Scheelite geochemical signature and calcite Sm-Nd dating of the Xianggou Au-W deposit in south Qinling orogen, central China: Constraints on the ore-forming process
-
摘要:
陕西省山阳县香沟钨矿是近年来南秦岭地质勘查新发现的钨矿化地段之一。本文开展了白钨矿电子探针、LA-ICP-Ms和共生方解石的Sm-Nd同位素测年,研究结果显示:香沟白钨矿成矿过程至少可划分为两个阶段,由早阶段韵律环带白钨矿至晚阶段集合体状白钨矿,白钨矿经历了多次迁移;白钨矿具有高F、含微量Au元素的特征,稀土总量较高(ΣREE+Y含量介于5.44×10-6~382.67×10-6,平均为95.48×10-6),其稀土配分型式为无MREE富集的平坦型,与Ghaderi等人划分的白钨矿Ⅱ型稀土配分型式总体类似,负铕异常,利用白钨矿La-Ce-Y三角图解,结合地质事实,判断香沟钨矿属于石英脉型钨矿;结合共生方解石Sm-Nd同位素年龄195 Ma,认为南秦岭香沟钨矿是印支末期深部隐伏岩浆-热液活动的结果。
Abstract:The Xianggou scheelite deposit, discovered in the Wangjiaping-Longtougou-Xiajiadian gold metallgenic belt in recent years, is another new geology survey progress in south Qinling related to W mineralization. The composition of scheelite was analyzed by LA-ICP-MS, together with Sm-Nd isotope dating of symbiotic calcite, to clarify the origin of Xianggou scheelite. The results show that scheelite exists in three generations, from the early rhythmic zonal scheelite to the late aggregate one, indicating that the scheelite undergone multiple migrations. The scheelites have high F content with low Au content. The total amount of rare earths is high, ranging from 5.44×10-6 to 382.67×10-6, with an average of 95.48×10-6. The REE pattern is flat without MREE enrichment, with negative Eu anomaly, similar to the type Ⅱ REE type classified by Ghaderi et al. (1999). All these data support that the W mineralization in the Xianggou area might be related to W-bearing quartz vein with genetic links to magmatic hydrothermal activities. The Sm-Nd isotope dating result of the symbiotic calcite (195 Ma) indicates that the deposit was formed in the late Indosinian.
-
1. 引言
锶作为岩石圈上部含量最大的微量元素(胡进武等,2004;黄奇波等,2011),广泛存在于自然界中但分布非常不均,锶的分布状态及其存在形态受到自然条件、人类活动等多种因素的影响,导致锶在分布上富集或贫乏(Comar et al., 1957; 范伟等2010)。在不同的时期、不同岩性的基岩地层中锶元素的丰度存在明显的差异性,一般在海相沉积的碳酸盐岩中锶的丰度最高,在含锶矿物的闪长岩、花岗岩、黏土岩以及碳酸盐岩中,锶含量相对比较富集,黏土、砂中锶的丰度最低(刘庆宣等,2004)。作为微量元素,锶主要存在于各种造岩矿物和副矿物中,也能形成一些独立的矿物,主要为存在于碳酸盐岩中的菱锶矿(SrCO3)和天青石(SrSO4),同时文石、方解石、钙长石及石膏等矿物中亦常见锶置换钙的类质同像现象(Clow et al., 1997;文冬光等,1998)。岩石中的锶是地下水中锶的主要物质来源,锶在赋存母岩中主要经风化、淋滤后在地下水流作用下进行迁移转化(文冬光等,1998;康志强等,2011;苏春田等, 2017a, b),进而进入人类及其他动植物的物质循环。前人研究表明,地下水中锶的分布与富集受渗流地层岩性、溶滤强度、水化学条件(王增银等,2003;祁晓凡等,2009;范伟等, 2010)等因素的影响。目前,各国根据锶的含量及其生理医学作用制定了锶矿泉水的标准,参照饮用天然矿泉水国家标准(GB8537- 2016),地下水的质量浓度达到0.2mg/L,可命名为富锶矿泉水,规定的限值为5mg/L。岩溶水作为山区居民主要饮用的水源,关乎百姓的生活与饮食健康,因而查明地下水中锶的分布状态,揭示锶的动态变化,分析锶的富集规律,具有较大的研究意义与实际价值。
前人对富锶地下水的研究多集中在赋存条件、水质评价等方面,多集中在非岩溶地区(孙岐发等,2019),针对西南岩溶区富锶地下水的研究还较少(祁晓凡等,2009;康志强等,2011;苏春田等, 2017a, b),针对三峡岩溶区的研究则更少。本文选取湖北秭归地区两个岩溶流域为研究区,以岩溶水系统为单元,从锶的物质来源条件入手,分析岩溶水系统中锶的水岩作用过程,研究不同含水岩组、不同水流条件下地下水中锶的分布与富集特征,探讨宜昌三峡岩溶去地下水中锶富集的条件与规律。
2. 研究区概况
2.1 自然地理概况
本文主要针对秭归地区的茅坪河和九畹溪两个岩溶流域开展研究。研究区地处长江之滨、西陵峡畔、清江以北,属于中国地形第二、三阶梯的过渡地带,为川东褶皱与鄂西山地交汇地,境内山脉为大巴山、巫山余脉,地形起伏较大。该地区属于亚热带季风气候,气候温暖、降雨充沛,年降雨量在900~1200 mm,其中汛期降雨量占绝大部分,受季风气候和山峦起伏的影响,降雨量的季节变化和空间差异明显,小气候特征比较显著。秭归县位于鄂西褶皱山地,西南高东北低,平均海拔高程千米以上,山峰耸立,河谷深切,相对高差一般在500~1300 m。其中中低山区多分布于秭归盆地周边,斜坡倾角介于15~25°,面积960 km2;大于25°以上的斜坡主要分布在长江峡谷区、中高山向中低山过渡地带,陡缓变化较大,多形成陡崖。
2.2 地质概况
研究区地处黄陵穹隆西南缘,自北东向西南从侵入岩体、前震旦纪到三叠纪地层连续出露且较齐全,区内南沱组角度不整合于侵入岩与变质岩基底之上,第四系与下伏地层为角度不整合,其余地层之间均为整合与平行不整合接触关系(南沱组与陡山沱组呈平行不整合,纱帽组与云台观组呈平行不整合)。区域内地层主要是以沉积岩为主,累计沉积岩岩层最大厚度约7567 m,其中碳酸盐岩总厚度达到3443 m,占沉积岩总厚度的45.5%,碳酸盐岩地层主要有震旦系,寒武系、奥陶系、志留系、二叠系及三叠系,岩性以灰岩、白云岩为主,非碳酸盐岩地层有志留系、泥盆系、白垩系,岩性以碎屑岩为主,尤以仙女山一带的白垩系的碎屑砾岩、砂岩为特殊,常常发育有可溶性砾岩裂隙孔洞水。
2.3 岩溶含水系统划分
前人在进行岩溶含水系统划分过程中,主要考虑了含水岩组、空间介质结构、组合特征、岩溶水径流方式、埋藏条件等因素(裴建国等,2008; 梁永平等,2015)。秭归地区属于南方岩溶的范畴,多种地层组合特征、构造条件下发育多样的岩溶水系统,既发育有管道裂隙集中排泄型系统、也有裂隙分散排泄型岩溶水系统。根据区域地层的含水性分析,大致可划分为3个岩溶含水系统(图 1):上震旦岩溶含水系统(Z2d、Z2∈1d)、下寒武—奥陶岩溶含水系统(∈1t、∈1sl、∈2q、∈2O1l、O1n、O1g、O2-3b)、石炭—三叠岩溶含水系统(P1q、P1m、P2w、T1d、T2j),进一步可细分为7个岩溶含水子系统(表 1)。本文依据空间结构、含水介质、排泄方式、代表水流、标高、流量等特征数据,并结合野外调查资料,对岩溶子含水单元排泄特征进行整理划分(表 1)。
表 1 岩溶含水子系统的介质结构及排泄特征Table 1. Structure and drainage characteristics of karst water-bearing units3. 样品采集与测试
3.1 样品采集与处理
2016—2018年期间,本文依托中国地质调查局二级项目“宜昌长江南岸岩溶流域水文地质环境地质调查”,系统地采集了研究区泉水、典型断面地表水样品,对重点岩溶泉点进行月度监测,并选送测区内主要含水岩组的岩样进行岩石矿物组成分析。针对不同岩溶水系统,选取了31组岩溶泉点作为长期监测点(长观站)(图 1),用于分析地下水的动态变化规律。本文的研究数据来源于区域水文地质调查,及31个岩溶泉长期监测点(长观站)月度样采集,共整理了415组水样数据,93组岩矿分析数据,基于此对锶的分布特征进行分析。
水样采集采用600 mLPVC瓶,现场用水样涮洗3次,同时对水样水温、pH、电导率、流量等指标进行现场测定。此后样品在12 h内送回室内,采用《中华人民共和国地质矿产行业标准DZ/T 0064.49- 93地下水水质检验方法》酸碱滴定法测试并计算碱度。同时将水样用孔径0.45 μm的醋酸纤维膜过滤后,分装于2个50 mLPET瓶中分别用于阴阳离子测试,其中阳离子测试样会使用分析纯HNO3酸化至pH<2,阴离子样则不加处理。
3.2 样品测试
水化学样品的测试在中国地质大学(武汉)地质调查研究院实验中心完成,阴离子由戴安离子色谱仪ICS2100测试,阳离子由赛默飞公司生产的ICP-OES(ICAP6300)测试;岩石样品矿物组成测试在澳实分析检测(广州)有限公司测试完成,锶等矿物组分均采用封闭酸溶-电感耦合等离子体质谱法(ICP-MS)测试。
4. 分析与讨论
4.1 锶的物源条件分析
通过对93组岩矿分析数据分析可知,不同地质年代的沉积地层中锶的含量大不相同(表 2),在震旦系地层中,灯影组地层锶含量比陡山沱组高,灯影组锶含量可达到2900 μg/g,均值为1121 μg/g,且组内不同段含量差异明显,如灯影组二段的白云质灰岩中锶含量介于800~2600 μg/g,其含量较一段和三段的白云岩大,灯影组地层整体变异系数为88.2%(n=10);寒武系上统娄山关组白云岩中锶含量介于77~2500 μg/g,变异系数为62.5%(n=11),锶含量均值大但分布上存在差异性;奥陶系地层锶含量均不高,介于100~400 μg/g,变异系数相对较低;嘉陵江组地层锶的含量较高,均值为2861 μg/g,变异系数也较高,为137.3%(n=17)。
表 2 秭归岩溶地层中锶含量概况统计Table 2. Statistics of Sr contents in karst strata in the Zigui area可知,秭归地区富锶地层主要为灯影组、娄山关组、嘉陵江组。从沉积相来看,上述沉积地层均为干旱气候条件下碳酸盐台地浅滩、潮坪-潟湖沉积(徐长昊,2016),为封闭性较好的沉积环境,是蒸发沉积富锶地层发育的良好条件。
同时对区内浅层包气带内岩样分析发现,表层岩石中天青石矿物较少,锶含量偏低且与CaO的相关性较好,而与MgO、SO3、Al2O3的相关性一般。主要是由于表层岩石受到较强的淋滤作用而导致锶的流失,此外浅循环系统中的锶会以类质同像形式存在于方解石矿物中。
对由钻孔揭露深层封闭地层岩样分析发现,锶主要以天青石形式存在,常常与石膏矿物共存。如钻孔ZK05揭露的娄山关组地层中,锶含量普遍较高且与SO3有较好的相关性(R2=0.737,n=10)。另在对钻孔ZK03揭露的奥陶系岩心分析发现,随着MgO含量的增大,岩性逐渐白云岩化,同时锶含量逐渐减小(图 2);此外,锶的含量会随着碳酸盐中泥质含量的增大(SiO2含量增大)而减小(图 2)。
4.2 锶的水岩作用过程分析
通过对茅坪河与九畹溪两个流域岩溶地下水样分析,从富锶水化学类型、水岩作用程度、物理化学条件等方面,对该区地下水锶分布与富集展开讨论。
针对研究区所采集的415组水样,从Piper三线图(图 3)来看,地下水中锶含量大于2 mg/L时,水中阳离子以Ca2+、Mg2+为优势离子,阴离子以SO42-为主;地下水中锶含量在0.70~10 mg/L时,水中阳离子以Na+为主,阴离子以Cl-为主;地下水中锶含量小于0.70 mg/L时,水中阴离子以HCO3-为主。因此,锶浓度相对较高的地下水化学类型主要包括SO4型和Cl型,其中尤以SO4型地下水的锶浓度最高。
岩溶地下水中离子组分主要来源于对母岩的溶滤作用,其决定着地下水中主要水化学过程(康志强等,2011; 苏春田等,2017a)。母岩中锶含量影响着水流系统地下水中锶的分布(文冬光等,1998;苏春田等,2017b)。地下水中锶离子主要来源于富锶矿物(天青石、菱锶矿),赋存在方解石、文石及白云石类质同像形态的锶,以及铝硅酸盐中的锶等的溶解(徐兴国,1984),具体的化学反应方程式如下:
(1) (2) (3) 表层岩溶泉可反映局部水流系统的水化学特征。基于所采集的334处表层岩溶泉,绘制出研究区锶在表层岩溶水中的分布规律,发现全区存在5处富锶地下水分布区(图 4),且这些富锶地下水分布与富锶地层的分布表现出一致性,二叠系阳新组岩溶水,三叠系嘉陵江组岩溶水,寒武系娄山关组岩溶水,寒武系水井沱组岩溶水及震旦系灯影组岩溶水。其中杨新组表层岩溶水中Sr含量介于0.26~ 0.76 mg/L;嘉陵江组介于0.23~0.60 mg/L;娄山关组介于0.13~0.43 mg/L;水井沱组与灯影组介于0.22~0.72 mg/L。
对于排泄区,选取研究区内4处锶含量较高的地层中出露的地下水点为例,即白龙潭、龙洞、迷宫泉和龙王洞(表 1)。从锶离子与硫酸根离子、重碳酸根离子的浓度关系(图 5)发现,嘉陵江组白龙潭岩溶泉水锶含量较高,与硫酸根离子有较好的一致性(R2=0.707,n=5),另知嘉陵江组岩矿分析中SO3含量较高,反映出在该泉域的径流途径上有天青石的存在;娄山关组迷宫泉与重碳酸根离子和硫酸根离子均呈现较好的相关性(R2=0.668,n=10;R2= 0.768,n=13),反映出径流途径中存在两种富锶矿物溶解。此外,针对地下水中丰、枯两季表现出差异性(图 5),主要是由于研究区具有典型南方岩溶管道-裂隙水系统,地下水径流路径和径流时间短、水岩作用不充分(罗明明等,2015),表现出枯季地下水中锶含量普遍比丰水期的要高。由上可知,岩溶水中锶离子含量与各岩溶水系统中富锶矿物含量密切相关,流经的地层岩性差异导致各岩溶水流系统表现出不同的水岩作用过程,或受石膏、天青石矿物溶解的影响,或受菱锶矿溶解的影响,或受多种锶源的混合补给。
4.3 地下水流系统中锶的分布规律
对于锶在多级水系系统中的分布规律,本文以泗溪流域庙坪—鱼泉洞多级水流系统为例(图 1b),不同级次的地下水中锶含量及饱和程度易表现出差异性(表 3,图 6)。庙坪洼地表层岩溶泉为局部水流系统,锶含量均值为0.08 mg/L,si_Str与si_Cel均比较低(表 3),多为方解石中类质同像锶的溶解释放;鱼泉洞泉水为中间水流系统,地下水锶含量均值为0.22 mg/L,si_Stron与SI_Cel相比于局部水流系统稍高但未达到饱和(表 3),但冬季其锶的饱和指数相对夏季要高,主要由于冬季水流滞缓,水岩作用相对充分(表 3);以钻孔ZK04揭露的区域水流系统,其锶均值在2.33 mg/L,si_Str、si_Cel、si_Cal、si_Dol均趋于饱和(图 6)。可知地下水与母岩水岩相互作用的时间与水流路径长短决定了地下水中富锶矿物的饱和程度及地下水中锶含量(张群利等,2011;苏春田等,2017a)。
表 3 不同级次水流水化学信息统计表Table 3. Hydrochemistry of different water flow levels此外,通过对钻孔ZK04及钻孔ZK05中锶含量分析(表 3,图 6),发现两者锶离子浓度均很大。在两孔钻进施工中,均有H2S与CH4等还原性气体溢出,且岩心中有机炭的含量相对较高,尤其是ZK05岩矿组分中发现有单质S存在。推知两孔均混有碳酸盐岩和硫酸盐岩(富含大量的石膏),且均为相对封闭的还原环境。
在这种封闭缺氧还原环境中,地下水中的SO42-在有机炭和脱硫细菌作用下,容易发生脱硫酸作用(刘硕等,2016),其化学反应式为:
(4) (5) 当地层中含有大量铁的时候S2-便会与铁结合,逐渐生成黄铁矿,而硫化氢气体极易溶于水(溶解比例约为1∶3),在氧气充足的时候,H2S会被氧化成硫酸与碳酸盐结合形成石膏矿物沉淀,但当氧气不足的时候,少部分的H2S会被氧化成单质S,更大一部分仍以气体的形式存在于封闭的还原条件中,这也就是ZK05孔岩心组分中单质S存在的原因。硫酸根离子的转化,促进了石膏、天青石的溶解过程,致使地下水中锶离子富集,甚至使天青石溶解达到饱和,同时菱锶矿的溶解也增大了地下水中锶的含量(罗璐等,2015)。
5. 结论
本文通过对秭归岩溶流域锶的分布与迁移进行分析,得到以下结论:
(1)研究区内嘉陵江组、娄山关组、灯影组地层中的锶含量最高,代表着潮坪-潟湖沉积相;区内浅层岩石中天青石矿物较少,锶含量偏低;深层封闭地层岩样中锶主要以天青石形式存在,常常与石膏矿物共存。
(2)富锶岩溶水的水化学类型主要包括SO4型和Cl型,尤以SO4型地下水的锶浓度最高;母岩中锶的含量决定了地下水中锶的浓度,且锶主要通过溶滤作用进入地下水中。
(3)地下水水流系统中水岩作用程度及地下水的滞留时间均影响地下水中锶的浓度,浅循环岩溶地下水流系统中锶均未达到饱和,少数深循环区域地下水流系统中锶浓度趋近饱和状态。对于富含石膏、天青石的封闭还原环境有利于地下水中锶的富集。
致谢: 本文成文过程中受到西安西北有色地质研究院有限公司总经理冯玉怀、党委书记陈文强、副总经理张云峰等同志的大力支持;西北大学地质学系张旭在显微岩相学研究方面提供了帮助,西安地质调查中心实验测试中心魏晓燕、周宁超等为样品测试提供了便利;两位匿名审稿人和编辑部王学明老师审阅了全文,提出了建设性意见,在此一并表示感谢。 -
图 1 秦岭构造单元及矿区大地构造位置图(据陈衍景,2010; 徐学义等, 2014简化)
1—北秦岭褶皱带(NQL);2—中南秦岭褶皱带(SQL);3—北大巴构造区(DB);4—摩天岭构造区(MTL);5—区域钨矿床;6—工作区;1-1—礼县—柞水褶皱带;1-2—凤县—镇安褶皱带;1-3—留坝—白河褶皱带;①—镇安东阳钨矿;②—商洛杨斜钨矿(带)
Figure 1. Tectonic framework of Qinling orogen(modified from Chen Yanjing, 2010; Xu Xueyi et al., 2014)
1-North Qinling orogen; 2-South Qinling block; 3-Northern Dabashan thrust belt; 4-Motianling Block; 5-W deposits; 6-Study area; 1-1-Lixian-Zhashui fold belt; 1-2-Fengxian-Zhen'an fold belt; 1-3-Liuba-Baihe fold belt; ①-Dongyang W deposit; ②-Yangxie W deposits
图 2 区域地质矿产简图(底图据刘新伟等, 2016修改)
1—侵入角砾岩;2—三叠纪花岗岩;3—印支期花岗闪长岩;3—二叠纪花岗岩;5—新元古代正长花岗岩;6—辉绿岩脉;7—不整合地质界线;8—断层;9—钒矿床(点);10—铜矿点;11—钨矿点;12—金矿床(点);13—工作区范围;Q—第四系冲积物;E—古近—新近系砂砾岩;C—石炭系;D3-C1—上泥盆统至下石炭统;D3m—上泥盆统馒头山组;D3x—上泥盆统星红铺组;D2g—中泥盆统古道岭组;D2d—中泥盆统大枫沟组;D2s—中泥盆统石家沟组;∈-Osw—寒武—奥陶系石瓮子组;∈1s—寒武系水沟口组;Z2dn—震旦系灯影组;Z2d—震旦系陡山沱组;Pt3yl—新元古界耀岭河岩组
Figure 2. Simplified regional geological map showing distribution of metallic deposit (modified from Liu Xinwei et al., 2016)
1-Breccia(magmatic related); 2-Triassic Granite; 3-Indo-Chinese epoch Granodorite; 4-Permian Granite; 5-Neo-proterozonic granite; 6-Diabase; 7-Unconformable boundary line; 8-Fault; 9-Vanadium Deposit; 10-Copper Deposit; 11-Tungsten Deposit; 12-Gold Deposit; 13-Working area; Q-Quternary; E-Tertiary sandy conglomerate; C-Carboniferous system; D3-C1-Late Devonian-Early Carboniferous; D3m-Upper Devonian Mantoushan Formation; D3x-Upper Devonian Xinghongpu Formation; D2g-Middle Devonian Gudaolin Formation; D2d-Middle Devonian Dafenggou Formation; D2s-Middle Devonian Shijiagou Formation; ∈-Osw-Cambrian-Ordovician Shiwengzi Formation; ∈1s-Cambrian Shuigoukou Formation; Z2dn-Sinian Dengying Fromation; Z2d-Sinian Doushantuo Fromation; Pt3yl-Neo-proterozonic Yaolinghe Fromation
图 4 矿区白钨矿矿石组构特征照片
a—白钨矿化构造角砾岩;b—石英方解石脉中白钨矿化;c—方解石脉边缘白钨矿(透射光);d—细粒集合体状白钨矿(反射光);Sch—白钨矿;Cc—方解石
Figure 4. Photographs showing the ore characteristics in the Xianggou Au deposit
a-Scheelite mineralizated Breccia; b-Quartz-calcite vein with Scheelite mineralization; c-Scheelite in calcite vein; d-Fine aggregate scheelite under mineragraphic microscope; Sch-Scheelite; Cc-Calcite
图 6 香沟金钨矿微量元素蛛网图(下地壳数据来自Rudnick et al., 2003)
Figure 6. Trace elements sipdier digram of scheelite from the Xianggou Au-W deposit(Standardized data from Rudnick et al., 2003)
图 8 香沟白钨矿稀土元素配分图解(球粒陨石标准化数据Sun et al., 1989)
Figure 8. Scheelite chondrite-normalized REE patterns(standardized data from Sun et al., 1989)
图 10 香沟白钨矿Yb/Ca-Yb/La图解
(底图据Möller et al., 1976; Schönenberger et al., 2008; 赵振华, 2016修改)
Figure 10. Yb/Ca-Yb/La diagram of scheelite from the Xianggou deposit
(base map from Möller et al., 1976; Schönenberger et al., 2008; Zhao Zhenhua, 2016)
图 11 香沟白钨矿La-Ce-Y图解(底图据张玉学等, 1990)
Figure 11. La-Ce-Y diagram of scheelite from the Xianggou deposit (base map from Zhang Yuxue et al., 1990)
表 1 香沟白钨矿电子探针分析成果(%)
Table 1 EPMA analyses of scheelite from the Xianggou Au-W deposit
表 2 香沟金钨矿区白钨矿稀土元素测试结果(10-6)
Table 2 REE element compositions (10-6) of scheelite from the Xianggou Au-W deposit
表 3 香沟金矿区白钨矿微量元素分析成果(10-6)
Table 3 Trace element compositions (10-6) of scheelite from the Xianggou Au deposit
表 4 方解石Sm-Nd同位素测试结果(10-6)
Table 4 Calcite Sm-Nd isotopic composition data from the Xianggou Deposit
-
Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. 2000. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia)[J]. Contributions to Mineralogy & Petrology, 139(3): 251-264. doi: 10.1007/s004100000135
Chen Sijia, Guo Minyi, Ke Hongpei, Lin Xianzhen, Liu Yu. 2015. Component characteristics of scheelite in Nanyangtian, Yunnan Province and Dingjiashan, Fujian Province[J]. Geology of Fujian, 34(3): 171-180(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDZ201503001.htm
Chen Yanjing. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, Central China[J]. Geology in China, 37(4): 854-865(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DIZI201004005&dbcode=CJFD&year=2010&dflag=pdfdown
Fang Guiming, Chen Yuchuan, Chen Zhenghui, Zeng Zailin, Liu Cuihui, Tong Qiquan, Sun Jie, Zhu Guohua. 2016. Petrology and geochemistry of granite in the Pangushan tungsten deposit, South Jiangxi Province[J]. Geology in China, 43(5): 1558-1568(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DIZI201605006&dbcode=CJFD&year=2016&dflag=pdfdown
Fei X, Zhang Z, Cheng Z, Santosh M, Jin Z, Wen B, Li Z, Xu L. 2018. Highly differentiated magmas linked with polymetallic mineralization: A case study from the Cuihongshan granitic intrusions, Lesser Xing'an Range, NE China[J]. Lithos, 302-303: 158-177. doi: 10.1016/j.lithos.2017.12.027
Feng Jiarui. 2011. The Ore-forming Fluid and Metallogenesis of Nanyangtian Tungsten Deposit in Malipo, Yunnan Province, China[D]. Beijing: Chinese Academy of Geological Sciences(in Chinese with English abstract).
Gao Jusheng, Wang Ruiting, Zhang Fuxin, Qi Yalin, Liang Xiaoyong. 2006. Geology and geochemistry of the Xiajiadian gold deposit in the Cambrian black rock series in the South Qinling[J]. Geology in China, 33(6): 1371-1378(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200606022.htm
Ghaderi M, Palin J M, Campbell I H, Sylvester P H. 1999. Rare earth element systematicns scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Astralia[J]. Economic Geology, 94(1): 423-438. doi: 10.2113/gsecongeo.94.3.423
Gong Hujun, Zhu Laimin, Sun Boya, Li Ben, Guo Bo. 2009. Zircon U-Pb ages and Hf isotope characteristics and their geological significance of the Shahewan, Caoping and Zhashui granitic plutons in the South Qinling orogen[J]. Acta Petrologica Sinica, 25(2): 248-264(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1000805701
Hu Xishun, Li Jianbin, Liu Xinwei, Wang Chao, Wang Xiangang, Hu Yuanping, Gu Yuming. 2015. Geology, mineralization type and ore prospecting of gold desposit in Zhongcun of shanyang and xianghe of shangnan area[J]. Geology of Shaanxi, 33(2): 70-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXDY201502012.htm
Hua Rengmin, Zhang Wenlan, Li Guanglai, Hu Dongquan, Wang Xudong. 2008. A preliminary study on the features and geologic implication of the accompanying metals in tungsten deposits in the Nanling Region[J]. Geological Journal of China Universities, 14(4): 527-538(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804008.htm
Huang L C, Jiang S Y. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: Geochronology, petrogenesis and their relationship with W-mineralization[J]. Lithos, 202/203: 207-226. doi: 10.1016/j.lithos.2014.05.030
Li Ning. 2017. Study on Granite and Mineralization of the Zhuxi W-Cu Deposit, Northeast of Jiangxi Proxince[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
Li Saisai, Feng Zuohai, Fu Wei, Jia Zhiqiang, Long Mingzhou, Liu Wuwen, Peng Zhiyong, Li Yangjin. 2016. Search for hidden rock bodies using geological, geophysical, and geochemical methods: An example from the West Damingshan area of Guangxi Province[J]. Geology and Exploration, 52(3): 524-536(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201603014.htm
Liang Wenyi. 1996. Study on Enrichment Law of Ore-controling Factors and Optimization of Prospecting Targets in Gold Deposits in Eastern Shanxi Province[R]. Xi'an: Xi'an Institute of Geology(in Chinese).
Liu Shanbao, Liu Zhanqin, Wang Chenghui, Wang Denghong, Zhao Zheng, Hu Zhenghua. 2017. Geochemical characteristics of REEs and trace element and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi[J]. Earth Science Frontiers, 24(5): 17-30(in Chinese with English abstract).
Liu Xian. 2013. The Characteristics and Genes's of the Zhen'an W deposit, Shaanxi Province, China[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
Liu Xielu, Wang Yitian, Hu Qianqing, Wei Ran, Wang Ruiting, Wen Shenwen, Chen Mingshou, Yang Guanghua. 2014. Sm-Nd isotopic dating of carbonate minerals from the Chaima gold deposit in the Fengxian-Taibai ore concentration area, Shaanxi Province and its implications[J]. Acta Petrologica Sinica, 30(1): 271-280(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201401020.htm
Liu Xinwei, Wang Chao, Han Lu, Xue Yushan, Xue Lei, Zhu Lei. 2016. Geological geochemical characteristics and genesis of Wangjiaping Gold Deposit[J]. Gold Science and Technology, 24(4): 39-46(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HJKJ201604006.htm
Liu Yan, Deng Jun, Li Chaofeng, Shi Guanghai, Zhen Aili. 2007. Rare earth geochemistry and Sm-Nd isopote dating from Xuebaoding scheelite deposit in Sichuan Province, China[J]. Chinese Science Bulletin, 52(16): 1923-1929(in Chinese). doi: 10.1360/csb2007-52-16-1923
Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqin, Zhang Jingrong. 1984. Elemental Geochemistry[M]. Beijing: Science Press, 242-284(in Chinese with English abstract).
Lu Yuanfa. 2004. GeoKit——A geochemical toolkit for Microsoft Excel[J]. Geochimica, 33(5): 459-464(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173896
Lü Xiwang, Wang Jianzhong, Zheng Weidong, Ma Yongbing. 2017. Genesis and prospecting potential of scheelite in the Zhaishang gold deposit, Minxian County, Gansu Province[J]. Northwest Geology, 50(2): 156-166(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201702018.htm
Möller P, Parekh P P, Schneider H J. 1976. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposita, 11(1): 111-116. doi: 10.1007/BF00203098
Pan Dapeng, Wang Di, Wang Xiaolei. 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits[J]. Geology in China, 44(1): 118-135(in Chinese with English abstract). http://www.researchgate.net/publication/318490515_Petrogenesis_of_granites_in_Shimensi_in_northwestern_Jiangxi_Province_and_its_implications_for_tungsten_deposits
Peng Bo, Robert Frei, Tu Xianglin. 2006. Nd-Sr-Pb isotopic geochemistry of scheelite from the Woxi W-Sb-Au Deposit, Western Hunan implication for sources and evolution of ore-forming fluids[J]. Acta Geologica Sinica, 80(4): 561-570(in Chinese with English abstract). http://www.researchgate.net/publication/283779371_Nd-Sr-Pb_isotopic_geochemistry_of_scheelite_from_the_Woxi_W-Sb-Au_deposit_western_Hunan_Implications_for_sources_and_evolution_of_ore-forming_fluids/download
Peng Jiantang, Hu Ruizhong, Zhao Junhong, Fu Yazhou, Yuan Shunda. 2005. Rare earth element geochemistry for scheelite from the Woxi Au-Sb-W deposit western Hunan[J]. Geochimica, 34(2): 115-122(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=11942606
Peng Jiantang, Hu Ruizhong, Zhao Junhong, Lin Yuanxian. 2002. Sm-Nd isopote dating of hydrothermal calcite in tin mine antimony deposit[J]. Chinese Science Bulletin, 47(10): 789-792(in Chinese). doi: 10.1360/csb2002-47-10-789
Peng Jiantang, Zhang Dongliang, Hu Ruizhong, Wu Mengjun, Liu Xiaoming, Qi Liang, Yu Youguang. 2010. Inhomogeneous distribution of rare earth elements in scheelite from the Zhazixi W-Sb Deposit, Western Hunan and its geological implications[J]. Geological Review, 56(6): 810-819(in Chinese with English abstract). http://www.cqvip.com/QK/91067X/201006/36070462.html
Peng Suxia, Li Yong, Chen Junlu, Chen Xiangyang, Bai Jianke. 2018. The first discovery of medium-sized scheelite deposit in the Altay Region of Xinjiang[J]. Geology in China, 44(4): 781-792(in Chinese).
Raju P V S, Hart C J R, Sangurmath P. 2016. Scheelite geochemical signatures by LA-ICP-MS and potential for rareearth elements from Hutti Gold Mines and fingerprinting ore deposits[J]. Journal of African Earth Sciences, 114(1): 220-227. http://www.onacademic.com/detail/journal_1000038610464010_a605.html
Ren Yunsheng, Zhao Hualei, Lei En, Wang Hui, Ju Nan, Wu Changzhi. 2010. Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou of the Yangjingou large scheelite deposit in Yanbian area, northeastern China[J]. Acta Petrologica Sinica, 26(12): 3720-3726(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98201012022
Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Heinrich D H, Karl K T(eds. ). Treatise on Geochemistry. Oxford: Pergamon, 1-64.
Schönenberger J, Köhler J, Markl G. 2008. REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland[J]. Chemical Geology, 247: 16-35. doi: 10.1016/j.chemgeo.2007.10.002
Shuang Yan, Bi Xianwu, Hu Ruizhong, Peng Jiantang, Li Zhaoli, Li Xiaomin, Yuan Shunda, Qi Youqiang. 2006. Ree geochemistry of hydrothermal calcite from tin polymetallic deposit and its indication of source of hydrothermal ore-forming fluid[J]. J. Mineral. Petrol., 26(2): 57-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200602008.htm
Song G, Qin K, Li G, Evans N J, Chen L. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China[J]. American Mineralogist, 99(2/3): 303-317. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501005032.htm
Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China[J]. American Mineralogist, 99(2/3): 303-317. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501005032.htm
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications., 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Tian Shihong, Yang Zhusen, Hou Zengqian, Liu Yingchao, Gao Yanguang, Wang Zhaoin, Sun Yucai, Xue Wanwen, Lu Haifeng, Wang Fuchun, Su Yuanna, Li Zhenzhen, Wang Yingxi, Zhang Yubao, Zhu Tian, Yu Changdie, Yu Yushuai. 2009. Rb-Sr and Sm-Nd isochron ages Dongmozhazhua and Mohailaheng Pb-ZN ore deposit in Yushu area, southern Qinghai and their geological inplications[J]. Mineral Deposits, 28(6): 747-758(in Chinese with English abstract).
Voicu G, Bardoux M, Stevenson R, JeÂbrak M. 2000. Nd and Sr isotope study of hydrothermal scheelite and host rocksat Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits[J]. Mineralium Deposita, 35(1): 302-314. doi: 10.1007/s001260050243
Wang Jiasheng, Wen Hanjie. 2015. Sm-Nd dating of hydrothermal calcites from Jiaoli-Lae Mercury Deposit, Guizhou Province[J]. Journal of Jilin University(Earth Science Edition), 45(5): 1384-1393(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201505011.htm
Wang Lijuan, Wang Jingbin, Wang Yuwang, Wang Junsheng, Liao Zhen. 2012. Geology and ore-forming fluids study on quartz vein type tungsten deposits in southern mountain area, China[J]. Mineral Exploration, 3(3): 281-286(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201203007.htm
Wang Xiaodi, Wang Xiongwu, Sun Chuanmin. 2010. Ree geochemistry of scheelite and Sm-Nd dating for the Houchangchuan Scheelite Deposit in Gansu[J]. J. Mineral. Petrol., 30(1): 64-68(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201001012.htm
Weiyu. 2014. The Mineral Characteristics and Metallogenic Mechanism of Scheelite in the Zhaishang Gold Deposit in the Western Qinling Orogenic Blet[D]: Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
Wen Chuanhua, Shao Yunjun, Huang Gefei, Luo Xiaoya, Li Shengmiao. 2017. Geochemical features of Jianfengling rare metal granite in Hunan Province[J]. Mineral Deposits, 36(4): 879-892(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201704006.htm
Wu Fafu, Wang Zongqi, Wang Tao, Yan Zhen, Chen Lei. 2012. SHRIMP zircons U-Pb ages and geochemical characteristics of the Banbanshan K-Feldspar granite in Shanyang, Southern Qinling Orogenic Belt[J]. J. Mineral. Petrol., 32(2): 63-73(in Chinese with English abstract). http://www.researchgate.net/publication/286962845_SHRIMP_zircon_U-Pb_ages_and_geochemical_characteristics_of_the_Banbanshan_K-feldspar_granite_in_Shanyang_Southern_Qinling_Orogenic_Belt
Wu Fafu. 2013. Study on Magmatic rocks and their Metallogenic Tectonic Environment in Shanyang-Lianshui Area, Central Qinling Mountains[D]. Beijing: Chinese Academy of Geological Sciences(in Chinese with English abstract).
Xiang Anping, Chen Yuchuan, She Hongquan, Li Guangming, Li Yingxu. 2018. Chronology and geochemical characteristics of granite in Weilianhe of Inner Mongolia and its geological significance[J]. Geology in China, 45(5): 963-976(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201909006.htm
Xiong Dexin, Sun Xiaoming, Shi Guiyun, Wang Shengwei, Gao Jianfeng, Xue Ting. 2006. Trace elements, rare earth elements and Nd-Sr isotopic composition in scheelites and their implications in Daping gold mine in Yunnan Province, China[J]. Acta Petrologica Sinica, 22(3): 733-741(in Chinese with English abstract). http://www.oalib.com/paper/1471819
Xu Xueyi, Chen Juanlu, Zhang Erpeng, Li Zhipei, Li Ping, Li Ting, Wang Hongliang. 2014. Geology map description of Qinlin Orogen and its Adjacent Area(scale 1: 500000)[M]. Xi'an: Xi'an Map Press, 1-44(in Chinese).
Xue Yushan. 2014. Geology, Geochemistry and Genesis Study on Xingjiashan W-Mo Deposit in Jiaodong Mesozoic Metallogenic Area, China[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
Yan Guoqiang, Ding Jun, Huang Yong, Li Guangming, Dai Jie, Wang Xinxin, Bai Jingguo. 2015. Geochemical characteristics of rare earth elements and trace elements in the Nuri scheelite deposit, Tibet, China——indications for ore-foring fluid and deposit genesis[J]. Acta Mineralogica Sinica, 35(1): 87-93(in Chinese with English abstract).
Yang Hongmei, Liu Chongpeng, Duan Ruichun, Gu Xiaomin, Lu Shansong, Tan Juanjuan, Cai Yingxiong, Zhang Liguo, Qiu Xiaofei. 2015. Rb-Sr and Sm-Nd isochron ages of Bokouchang Pb-Zn deposit in Tongren, Guizhou Province and their geological implication[J]. Geotectonica et Metallogenia, 39(5): 855-865(in Chinese with English abstract).
Yang Kai, Liu Shuwen, Li Qiugen, Wang Zongqi, Han Yigui, Wu Fenghui, Zhang Fan. 2009. LA-ICP-MS zircon U-Pb geochronology and geological signification of Zhashui granitoids and dongjiangkou granitoids from Qinling, Central China[J]. Acta Scientiarum Naturalium, Universitatis Pekinensis, 45(5): 841-847(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDXP200901007.htm
Yao Xiaobo, Yang Zhijun, Qin Zhen. 2018. A tentative analysis on the geological characteristics and ore-controlling factors of the Yangxie tungsten deposit in Shangzhou Area, Shaanxi Province[J]. Gansu Metallurgy, 40(3): 59-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSYE201803014.htm
Ye Song, Qi Lijian, Luo Yongan, Zhou Kaichan, Pei Jingcheng. 2001. Relationship between the rare-metal contained granitic intrusions and beryl mineralization in Pingwu, Sichuan, China[J]. Geological Science and Technology Information, 20(2): 65-70(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200102017.htm
Yu Ping. 2012. The Research on the Mineralogical Characterisitics of Tungsten Deposit in Pangushan, Jiangxi Province[D]. Xi'an: Chang'an University(in Chinese with English abstract).
Zeng Zhigang, Li Chsoyang, Liu Yuping, Tu Guangzhi. 1998. Ree Geochemistry of Scheelite of two Genetic types from nanyangtian, southeastern Yunnan[J]. Geology-Geochemistry, 26(2): 34-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ199802005.htm
Zhang Dehui, Zhao Lunshan. 2013. Geochemistry[M]. Beijing: Science Press, 124-128(in Chinese).
Zhang Dongliang, Peng Jiantang, Fu Yazhou, Peng Guangxiong. 2012. Rare-earth element geochemistry in Ca-bearing minerals from the Xianghuapu tungsten deposit, Hunan Province, China[J]. Acta Petrologica Sinica, 28(1): 65-74(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=40832412
Zhang Yuxue, Liu Yimao, Gao Sideng, He Qiguang. 1990. REE geochemical characteristics of tungsten minerals as a discriminant indicator of the genetic types of ore deposits[J]. Geochimica, (1): 11-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199001001.htm
Zhao Zhenhua. 2016. Trace Element Geochemistry(Second Edition)[M]. Beijing: Science Press, 74-242(in Chinese with English abstract).
Zhen Weijun, Liu Xinhui, Chen Caihua, Zhang Yiyu. 2010. Geological characteristics and prospeecting marks of tungsten deposit in Zhaizhang gold-tungsten deposit, Minxian County, Gansu Province[J]. Northwestern Geology, 43(3): 85-92(in Chinese with English abstract). http://www.researchgate.net/publication/290601603_Geological_characteristics_and_prospecting_marks_of_Tungsten_deposit_in_Zhaishang_gold-tungsten_deposit_minxian_county_Gansu_province
曾志刚, 李朝阳, 刘玉平, 涂光炽. 1998. 滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J]. 地质地球化学, 26(2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199802005.htm 陈思佳, 郭敏毅, 柯鸿沛, 林宪浈, 刘羽. 2015. 云南南秧田与福建丁家山白钨矿成分特征对比研究[J]. 福建地质, 34(3): 171-180. doi: 10.3969/j.issn.1001-3970.2015.03.001 陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用[J]. 中国地质, 37(4): 854-865. doi: 10.3969/j.issn.1000-3657.2010.04.003 方贵聪, 陈毓川, 陈正辉, 曾载淋, 刘翠辉, 童啓荃, 孙杰, 朱国华. 2016. 赣南盘古山钨矿隐伏花岗岩体岩石学与地球化学特征[J]. 中国地质, 43(5): 1558-1568. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160506&flag=1 冯佳睿. 2011. 云南麻栗坡南秧田钨矿床成矿流体特征与成矿作用[D]: 北京: 中国地质科学院. 高菊生, 王瑞廷, 张复新, 齐亚林, 梁小勇. 2006. 南秦岭寒武系黑色岩系中夏家店金矿床地质地球化学特征[J]. 中国地质, 33(6): 1371-1378. doi: 10.3969/j.issn.1000-3657.2006.06.021 弓虎军, 朱赖民, 孙博亚, 李彝, 郭波. 2009. 南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 岩石学报, 25(2): 248-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902002.htm 胡西顺, 李建斌, 刘新伟, 汪超, 王向阳, 胡远平, 谷玉明. 2015. 山阳中村-商南湘河一带金矿成矿地质背景、矿床类型与找矿方向[J]. 陕西地质, 33(2): 70-77. doi: 10.3969/j.issn.1001-6996.2015.02.012 华仁民, 张文兰, 李光来, 胡东泉, 王旭东. 2008. 南岭地区钨矿共(伴)生金属特征及其地质意义初探[J]. 高校地质学报, 14(4): 527-538. doi: 10.3969/j.issn.1006-7493.2008.04.006 李宁. 2017. 赣东北朱溪钨铜矿区中生代花岗岩与成矿研究[D]. 北京: 中国地质大学(北京). 李赛赛, 冯佐, 付伟, 贾志强, 龙明周, 刘武文, 彭志勇, 李扬进. 2016. 地物化综合方法寻找隐伏岩体——以广西西大明山隐伏岩体的发现为例[J]. 地质与勘探, 53(3): 524-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201603014.htm 梁文艺. 陕西山阳东部金矿控矿因素富集规律及找矿靶区优选研究[R]: 陕西, 西安地质学院. 1996. 刘茜. 2013. 陕西镇安钨矿床特征及成因研究[D]. 北京: 中国地质大学(北京). 刘善宝, 刘战庆, 王成辉, 王登红, 赵正, 胡正华. 2017. 赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J]. 地学前缘, 24(05): 17-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705006.htm 刘协鲁, 王义天, 胡乔青, 魏然, 王瑞廷, 温深文, 陈明寿, 杨光华. 2014. 陕西省凤太矿集区柴蚂金矿床碳酸盐矿物的Sm-Nd同位素测年及意义[J]. 岩石学报, 30(1): 271-280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401020.htm 刘新伟, 汪超, 韩璐, 薛玉山, 薛磊, 朱磊. 2016. 王家坪金矿床地质地球化学特征及成因探讨[J]. 黄金科学技术, 24(4): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201604006.htm 刘琰, 邓军, 李潮峰, 施光海, 郑爱力. 2007. 四川雪宝顶白钨矿稀土地球化学与Sm-Nd同位素定年[J]. 科学通报, 52(16): 1923-1929. doi: 10.3321/j.issn:0023-074x.2007.16.013 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 242-284. 路远发. 2004. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 吕喜旺, 王建中, 郑卫军, 马永兵. 2017. 甘肃省岷县寨上金矿床白钨矿成因及其找矿潜力[J]. 西北地质, 50(2): 156-166. doi: 10.3969/j.issn.1009-6248.2017.02.017 潘大鹏, 王迪, 王孝磊. 2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义[J]. 中国地质, 44(1): 118-135. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170109&flag=1 彭渤, Robert, FREI, 涂湘林. 2006. 湘西沃溪W-Sb-Au矿床白钨矿Nd-Sr-Pb同位素对成矿流体的示踪[J]. 地质学报, 80(4): 561-570. doi: 10.3321/j.issn:0001-5717.2006.04.010 彭建堂, 胡瑞忠, 赵军红, 符亚洲, 袁顺达. 2005. 湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J]. 地球化学, 34(2): 115-122. doi: 10.3321/j.issn:0379-1726.2005.02.003 彭建堂, 胡瑞忠, 赵军红, 林源贤. 2002. 锡矿山锑矿床热液方解石的Sm-Nd同位素定年[J]. 科学通报, 47(10): 789-792. doi: 10.3321/j.issn:0023-074X.2002.10.014 彭建堂, 张东亮, 胡瑞忠, 吴梦君, 柳小明, 漆亮, 虞有光. 2010. 湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义[J]. 地质论评, 56(6): 810-819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006007.htm 彭素霞, 李永, 陈隽璐, 陈向阳, 白建科. 2018. 阿尔泰成矿带首次发现中型白钨矿床[J]. 中国地质, 45(5): 1080-1081. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180517&flag=1 任云生, 赵华雷, 雷恩, 王辉, 鞠楠, 吴昌志. 2010. 延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J]. 岩石学报, 26(12): 3720-3726. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012024.htm 双燕, 毕献武, 胡瑞忠, 彭建堂, 李兆丽, 李晓敏, 袁顺达, 齐有强. 2006. 芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J]. 矿物岩石, 26(2): 57-65. doi: 10.3969/j.issn.1001-6872.2006.02.009 田世洪, 杨竹森, 侯增谦, 刘英超, 高延光, 王召林, 宋玉财, 薛万文, 鲁海峰, 王富春, 苏嫒娜, 李真真, 王银喜, 张玉宝, 朱田, 俞长捷, 于玉帅. 2009. 玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义[J]. 矿床地质, 28(6): 747-758. doi: 10.3969/j.issn.0258-7106.2009.06.004 王加昇, 温汉捷. 2015. 贵州交犁-拉峨汞矿床方解石Sm-Nd同位素年代学[J]. 吉林大学学报(地球科学版), 45(5): 1384-1393. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505011.htm 王莉娟, 王京彬, 王玉往, 王军升, 廖震. 2012. 南岭地区石英大脉型钨矿地质及成矿流体[J]. 矿产勘查, 3(3): 281-286. doi: 10.3969/j.issn.1674-7801.2012.03.005 王晓地, 汪雄武, 孙传敏. 2010. 甘肃后长川钨矿白钨矿Sm-Nd定年及稀土元素地球化学[J]. 矿物岩石, 30(1): 64-68. doi: 10.3969/j.issn.1001-6872.2010.01.011 魏宇. 2014. 西秦岭寨上金矿床白钨矿特征与形成机理[D]. 北京: 中国地质大学(北京). 文春华, 邵拥军, 黄革非, 罗小亚, 李胜苗. 2017. 湖南尖峰岭稀有金属花岗岩地球化学特征及成矿作用[J]. 矿床地质, 36(4): 879-892. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704006.htm 吴发富, 王宗起, 王涛, 闫臻, 陈雷. 2012. 南秦岭山阳板板山钾长花岗岩体SHRIMP锆石U-Pb年龄与地球化学特征[J]. 矿物岩石, 32(2): 63-73. doi: 10.3969/j.issn.1001-6872.2012.02.009 吴发富. 2013. 中秦岭山阳-柞水地区岩浆岩及其成矿构造环境研究[D]. 北京: 中国地质科学院. 向安平, 陈毓川, 佘宏全, 李光明, 李应栩. 2018. 内蒙古苇莲河石英脉型黑钨矿赋矿花岗岩成岩时代、地球化学特征及其地质意义[J]. 中国地质, 45(5): 963-976. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180506&flag=1 熊德信, 孙晓明, 石贵勇, 王生伟, 高剑锋, 薛婷. 2006. 云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J]. 岩石学报, 22(3): 733-741. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603023.htm 徐学义, 陈隽璐, 张二朋, 李智佩, 李平, 李婷, 王洪亮. 2014. 1: 500000秦岭及邻区地质图说明书[M]. 西安: 西安地图出版社, 1-44. 薛玉山. 2014. 胶东邢家山大型钨钼矿地质地球化学特征及成因研究[D]. 北京: 中国地质大学(北京). 闫国强, 丁俊, 黄勇, 李光明, 戴婕, 王欣欣, 白景国. 2015. 西藏努日白钨矿床微量和稀土元素地球化学特征——对成矿流体与矿床成因的指示[J]. 矿物学报, 35(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501014.htm 杨红梅, 刘重芃, 段瑞春, 顾晓敏, 卢山松, 谭娟娟, 蔡应雄, 张利国, 邱啸飞. 2015. 贵州铜仁卜口场铅锌矿床Rb-Sr与Sm-Nd同位素年龄及其地质意义[J]. 大地构造与成矿学, 39(5): 855-865. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201505009.htm 杨恺, 刘树文, 李秋根, 王宗起, 韩以贵, 吴峰辉, 张帆. 2009. 秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义[J]. 北京大学学报(自然科学版), 45(5): 841-847. doi: 10.3321/j.issn:0479-8023.2009.05.017 姚肖博, 杨志军, 秦臻. 2018. 陕西商州杨斜钨矿地质特征及控矿因素浅析[J]. 甘肃冶金, 40(3): 59-62. doi: 10.3969/j.issn.1672-4461.2018.03.014 叶松, 亓利剑, 罗永安, 周开灿, 裴景成. 2001. 四川平武稀有金属花岗岩与绿柱石的成矿属性[J]. 地质科技情报, 20(2): 65-70. doi: 10.3969/j.issn.1000-7849.2001.02.015 于萍. 2012. 江西盘古山钨矿矿物学特征研究[D]. 西安: 长安大学. 张德会, 赵伦山. 2013. 地球化学[M]. 北京: 地质出版社, 124-128. 张东亮, 彭建堂, 符亚洲, 彭光雄. 2012. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学[J]. 岩石学报, 28(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201008.htm 张玉学, 刘义茂, 高思登, 何其光. 1990. 钨矿物的稀土地球化学特征——矿床成因类型的判别标志[J]. 地球化学, (1): 11-20. doi: 10.3321/j.issn:0379-1726.1990.01.002 赵振华. 2016. 微量元素地球化学原理[M]. 北京: 科学出版社, 74-242. 郑卫军, 刘新会, 陈彩华, 张益星. 2010. 甘肃岷县寨上金钨矿床中钨矿特征及找矿标志[J]. 西北地质, 43(3): 85-92. doi: 10.3969/j.issn.1009-6248.2010.03.011 -
期刊类型引用(5)
1. 王鹤源,王泽堃,谷思莹,杨烁暄,赵梓垚,陈旭. 宜昌—武汉长江沿岸典型砾石层对比分析. 高校地质学报. 2024(01): 47-55 . 百度学术
2. 林旭,李玲玲,刘静,吴中海,李长安,刘维明,向宇,刘海金,陈济鑫. 长江早更新世向江汉盆地输送碎屑物质:来自碎屑锆石U-Pb年龄的约束. 地球科学. 2023(11): 4214-4228 . 百度学术
3. 孙杨,谢远云,迟云平,康春国,吴鹏. 大兴安岭东麓龙江县白土山组地层特征:化学风化、沉积循环、源-汇体系和沉积环境. 山地学报. 2022(01): 14-28 . 百度学术
4. 魏松林,孙全,陈平,杜林诚. 基于航测无人机的卵石三轴粒径计算及精度评估. 工程勘察. 2022(11): 68-74 . 百度学术
5. 王令占,杨博,涂兵. 鄂东南咸宁北部冲洪积物的ESR年代及意义. 华南地质. 2021(02): 127-135 . 百度学术
其他类型引用(3)