽视。华东地区石煤矿区公众所受辐射剂量较高,矿区的地下水、建材、植物等介质已经出现零星的放射性污染,应加强石煤矿区放射性环境监测,及时采取适当的控制措施。
Abstract:Based on the measurement of γ radiation dose rate, radon radioactivity and 238U, 232Th, 226Ra, 40K radionuclide testing, the radioactive anomalies of coal-bearing strata in East China were identified to evaluate the specific activities of natural radio-nuclides in air, solid, water and plant in the typical area of the regional coal-bearing occurrences. The results show that there are significant differences in natural radioactivity between the Carboniferous-Permian common coalfields and the Cambrian stone coal occurrences. The γ radiation dose rate and radon radioactivity measured on the surface of ordinary coal mining area are generally in the background level range, and the nuclide content of solid medium, water body and plant samples in the mining area is in the normal level, and there is no radioactive pollution. The stone coal distribution zone in East China belongs to the high background region of radioactive γ radiation, and the 238U and 226Ra obviously are accumulated in coal, coal gangue, soil, rock, and the spatial distribution of these natural radionuclides shows significant variability. In the monitoring area, the effective dose of γ radiation exceeds the international limit value of 1 mSv/a, the total effective dose exceeded 2 mSv/a, and total α and total β concentrations of the groundwater are 10~30 times of the limit values. The γ radiation shows higher background value in the stone coal-bearing area, and radioactive pollution cannot be ignored. The public in the stone coal area of the East China is subjected to higher radiation dose, and groundwater, building material and plant have been contaminated by radioactive pollution sporadically. It is necessary to strengthen monitoring of radioactive environment and take appropriate control measures.
-
1. 引言
赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989;陈郑辉等,2006;毛景文等,2007;郭春丽等,2007;许建祥等,2008;刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989;张文兰等,2006;王登红,2019;杨斌等,2021;秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981;李建康,2012;李建康等,2014;王登红等,2017;王成辉等,2019;Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。
2. 矿区地质特征
赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007;裴荣富和熊群尧,1999;刘善宝等,2010)。
石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。
矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。
表 1 ZKn11-11云英岩W、Sn、Li测试分析结果Table 1. The W, Sn, Li analysis results of greisen samples of ZKn11-11(1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。
图 2 石雷矿区钨锡锂多金属矿体特征a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿Figure 2. Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining areaa, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite(2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。
3. 含锂云母成分分析和初步认识
本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-AlⅥ-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。
表 2 石雷矿区云英岩中云母LA-ICP-MS原位分析结果Table 2. LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018;王正军等,2018;张勇等,2020;Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。
4. 南岭钨锡矿中云英岩型锂矿成矿潜力及找矿方向
随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020;娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。
以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。
总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019;陈其慎等,2021;王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。
5. 结论
南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。
-
表 1 华东地区放射性核素实验分析与放射性野外监测技术参数
Table 1 Measurement techniques for laboratory analyses and radioactivity survey parameters of the coal-bearing strata in the East China
表 2 华东地区含煤岩系固体介质中天然放射性核素均值比活度
Table 2 The specific activities of natural radio-nuclides in solid media of coal-bearing strata in the East China
表 3 华东地区含煤岩系水体介质样品天然放射性核素活度
Table 3 The specific activities of natural radio-nuclides in water media of coal-bearing strata in the East China
表 4 华东地区含煤岩系植物样品天然放射性核素活度浓度
Table 4 The specific activities of natural radio-nuclides in plant sample of coal-bearing strata in the East China
表 5 华东地区含煤岩系地表γ外照射、氡放射性监测及有效剂量
Table 5 Radioactivity monitoring of terrestrial γ-external dose rate, radon and annual effective dose of natural radio-nuclides in coal-bearing strata in the East China
-
CGS (China Geological Survey). 2014. Quality Assurance Specification for Laboratory of Radioactive Mineral Analysis and Testing (EJ/T 751-2014)[S]. Beijing: Geological Publishing House (in Chinese).
Chałupnik S, Wysocka M, Janson E, Chmielewska I, Wiesner M. 2017. Long term changes in the concentration of radium in discharge waters of coal mines and Upper Silesian rivers[J]. Journal of Environmental Radioactivity, 177: 117-123. http://www.researchgate.net/profile/Malgorzata_Wysocka2/publication/314087501_Long_term_changes_in_the_concentration_of_radium_in_discharge_waters_of_coal_mines_and_Upper_Silesian_rivers/links/5a0a927b45851551b78d49e8/Long-term-changes-in-the-concentration-of-radium-in-discharge-waters-of-coal-mines-and-Upper-Silesian-rivers.pdf
Chen Shizhong, Yang Jingsui, Zhang Zeming, Liu Fulai, Li Tianfu, Qiu Haijun, Niu Yixiong, Wang Wenxian, Xu Haijun. 2005. Natural gamma-ray logging in the main hole (100-2000 m) of the Chinese continental scientific drilling project and its significance[J]. Geology in China, 32(2): 239-248 (in Chinese with English abstract). http://www.researchgate.net/publication/287000646_Natural_gamma-ray_logging_in_the_main_hole_100-2000_m_of_the_Chinese_continental_scientific_drilling_project_and_its_significance
CNIC (China Nuclear Industry Corporation). 1995. Evaluation Requirements for the Environmental Impact of Uranium Geological Radiation Environment (EJ/T 977-1995)[S]. Beijing: China Atomic Energy Press(in Chinese).
Galhardi J A, Garcíatenorio R, Bonotto D M, DãAz F I, Mottaet J G. 2017. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil[J]. Journal of Environmental Radioactivity, 177: 37-47. doi: 10.1016/j.jenvrad.2017.06.001
Huang Wenhui, Tan Xiuyi. 2002. Uranium, Thorium and other radionuclides in coal of China[J]. Coal Geology of China, 14(Supp. ): 55-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT2002S1011.htm
IAEA (International Atomic Energy Agency). 2014. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards[R]. International Atomic Energy Agency, Austria, Vienna: 1-436.
Jiang Rangyun. 2007. Survey of radioactive level and radiation dose to the miner in Zhejiang bone-coal mine[J]. Radiation Protection, 27(3): 163-170, 187 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH200703005.htm
Kříbek B, Sracek O, Mihaljevič M, Knésl L, Majer V. 2018. Geochemistry and environmental impact of neutral drainage from an uraniferous coal waste heap[J]. Journal of Geochemical Exploration, 191: 1-21. doi: 10.1016/j.gexplo.2018.05.001
Liu Fudong, Liao Haitao, Wang Chunhong, Chen Ling, Liu Senlin. 2006. Database of nuclide content of coal and gangue in Chinese coal mines[J]. Radiation Protection, 26(6): 362-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH200606007.htm
Liu Fudong, Pan Ziqiang, Liu Senlin, Chen Ling, Wang Chunhong, Liao Haitao, Wu Yihua, Wang Nanping. 2007. Investigation and analysis of the content of natural radionuclides at coal mines in China[J]. Radiation Protection 27(3): 171-180 (in Chinese with English abstract).
Liu Qiang, Jin Hongtao, Zhu Wei, Tian Hui, Zhang Sen, Ju Nan, Zhang Yan, Yan Xiaoming. 2020. Study on the Comprehensive Evaluation Method of Geo environmental Radioactivity of Coal fields in Northeast China[J]. Geology and Resources, 29(4): 388-396.
Luo Guozhen, Huang Jiaju, He Zhenyun. 1995. Natural Radioactivity Level in China[M]. Beijing: China Atomic Energy Press, 1-716 (in Chinese).
Lü Huijin. 2003. Radioactive pollution in bone coal mining areas in western Zhejiang[J]. Geological bulletin of China 22(9): 725-728 (in Chinese with English abstract).
Pan Ziqiang, Liu Yanyang. 2011. Enhanced natural radiation exposure enhanced by human activity-the largest contributor to the Chinese population dose[J]. Radiation Protection, 31(6): 323-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH201106001.htm
SEPA (State Environmental Protection Agency). 1993. Specification for Measurement of Dose Rate of Ambient Ground Gamma Radiation (GB/T 14583-93)[S]. Beijing: China Atomic Energy Press (in Chinese).
Skoko B, Marović G, Babić D, Šoštarić M, Jukić M. 2017. Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study[J]. Journal of Environmental Radioactivity, 172: 113-121. doi: 10.1016/j.jenvrad.2017.03.011
UNSCEAR (United National Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and Effects of Ionizing Radiation[R]. New York, 1-156.
Wang Chunhong, Pan Ziqiang, Liu Senlin, Yang mingli, Shang Bing, Zhuo Weihai, Ren Tianshan, Xiao Detao, Yang Weigeng. 2014. Investigation on indoor radon levels in some parts of China[J]. Radiation Protection 34(2): 65-73 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH201402001.htm
Wang Guokun, Xi Chaozhuang, Liu Kaikun, Li Yantao. 2017. Assessment of coal-bearing strata uranium mineralization and impact on environment in Guizhou Province[J]. Coal Geology of China, 29(3): 58-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT201703013.htm
Wang Honghai, Zhang Linxi, Xu Naizheng, Wei Xinxiang, Dou Xiaopin. 2017. Investigation and evaluation of radioactive environment in a bone coal mine area in Xiushui County, Jiangxi Province[J]. Radiation Protection, 37(6): 476-482 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH201706009.htm
WHO (World Health Organization). 2011. Guidelines for Drinking-Water Quality (Fourth Edition)[R]. The World Health Organization, Geneva, Switzerland, 1-564.
Wufuer R, Song W, Zhang D, Pan X L, Gadd G M. 2018. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China[J]. Journal of Environmental Radioactivity, 189: 186-174.
Xiong Zhengwei, Yu Yilin, You Meng, Guo Chenglin, Zhou Shukui, Yu Zhenxun. 2007. Analysis of environment contamination from concomitant radioactivity of coal mine source[J]. Journal of China Coal Society, 32(7): 762-766 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200707019.htm
Xu Naizheng, Wei Xinxiang, Kuang Fuxiang, Zhang Linxi, Liu Hongyin. 2018. Study on natural radioactivity level of stone coal-bearing strata in East China[J]. Environmental Earth Sciences, 77: 726. doi: 10.1007/s12665-018-7916-2
Ye Jida, Kong Linli, Li Ying, Zhang Liang, Jiang Shan, Wang Ming, Liu Hongshi, Zhu Jinqiu, Shi Jinhua, Chen Changhua, Zhang Zhengguo. 2004a. Study of radioactivity effect of mining and utilizing bone-coal mine on environment[J]. Radiation Protection 24(1): 1-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSFH200401000.htm
Ye Jida, Zhu Li, Wu Zunmei. 2004b. Natural Radioactivity Level in Bone-coal Mines in Zhejiang Province[J]. Radiation Protection Bulletin, 24(4): 21-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DEFE200404006.htm
Yue Yumei, Song Gang, Zhang Zhiqiang, Fu Yingjie, Chen Diyun. 2011. Studies on natural radioactivity of soil in North of Guangzhou[J]. China Environmental Sciences, 31(4), 657-661 (in Chinese with English abstract). http://www.researchgate.net/publication/286192084_Studies_on_natural_radioactivity_of_soil_in_North_of_Guangzhou
Zeng Lingsen, Liu Fulai, Zhang Zeming, Yang Jingsui, Xu Zhiqin. 2005. Vertical distribution characteristics and origin of radiogenic heat-producing elements (HPE) in the first 2000 m of the main hole of the CCSD Project[J]. Geology in China, 32(2): 230-238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI200502007.htm
Zhang Kexin, Pan Guitang, He Wenhong, Xiao Qinghui, Xu Yadong. 2015. New division of tectonic-strata super region in China[J]. Earth Science 40 (2): 206-233 (in Chinese with English abstract).
Zhang Zhiqiang, Chen Diyun, Zhu Gang, Yue Yumei. 2011. Uptake of radionuclides from soil to plant and the discovery of 226Ra, 232Th Hyperaccumulator[J]. Chinese Journal of Environmental Science 32(4): 1159-1163 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21717763
陈世忠, 杨经绥, 张泽明, 刘福来, 李天福, 邱海峻, 牛一雄, 王文先, 徐海军. 2005. 中国大陆科学钻探工程主孔100~2 000 m岩心自然伽马测量及其地质意义[J]. 中国地质, 32(2): 239-248. doi: 10.3969/j.issn.1000-3657.2005.02.007 国家环境保护局. 1993. 环境地表γ辐射剂量率测定规范(GB/T 14583-93)[S]. 北京: 中国原子能出版社. 黄文辉, 唐修义. 2002. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质, 14(增刊): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2002S1011.htm 姜让荣. 2007. 浙江省部分石煤矿放射性水平和矿工剂量调查[J]. 辐射防护, 27(3): 163-170, 187. doi: 10.3321/j.issn:1000-8187.2007.03.006 刘福东, 廖海涛, 王春红, 陈凌, 刘森林. 2006. 全国煤矿中煤、煤矸石中核素含量数据库[J]. 辐射防护, 26(6): 362-366. doi: 10.3321/j.issn:1000-8187.2006.06.008 刘福东, 潘自强, 刘森林, 陈凌, 王春红, 廖海涛, 武奕华, 王南萍. 2007. 全国煤矿中煤、矸石天然放射性核素含量调查分析[J]. 辐射防护, 27(3): 171-180. doi: 10.3321/j.issn:1000-8187.2007.03.007 刘强, 金洪涛, 朱巍, 田辉, 张森, 鞠楠, 张妍, 闫晓明. 2020. 东北地区煤田地质环境放射性综合评价方法研究[J]. 地质与资源, 29(4): 388-396. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202004013.htm 罗国桢. 黄家矩, 何振芸. 1995. 中国环境天然放射性水平[M]. 北京: 中国原子能出版社, 1-716. 吕惠进. 2003. 浙西石煤产区放射性污染及防治对策[J]. 地质通报, 22(9): 725-728. doi: 10.3969/j.issn.1671-2552.2003.09.017 潘自强, 刘艳阳. 2011. 人为活动引起的天然辐射照射的增加[J]. 辐射防护, 31(6): 323-327. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH201106001.htm 王春红, 潘自强, 刘森林, 杨明理, 尚兵, 卓维海, 任天山, 肖德涛, 杨维耿. 2014. 我国部分地区居室氡浓度水平调查研究[J]. 辐射防护, 34(2): 65-73. doi: 10.3969/j.issn.1000-8187.2014.02.001 王国坤, 息朝庄, 刘开坤, 李艳桃. 2017. 贵州含煤岩系含铀性对环境的影响评价[J]. 中国煤炭地质, 29(3): 58-61. doi: 10.3969/j.issn.1674-1803.2017.03.12 王红海, 张麟熹, 许乃政, 魏信祥, 窦小平. 2017. 江西省修水县石煤矿区放射性环境调查与评价[J]. 辐射防护, 37(6): 476-482. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH201706009.htm 熊正为, 喻亦林, 游猛, 郭成林, 周书葵, 余振勋. 2007. 云南省煤的放射性污染调查分析[J]. 煤炭学报, 32(7): 762-766. doi: 10.3321/j.issn:0253-9993.2007.07.020 叶际达, 孔玲莉, 李莹, 张亮, 江山, 万明, 刘鸿诗, 朱锦秋, 施锦华, 陈昌华, 张政国. 2004a. 五省放射性伴生石煤矿开发和利用对环境影响研究[J]. 辐射防护, 24(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH200401000.htm 叶际达, 朱力, 吴宗梅. 2004b. 浙江省放射性伴生石煤矿区天然放射性水平调查[J]. 辐射防护通讯, 24(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DEFE200404006.htm 岳玉美, 宋刚, 张志强, 富英杰, 陈迪云. 2011. 广州市北部土壤天然放射性水平研究[J]. 中国环境科学, 31(4): 657-661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201104026.htm 曾令森, 刘福来, 张泽明, 杨经绥, 许志琴. 2005. 中国大陆科学钻探工程主孔100~2000 m放射性产热元素的垂向分布特征及其成因[J]. 中国地质, 32(2): 230-238. doi: 10.3969/j.issn.1000-3657.2005.02.006 张克信, 潘桂棠, 何卫红. 肖庆辉, 徐亚东. 2015. 中国构造-地层大区划分新方案[J]. 地球科学——中国地质大学学报, 40(2), 206-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201502003.htm 张志强, 陈迪云, 朱刚, 岳玉美. 2011. 放射性核素土壤-植物吸收与钍、镭富集植物的发现[J]. 环境科学, 32(4): 1159-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201104040.htm 中国地质调查局. 2014. 放射性矿产地质分析测试实验室质量保证规范(EJ/T 751-2014)[S]. 北京: 地质出版社. 中国核工业总公司. 1995. 铀矿地质辐射环境影响评价要求(EJ/T 977-1995)[S]. 北京: 中国原子能出版社. -
期刊类型引用(3)
1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术
其他类型引用(1)