• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

铍矿分布特点、主要类型与勘查开发现状

张森, 鞠楠, 伍月, 郭常来, 马维, 周永恒, 张艳飞

张森, 鞠楠, 伍月, 郭常来, 马维, 周永恒, 张艳飞. 铍矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2023, 50(2): 410-424. DOI: 10.12029/gc20210723002
引用本文: 张森, 鞠楠, 伍月, 郭常来, 马维, 周永恒, 张艳飞. 铍矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2023, 50(2): 410-424. DOI: 10.12029/gc20210723002
ZHANG Sen, JU Nan, WU Yue, GUO Changlai, MA Wei, ZHOU Yongheng, ZHANG Yanfei. Distribution characteristics, main types and exploration and development status of beryllium deposit[J]. GEOLOGY IN CHINA, 2023, 50(2): 410-424. DOI: 10.12029/gc20210723002
Citation: ZHANG Sen, JU Nan, WU Yue, GUO Changlai, MA Wei, ZHOU Yongheng, ZHANG Yanfei. Distribution characteristics, main types and exploration and development status of beryllium deposit[J]. GEOLOGY IN CHINA, 2023, 50(2): 410-424. DOI: 10.12029/gc20210723002

铍矿分布特点、主要类型与勘查开发现状

基金项目: 

国家自然科学基金项目 42102087

中国博士后科学基金项目 2022M712966

青藏高原大宗矿产数据库建设 2021QZKK0304

详细信息
    作者简介:

    张森, 男, 1983年生, 硕士, 高级工程师, 主要从事成矿规律、成矿预测及铀矿调查; E-mail: zhangsen556@163.com

    通讯作者:

    鞠楠, 男, 1986年生, 博士, 高级工程师, 主要从事固体矿产调查与研究; E-mail: junan-cgs@qq.com

  • 中图分类号: P617;P618.72

Distribution characteristics, main types and exploration and development status of beryllium deposit

Funds: 

National Natural Science Foundation of China 42102087

China Postdoctoral Science Foundation 2022M712966

Construction of Bulk Mineral Database on Qinghai-Tibet Plateau 2021QZKK0304

More Information
    Author Bio:

    ZHANG Sen, male, born in 1983, master, senior engineer, mainly engaged in metallogenic law, metallogenic prediction and uranium deposit investigation; E-mail: zhangsen556@163.com

    Corresponding author:

    JU Nan, male, born in 1986, doctor, senior engineer, engaged in solid mineral survey and research; E-mail: junan-cgs@qq.com

  • 摘要:
    研究目的 

    铍作为最轻的碱土金属,由于其特殊的密度、刚度与熔点等物理化学特性,使其成为具有优异功能和结构的材料,对其开展成因机制和勘探开发研究,具有重要的科学价值和经济价值。

    研究方法 

    本文系统梳理和总结国内外典型铍矿床的特征、成因及勘探工艺,采用相似类比等方法,从时间和空间尺度总结成矿规律,提出铍矿的勘查、开发和利用建议。

    研究结果 

    铍矿床可分为内生型和外生型。外生型铍矿床可分为与风化作用或变质作用有关的矿床类型;内生型矿床根据岩浆系统的碱铝属性,可分为过铝性、偏铝性、过碱性成矿系统,根据流体演化阶段,可分为岩浆型、伟晶岩型、岩浆热液型。

    结论 

    从成矿时代来看,无论过铝性、偏铝性还是过碱性系统的铍成矿作用均集中于中生代,燕山期更是铍矿的主要成矿期;从成矿构造背景角度,岩浆型铍矿常产于后碰撞环境,岩浆热液型铍矿则产于大陆边缘,而伟晶岩型铍矿基本产于造山带。铍是新兴材料之一,在未来节能减排、碳中和计划中将发挥重要作用,应加强铍矿综合利用和回收技术的研发。

    创新点:采用相似类比等方法,结合勘探开发价值,从时间和空间尺度总结铍矿成矿规律。

    Abstract:

    This paper is the result of mineral exploration engineering.

    Objective 

    As the lightest alkaline earth metal, beryllium has become an excellent functional and structural material. Due to its special physical and chemical characteristics such as density, stiffness and melting point, it has great scientific and economic value for researching the genetic mechanism, exploration and development.

    Methods 

    In this paper, the characteristics, genesis and exploration technology of typical beryllium deposits in the domestic and overseas are systematically sorted out and summarized. The metallogenic rules are summarized from time and space scales by means of similarity and analogy, and the exploration, development and utilization suggestions are also put forward.

    Results 

    Beryllium deposits can be divided into endogenous and exogenous types. Exogenous beryllium deposits can be subdivided into different deposit types related to weathering or metamorphism. According to the alkali-aluminum properties of magma system, endogenous beryllium deposits can be subdivided into peraluminous, metaluminous and peralkaline metallogenic systems. According to the fluid evolution stage, it can be subdivided into magma type, pegmatite type and magma hydrothermal type.

    Conclusions 

    From the perspective of metallogenic age, the beryllium mineralization in either peraluminous, metaluminous or peralkaline systems is concentrated in the Mesozoic. Yanshanian is the main metallogenic period of beryllium deposits. From the perspective of metallogenic structure background, the magma type is often produced in post-collision environments, the magmatic hydrothermal type is produced on the continental margin, and the pegmatite type is basically produced in the orogenic belt. Beryllium is one of the new materials, which will play an important role in energy conservation, emission reduction and carbon neutralization in the future. Research on comprehensive utilization and recovery technology of beryllium deposits should be strengthened.

  • 世界卫生组织及中国饮用水标准规定砷浓度不可超过10 μg/L(WHO, 2017)。长期饮用高砷地下水可导致慢性砷中毒及皮肤癌等疾病,全球有70多个国家,超过1.5亿人的饮用水安全受到高砷地下水的威胁(韩双宝等,2010郭华明等,2013Wang et al., 2020曹文庚等,2022; 张卓等,2023a)。沉积物中的固相砷是地下水中砷的主要来源。多数岩石中砷含量范围为0.5~2.5 μg/g(Mandal and Suzuki, 2002),松散沉积物中砷的含量范围通常为3~10 μg/g(Smedley and Kinniburgh, 2002; 何锦等,2020马雪梅等,2020),富含砷矿物的沉积物中砷含量可达170 μg/g(Cook et al., 1995)。研究含水层中砷的迁移转化,除了查明沉积物总固态砷的含量,还需分析砷在沉积物中的赋存形态(van Herreweghe et al., 2003朱丹尼等,2021Drahota et al., 2021)。沉积物中固相砷赋存形态的微小差别可能引起地下水砷浓度的显著差异(Meharg et al., 2006; 张卓等,2023b)。分步提取实验是获取沉积物中砷赋存状态信息的主要手段。在之前的研究中,已经在分步提取过程中研究了萃取剂溶液的最优选择性(Paul et al., 2009Eiche et al., 2010)。国外学者就河流三角洲沉积物中砷的赋存形态开展了大量研究。Eiche et al.(2008)研究表明,磷酸盐提取释放的强吸附砷是越南红河三角洲沉积物中砷的主要赋存形态。印度孟加拉三角洲平原的含水层中也发现了类似的结果(Neidhardt et al., 2014)。然而在内陆盆地,有关沉积物砷赋存形态的系统性研究相对缺乏。

    河套盆地是中国西北地区典型的内陆盆地,地下水As浓度高达857 μg/L,远超中国饮用水标准(Guo et al., 2008)。因此,本研究选取河套盆地,通过刻画岩性与地球化学特征和开展砷的分步提取与解吸附实验,对比分析低砷和高砷含水层中沉积物砷的赋存形态与吸附特征。研究结果将有助于查明内陆盆地高砷地下水的形成机理,为合理开发可饮用地下水提供科学依据。

    河套盆地地处阴山隆起与鄂尔多斯台地之间,西界和北界均为狼山山前断裂,南界为鄂尔多斯北缘断裂,东界为乌梁素海断裂。研究区位于河套盆地西北侧,地处狼山山脉与主排干渠之间,包括山前冲洪积扇区和南部平原区,地理坐标为40°55′31″N~41°08′15″N,106°46′30″E~107°03′28″E(图1)。受沉积条件制约,研究区含水层具有明显的分带性。山前冲洪积扇区含水层沉积物主要由中砂、细砂组成,黏土在其中所占比重小于5%;平原区含水层沉积物主要由细砂、粉砂、粉质黏土和偶有泥炭夹层的淤泥质黏土组成,粉土和不同种类的黏土是其中的主要组成部分。

    图  1  研究区位置(a)、地貌分区(b)、遥感影像(c)及水文地质剖面(d)
    Figure  1.  Location of study area (a), geomorphic map (b), remote sensing image (c) and hydrogeological profile (d)

    研究区浅层地下水受到大气降雨入渗补给、灌溉水补给和渠水的侧渗补给,深层地下水受到山前裂隙水的侧向补给和浅层地下水的垂向入渗。浅层地下水的排泄途径是蒸发作用、人工抽取、流入排干沟和垂向入渗到深层地下水,深层地下水的排泄路径是农业开采。原来研究区地下水流向大体是由西北向东南,但过度开采导致地下水流向逐渐转变为山前冲洪积扇由北向南、平原区由南向北的流动方向。地下水水化学类型受地势地貌、气候条件影响明显,具有显著的差异性。浅层地下水受强烈蒸发运移影响,水化学类型有HCO3−(Cl)−Na、Cl−HCO3−Na·Mg和Cl−SO4(HCO3)−Na·Mg型。深层地下水由山前冲洪积扇的Cl−HCO3−Ca·Mg型转变为平原区的Cl−Na型。高砷地下水主要分布在平原区(Zhang et al., 2020)。

    本研究从钻孔K02和K01中分别取出25和26个沉积物样品(图1)。其中,K2钻孔位于山前冲洪积扇区,坐标为41°01′07.37″N、106°57′41.41″E,钻孔深度约为80 m;K1钻孔位于平原区,位置坐标为41°00′13.73″N、106°58′16.85″E,钻孔深度约为81 m。获取的沉积物去掉外层沉积物后,马上用锡箔纸包裹,密封在装有纯N2(> 99.999%)的无菌塑料袋中,尽可能减少与O2的接触,并在−20℃的条件下保存。带回到实验室后,样品分装为两份,一份储存于−20℃的冰箱中,另一份进行冷冻干燥。

    在色度分析和含水率测试之前,−20 ℃条件下保存的样品放入厌氧箱解冻。色度分析采用光谱色度计(CM-700d,Konica Minolta),测试之前对光谱色度计进行白板校正和零点校正。测试过程中保证切面平整,并在切口表面铺上一层高净度聚乙烯薄膜,每个样品测试3次。测试结束后计算出530 nm和520 nm的光谱反射差(R530-520),该差值能够指示沉积物的氧化还原环境(Horneman et al., 2004)。含水率测试采用通用的烘干法,用铝盒准确称取烘干前的原状土样质量,放入105℃恒温干燥箱中烘干后放入干燥器冷却,准确称量烘干后的土样质量,通过计算得出含水率。

    沉积物电导率和pH的测量采用Bélanger and VanRees(2007)的方法。冷冻干燥后的沉积物与去离子水以1∶5的比例置于PE离心管中,25℃状态下以150 rpm转速震荡1 h。震荡完毕后,将离心管置于离心机中以5000 rpm转速离心20 min并取上清液用0.22 μm纤维滤膜过滤。所得部分滤液通过电导率仪(DDS-307A, SHKY)进行电导率的检测,所得电导率值可以反映出沉积物的可溶性组分含量。沉积物样品与超纯水以1∶2.5比例充分混合后,摇匀,静置1 h使用pH检测仪(HI 8424,HANNA)对其进行pH测定。

    沉积物样品中的主量和微量元素的测定采用手持便携式XRF仪(XL3t800, Thermo Niton)进行测定,测试元素主要包括Ca、Sr、As、Fe和Mn。测试之前将样品冷冻干燥,并研磨至200目,取适量于专用测量杯中,压实后放置在手持XRF仪光源处,每个样品测试3次。2个标准物质(GBW07303,GBW07305)用于确保数据的准确性,测试偏差均小于20%,其中As元素的测试偏差均小于5%。

    为查明沉积物中砷的赋存状态,本研究开展了分步提取实验(Sequential extraction procedure,SEP)。分步提取方法参照Eiche et al.(2008, 2010)的研究,该提取方法也是基于Keon et al.(2001)和Wenzel et al.(2001)等研究的改进(表1)。每个新鲜沉积物样称取0.5 g,放入离心管中,加入适量的提取剂。由于分步提取后提取液盐度较高,需稀释测试,这就要求测试仪器需要较低的检出限和较高的分析精度。ICP−MS的分析精度为±3.0%,检出限为0.01 μg/L,能够满足测试要求。其中分步提取第六步(F6)的提取液中含有高浓度的HF,会损坏仪器影响测试精度。因此,F6的提取液在测试之前,需要在电热板加热进行赶酸处理。

    表  1  分步提取实验具体步骤
    Table  1.  Sequential extraction procedure
    步骤 目标物 提取剂 条件
    F1 弱吸附态砷 0.05 mol/L (NH4)2SO4 25 mL,25℃,4 h,重复一次,水洗一次
    F2 强吸附态砷 0.5 mol/L NaH2PO4 40 mL,25℃,16 h及24 h各一次,每个时间段重复一次,水洗一次
    F3 与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷 1 mol/L HCl 40 mL,25℃,1 h,重复一次,水洗一次
    F4 与无定形态铁氧化物或氢氧化物共存的砷 0.2 mol/L NH4H2C2O3 40 mL,25℃,2 h,pH=3,黑暗条件下,重复一次,水洗一次
    F5 与结晶态铁氧化物或氢氧化物
    共存的砷
    0.5 mol/L NaC6H8O7
    1 mol/L NaHCO3,Na2S2O4XH2O
    35 mL NaC6H8O7+2.5 mL NaHCO3(加热至85℃),加0.5 g Na2S2O4XH2O,15 min在85℃,重复一次,水洗一次
    F6 与硅酸盐有关的砷 10 mol/L HF,H3BO3 40 mL,25℃,1 h、24 h、16 h后各加5 g硼酸,每个时间段重复一次,热水洗一次
    F7 含砷硫化物,与硫化物和有机质
    共沉淀的砷
    16 mol/L HNO3,30% H2O2 先加入10 mL HNO3,反应过后加入多次30%过氧化氢,加热,冷却后稀释到100 mL,离心、过滤、测试
    下载: 导出CSV 
    | 显示表格

    本研究从钻孔K02和K01各选取一个典型沉积物进行pH和反离子效应对砷的解吸附影响的批实验。该实验主要包括三部分内容:解吸附动力学实验、pH对解吸附影响的实验、反离子效应(Na/Ca0.5(M/M))对砷解吸附影响的实验。

    (1)解吸附动力学实验

    为查明砷解吸附达到平衡的时间,本研究开展了解吸附动力学实验。分别称取0.6 g新鲜沉积物放入厌氧瓶中,然后加入24 mL、125 mmol/L NaCl和1.5 mmol/L CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。混合溶液离子强度约为130 mmol/L,Na/Ca0.5比值约为102,pH值为7.6。为保证沉积物颗粒与溶液均匀混合,超声15 min后放入150 r/min的恒温振荡箱中。取样间隔为1 h、3 h、5 h、7 h、10 h、14 h、20 h、28 h、36 h、48 h和60 h。取样之前保证溶液混合均匀,每次取样量为2 mL,用0.22 μm过滤器过滤到2 mL离心管中,放入4℃冰箱中保存,一周之内完成测试工作。

    (2)pH对解吸附影响的实验

    控制Na/Ca0.5(M/M)比值约为102和离子强度约为130 mmol/L,探究不同pH值对沉积物中砷解吸附的影响。将Na/Ca0.5比值为102的NaCl和CaCl2的混合溶液分装为5份,并将溶液pH值分别调到5.4、6.7、7.6、8.6和9.6。在5个厌氧瓶中,分别称取0.6g新鲜沉积物,并加入24 mL不同pH值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。

    (3)反离子效应对砷解吸附影响的实验

    控制离子强度为(130±5)mmol/L,通过改变NaCl和CaCl2的浓度来改变Na/Ca0.5比值(表2)。在7个厌氧瓶中,分别称取0.6 g新鲜沉积物,并分别加入24 mL不同Na/Ca0.5比值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。

    表  2  离子强度为(130±5)mmol/L条件下,不同浓度NaCl和CaCl2混合液的Na/Ca0.5(M/M)比值
    Table  2.  Na/Ca0.5(M/M) ratio of the mixed solution of different concentrations of NaCl and CaCl2 under the condition of ionic strength of about (130±5) mmol/L
    NaCl/(mmol/L)CaCl2/(mmol/L)Na/Ca0.5
    2430.3
    5420.7
    10401.6
    30355.0
    602313
    110742
    1251.5102
    下载: 导出CSV 
    | 显示表格

    研究区的山前冲洪积扇区钻孔K02和平原区钻孔K01沉积物的岩性特征如图2所示。钻孔K02沉积物的组成是从粗砂到黏土,而钻孔K01主要从中砂到黏土。对于钻孔K02,14 m以上的沉积物主要由砂质黏土和粉质黏土组成,14~42 m主要以砂质含水层为主。在42~44 m存在约2 m厚的黏土层,42 m以下主要以砂质含水层为主同时伴有砂质黏土互层(图2a)。与钻孔K02不同,位于平原区的钻孔K01沉积物颗粒整体较细且含有大量的黏土互层。其中,8 m以上主要以黏土为主,8~40 m则主要以砂质含水层为主并且常常伴有砂质黏土互层,40~42 m出现黏土层,42 m以下为颗粒较细的细砂含水层,这个研究结果与Shen et al.(2018)一致。总体来看,研究区近表层沉积物主要以粉质黏土为主,地表以下10~40 m是砂质含水层,地表以下40 m处存在1~2 m厚的相对连续的黏土层将40 m以上和约42 m以下的含水层隔开。

    图  2  钻孔K02(a)和钻孔K01(b)的沉积物岩性、含水率以及电导率随深度的变化
    Figure  2.  Plots of sediment lithology, moisture content, and electrical conductivity along depth in boreholes K02 (a) and K01(b)

    沉积物的色度特征能够指示沉积物的氧化还原环境和铁氧化物的还原程度(Horneman et al., 2004)。钻孔K02和K01沉积物色度随深度的变化均是由浅黄色变为深灰色,说明深部含水层处于一个相对还原的环境当中,铁氧化物的还原程度也较强。而从整体来看,两个钻孔的色度特征有较大差异,相对于钻孔K02,钻孔K01的沉积物色度更深,这可能是因为平原沉积物颗粒较细,含水层处于更封闭的还原环境,铁锰氧化物的还原程度更强(van Geen et al., 2013)。

    沉积物含水率主要受其岩性控制。两个钻孔表层5 m以上沉积物尽管颗粒较细,含水率仍然较低,主要由于其处于非饱和带。而在饱和带,沉积物含水率随深度的变化主要受岩性影响,沉积物岩性颗粒越细,含水率越高。两个钻孔沉积物电导率在近地表较高(图2),主要是因为研究区为干旱半干旱气候,蒸发蒸腾作用较强,使得近地表沉积物含有大量的可溶盐(Yuan et al., 2017)。沿深度随沉积物岩性的变化而波动,沉积物岩性越细,电导率越大,这是由于颗粒较细的黏土颗粒表面有大量可交换的离子。此外,由于钻孔K01位于平原区,沉积物颗粒整体较细且地下水水位埋深较浅蒸发作用强,导致其沉积物电导率(均值为395 μS/cm)大于钻孔K02(均值为308 μS/cm)。

    研究区沉积物中0~10 m、40~45 m和75~80 m含水层位的Ca和Sr的含量明显高于其他含水层(图3)。微量元素As、Fe和Mn也有相似的分布特征。沉积物的岩性特征表明,10 m以上的沉积物主要以黏土和粉质黏土为主,40~45 m是不连续的黏土层,而75~80 m也是颗粒较细的黏土层。对比钻孔的黏土层和砂层沉积物的地球化学特征发现,K02钻孔黏土层沉积物Ca含量中值为53.6 mg/g,而砂层沉积物Ca含量中值为33.0 mg/g;K01钻孔中两者中值分别为48.3 mg/g和31.6 mg/g。黏土层和砂层沉积物中微量元素的含量差异更为明显,K02钻孔黏土层沉积物As含量中值为17.6 μg/g,而砂层沉积物As含量中值为8.6 μg/g;K01钻孔中两者中值分别为20.1 μg/g和7.9 μg/g。这主要是因为砂层沉积物中富含石英,含Ca和Sr矿物的含量低于黏土层(李晓峰,2018)。其次是因为黏土层表面吸附能力强,能够吸附As、Fe和Mn等微量元素(崔邢涛等,2015)。

    图  3  沉积物中Ca、Sr、As、Fe和Mn含量沿垂向的分布规律
    Figure  3.  Vertical distributions of Ca, Sr, As, Fe and Mn in sediments

    两个钻孔沉积物的地球化学特征也有一定的差异。普遍表现为钻孔K02的Ca、Sr、As、Fe和Mn含量大于钻孔K01,且在深层沉积物中表现更为明显(图3)。钻孔K02沉积物中Ca的含量范围为12.2~86.9 mg/g,平均值为37.9 mg/g,钻孔K01沉积物中Ca的含量范围为9.6~68.7 mg/g,平均值为35.7 mg/g。K02钻孔沉积物中As的浓度范围为4.6~33.1 μg/g,平均值13.1 μg/g;K01钻孔沉积物中As的浓度范围为5.3~34.0 μg/g,平均值12.9 μg/g,表明冲洪积扇边缘地区沉积物总As的含量略大于平原区。两个钻孔沉积物中Fe和Mn含量的差异更为明显,钻孔K02沉积物中Fe的含量比K01高13.7%,其Mn的含量比K01高14.1%。这主要是由于钻孔K01位于平原区,沉积物经历了更强的风化作用,且积物颗粒整体较细,地下水流速慢,水岩作用强烈,有利于沉积物中化学组分向地下水中释放(张文凯等,2020)。此外,平原区含水层较为封闭,沉积物的色度特征也表明含水层长期处于较为还原的环境中,变价微量元素被还原为较低价态,易于向地下水中迁移。因此,钻孔K02和K01沉积物地球化学的微小差异主要受沉积环境和水动力条件控制。

    山前冲洪积扇的含水层的沉积物岩性主要以中砂、细砂和黏土为主,平原区含水层的沉积物则以细砂、粉砂和黏土为主。因此,本研究从钻孔K02和K01各选取3个不同岩性的代表性沉积物用于分步提取实验(SEP)(表3)。实验过程选用GBW07303和GBW07305作为标准样品检验回收率,结果表明:对于GBW07303不同状态As的提取实验的回收率分别为81%,GBW07305不同状态As的提取实验的回收率分别为88%。分步提取实验获取的7种形态砷的总和与XRF测得的总固相砷的相对偏差均小于10%。

    表  3  用于分步提取的沉积物信息
    Table  3.  Sediment information for SEP
    编号 岩性 采样深度/m
    K02−M 中砂 38.35
    K02−F 细砂 62.25
    K02−C 黏土 41.95
    K01−F 细砂 55.15
    K01−S 粉砂 30.95
    K01−C 黏土 37.85
    下载: 导出CSV 
    | 显示表格

    分步提取结果表明,K02钻孔中砂、细砂和黏土沉积物固相砷主要以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷(F4)为主,占比分别为33%、40%和43%(图4a、b、c)。其次是结晶态铁氧化物或氢氧化物结合态(F5)和强吸附态砷(F2)。砂层沉积物中与无定形态铁氧化物或氢氧化物结合的固相砷(F3)占比大于与硅酸盐结合的砷(F6),前者占比均大于10%,后者均小于5%,而黏土沉积物中两者的占比分别为7%和12%。最容易释放到地下水中的弱吸附态砷(F1)和最顽固的与硫化物和有机质共沉淀的固相砷(F7)占比较小,均低于5%。钻孔K01细砂沉积物的固相砷以F4为主(35%),其次分别是F2(32%)和F6(16%)(图4d)。粉砂和黏土沉积物则以F2为主(分别为43%和40%),其次以F4为主(分别为12%和18%);两个沉积物中F3所占的比例均超过10%(图4e、f)。细砂、粉砂和黏土沉积物中F1和F7均小于5%。

    图  4  K02−M(a)、K02−F(b)、K02−C(c)、K01−F(d)、K01−S(e)和K01−C(f)沉积物中As的赋存形态以及不同形态所占的比例
    Figure  4.  Occurrence forms of As and the proportion of different forms in sediments of K02−M(a), K02−F(b), K02−C(c), K01−F(d), K01−S(e) and K01−C(f)

    对比山前冲洪积扇的钻孔K02和平原区的钻孔K01发现,前者沉积物中固相砷主要以F4为主,后者则主要以F2为主。钻孔K02黏土沉积物中F4达到11.3 μg/g,明显高于K01的4.6 μg/g。而钻孔K02黏土沉积物中F2仅有5.8 μg/g,低于钻孔K01的10.3 μg/g(图4c、f)。钻孔K01砂层沉积物中的F2也明显大于K02。此外,平原区沉积物的F3含量也大于山前冲洪积扇沉积物。这说明平原区沉积物经历更强的风化侵蚀作用后,固相砷活性增强,向更具迁移性的吸附态和完全无定形铁氧化物或氢氧化物结合态转化。大量研究表明吸附态的砷迁移性较强,通过竞争解吸附或者弱碱条件下的解吸附,更容易释放到地下水中,而无定形态铁氧化物或氢氧化物结合态砷相对稳定,需要通过还原性溶解才能释放到地下水中(Smedley and Kinniburgh, 2002)。这也解释了为何平原区地下水砷浓度普遍高于山前冲洪扇的地下水(李晓峰,2018; Zhang et al., 2020)。除了含水层沉积物本身物源的影响,含水层所处的环境和地下水的化学特征也会影响砷的解吸附。

    以往的研究表明,研究区地下水pH和Na/Ca0.5(M/M)与砷浓度均有较好的正相关关系(Zhang et al., 2020),因此,本研究选取钻孔K02和K01的沉积物(表3),分别探讨了pH和Na/Ca0.5(M/M)对砷解吸附的影响。动力学实验结果表明,在pH为7.6、离子强度为130 mmol/L和Na/Ca0.5比值为102的条件下,砷解吸附能够48 h时基本达到平衡(图5a)。为确定砷解吸附达到平衡,实验设定反应时间为60 h。

    图  5  砷解吸附的累积值随时间的变化(a)、不同pH条件下砷解吸附量(b)及不同Na/Ca0.5比值条件下砷解吸附量(c)
    Figure  5.  Variation of the accumulation of arsenic desorption with time (a), the amount of arsenic desorption under different pH conditions (b), the amount of arsenic desorption under different Na/Ca0.5 ratioconditions(c)

    实验设定离子强度为130 mmol/L,Na/Ca0.5比值为102。pH条件分别设定为5.4、6.7、7.6、8.6和9.6。当pH为5.4时,K02−F和K01−F沉积物释放的砷占总吸附砷的比值分别为0.54和0.44;当pH升高至6.7时,砷释放量所占总吸附砷比值分别降为0.32和0.30(图5b),这可能是因为较低的pH可能使铁氧化物发生少量溶解导致砷的释放。pH从6.7上升至8.6的过程中,沉积物砷的释放量并没有明显增加,仅上升0.03左右。而pH由8.6上升至9.6,沉积物砷的释放量显著增加,释放量上升0.15。这是由于随着pH升高沉积物颗粒表面带负电荷,与含砷阴离子形成静电斥力导致吸附态的砷发生解吸附,进入水溶液中(Masue et al., 2007)。

    许多学者认为,沉积物颗粒表面存在扩散双电子层(Dzombak and Morel, 1990; 刘新敏,2014),相比于以Na+为主的地下水系统,以Ca2+为主的地下水系统能够导致带负电的沉积物颗粒表面与带负电的含砷弱阴离子之间的斥力减小,有利于砷的吸附,这种现象被称为反离子效应(Masue et al., 2007; Fakhreddine et al., 2015)。当水中离子强度一定时,带有两个正电荷Ca2+被单电荷Na+替换时,即Na/Ca0.5比值增加时,这种反离子效应就会减弱,促进吸附态的砷释放到地下水中。

    实验过程中保持pH和离子强度不变,通过调节溶液中Na+和Ca2+浓度改变Na/Ca0.5比值。结果表明,砷解吸附的量随Na/Ca0.5比值的增加而增加(图5c)。当Na/Ca0.5比值为0.3时,K02−F和K01−F沉积物砷的解吸附量占总吸附态砷的比值分别为0.12和0.11。而当Na/Ca0.5比值增加到102时,K02−F沉积物砷的解吸附量占总吸附态砷的比值能够达到0.37,在K01−F沉积物中这一比值为0.47。

    河套盆地是中国的塞上粮仓,对水资源的需求较大。研究区地势较高,引黄河入河套盆地并难以满足居民的农业和生活需求,因此,居民普遍开采地下水用于农业灌溉和日常生活,这虽然解决水量的问题,却忽视了原生劣质地下水的危害。根据国家《生活饮用水卫生标准》(GB 5749—2022)和《地下水质量标准》(GB/T14848—2017),砷浓度大于10 μg/L的地下水为高砷地下水,摄入后对人体有害。以往的研究发现高砷地下水主要集中在平原区,浓度高达857 μg/L(Guo et al., 2008)。本研究发现,山前冲洪积扇区的含水层沉积物固相砷相对稳定,而平原区的含水层沉积物固相砷迁移性相对较强,且平原区沉积物吸附态砷在弱碱性和高Na/Ca0.5摩尔比值条件下,容易向地下水迁移,导致砷的富集。因此,当地居民种植农作物时避免使用碱性复合肥,从而减少碱性水的向下补给。此外,生活污水中Na+较高,建议适当处理后排放。用于日常生活的地下水,建议采用混凝沉淀或吸附法降砷。

    山前冲洪积扇区含水层处于相对氧化的环境中,其沉积物以细砂和中粗砂为主,而平原区含水层处于封闭的还原环境中,沉积物以粉细砂为主。两者沉积物总固相砷含量相差不大,但固相砷的赋存形态差别较大。山前冲洪积扇区含水层沉积物固相砷以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷为主(33%~43%),平原区含水层沉积物固相砷则以强吸附态砷为主(32%~43%),后者沉积物的中固相砷迁移性更强,容易通过解吸附释放到地下水中。此外,当pH值由6.1上升到9.6时,山前和平原区沉积物解吸附砷占总吸附砷的比值分别上升0.16和0.22。同时,Na/Ca0.5摩尔比值的增加,会导致反离子效应减弱,比值由0.3增加到102时,山前沉积物和平原区解吸附砷占总吸附砷的比值分别上升0.26和0.36。可见含水层中pH的升高和Na/Ca0.5摩尔比值的增加,都会促使沉积物中的砷发生解吸附,导致地下水中砷的富集。因此,当地居民应减少碱性以及富含Na+的生产生活用水的排放,同时平原区用于日常生活的地下水,建议当地居民采用混凝沉淀或吸附法降砷。

  • 图  1   全球主要铍矿床分布图(据Foley et al., 2012; Kesler et al., 2012; Bradley and McCauley, 2013

    Figure  1.   Distribution map of the main beryllium deposits in the world (after Foley et al., 2012; Kesler et al., 2012; Bradley and McCauley, 2013)

    图  2   铍矿成矿模式及矿化类型图(据Barton and Young, 2002李健康等,2017修改)

    Figure  2.   Metallogenic model and mineralization type of beryllium ore (modified from Barton and Young, 2002; Li Jiankang et al., 2017)

    图  3   典型火山岩型铍矿床地质及成因类型图(据Lindsey, 1981, 1998; Foley et al., 2012

    a—火山岩型铍矿床成矿模式图;b—犹他州斯波尔山矿区地质图;c—斯波尔山矿区的含铍凝灰岩;d—萤石结核的电子探针显微照片

    Figure  3.   Geology and genetic type map of typical volcanic beryllium deposits (after Lindsey, 1981, 1998; Foley et al., 2012)

    a-Metallogenic model of volcanic beryllium deposits; b-Geologic map of Spor Mountain area, Utah; c-Photograph of beryllium tuff at Spor Mountain; d-Electron probe micrograph of nodule from the Spor Mountain tuff

    图  4   加拿大不列颠哥伦比亚省及美国阿拉斯加稀有金属矿床地质图(据Soloviev, 2011

    Figure  4.   Geological map of rare metal deposits of British Columbia, Canada and Alaska USA (after Soloviev, 2011)

    表  1   主要铍矿床特征

    Table  1   The characteristicof main beryllium deposits

    下载: 导出CSV

    表  2   与岩浆作用有关的铍矿床特征(据Barton and Young, 2002

    Table  2   The characteristics of beryllium deposits related to magmatism in the world (after Barton and Young, 2002)

    下载: 导出CSV
  • Adams D T, Hofstra A H, Cosca M A, Todorov T I, Marsh E E. 2009. Age of sanidine and composition of melt inclusions in quartz phenocrysts from volcanic rocks associated with large Mo and Be deposits in the Western United States[J]. Geological Society of America, 41(7): 255.

    Agency for Toxic Substances and Disease Registry. 2002. Toxicological profile for beryllium: Atlanta, Ga., U.S. Department of Health and Human Services[J]. Public Health Service, 247(plus 4): 21-29.

    Alexsandrov S M. 2010. Skarn-greisen deposits of the lost river and mount ear ore field, Seward Peninsula, Alaska, United States[J]. Geochemistry International, 48(12): 1220-1236. doi: 10.1134/S0016702910120062

    Bao Shandong, Zeng Biao, Bai Zonghai, Huang Qinghua, Yuan Yongtao, Qi Wen, Xiong Shoujia. 2022. Application of comprehensive geophysical prospecting method in exploration of lithium-beryllium rare metal and rare earth ores[J]. Geology and Resources, 31(1): 59-68 (in Chinese with English abstract).

    Barton M D. 1986. Phase equilibria and thermodynamic properties of minerals in the BeO-Al2O3-SiO2-H2O(BASH) system, with petrologic applications[J]. American Mineralogist, 71(3/4): 277-300.

    Barton M D, Young S. 2002. Non-pegmatitic deposits of beryllium——Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy and Geochemistry, 50(1): 591-691. doi: 10.2138/rmg.2002.50.14

    Beus A A. 1966. Geochemistry of Beryllium and Genetic Types of Beryllium Deposits[M]. San Francisco: W. H. Freeman and Company, 1-401.

    Bhat P N, Ghosh D K, Desai M V. 2002. Immobilisation of beryllium in solid waste (red-mud) by fxation and vitrifcation[J]. Waste Management, 22(5): 549-556. doi: 10.1016/S0956-053X(02)00013-2

    Bradley D, McCauley A. 2013. A Preliminary Deposit Model for Lithium-Cesium-Tantalum (LCT) Pegmatites[M]. Reston, VA: U.S. Geological Survey, 1-7.

    Browning J S. 1961. Flotation of spodumene-beryl ores[J]. Mining Engineering, 17(7): 706-708.

    Browning J S, McVay T L, Bennett P E. 1964. Continuous Flotation of Beryl from Spodumene Mill Tailings[M]. North Carolina: Foote Mineral Company, 1-24.

    Bruce R M, Odin M. 2001. Beryllium and Beryllium Compounds[M]. Geneva: World Health Organization, 1-71.

    Brush Engineered Materials, Inc. 2009. Transforming Our World and Yours——Annual Report[M]. Ohio: Brush Engineered Materials, Inc, 1-122.

    Burt D M, Sheridan M F, Bikun J V, Christiansen E H. 1982. Topaz rhyolites——Distribution, origin, and significance for exploration[J]. Economic Geology, 77(8): 1818-1836. doi: 10.2113/gsecongeo.77.8.1818

    Černý P. 2002. Mineralogy of beryllium in granitic pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 405-444. doi: 10.2138/rmg.2002.50.10

    Černý P, Linnen R L, Samson I M. 2005. The Tanco rare-element pegmatite deposit, Manitoba——Regional context, internal anatomy, and global comparisions[J]. Rare Element Geochemistry and Mineral Deposits, 17: 127-158.

    Černý P, London D, Novák M. 2012. Granitic pegmatites as reflections of their sources[J]. Elements, 8(4): 289-294. doi: 10.2113/gselements.8.4.289

    Day G A, Stefaniak A B, Weston A, Tinkle S S. 2006. Beryllium exposure——Dermal and immunological considerations[J]. International Archives of Occupational and Environmental Health, 79(2): 161-164. doi: 10.1007/s00420-005-0024-0

    Deng Wei, Yan Shiqiang, Tan Hongqi, Yang Yaohui, Wang Changliang. 2023. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 44(1): 148-154 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6532.2023.01.020

    Deubner D, Kelsh M, Shum M, Maier L, Kent M, Lau E. 2001. Beryllium sensitization, chronic berylliumdisease, and exposures at a beryllium mining and extraction facility[J]. Applied Occupational and Environmental Hygiene, 16(5): 579-592. doi: 10.1080/104732201750169697

    Deubner D, Sabey P, Huang W, Fernandez D, Rudd A, Johnson W P, Storrs J, Larson R. 2011. Solubility and chemistry of materials encountered by beryllium mineand ore extraction workers——Relation to risk[J]. Journal of Occupational and Environmental Medicine, 53(10): 1187-1193. doi: 10.1097/JOM.0b013e31822cfe38

    Dobson D. 1982. Geology and alteration of the Lost Rivertin-tungsten-fluorine deposit, Alaska[J]. Economic Geology, 77(4): 1033-1052. doi: 10.2113/gsecongeo.77.4.1033

    Duling M G, Stefaniak A B, Lawrence R B, Chipera S J, Abbas Virji M. 2012. Release of beryllium frommineral ores in artifcial lung and skin surface fluids[J]. Environmental Geochemistry and Health, 34(3): 313-322. doi: 10.1007/s10653-011-9421-3

    Eckel W P, Jacob T A. 1988. Ambient levels of 24 dissolved metals in US surface and ground waters[J]. Preprints of Papers Presented at National Meeting, Division of Water, Air and Waste Chemistry, American Chemical Society, 28(2): 371-372.

    Emsley J. 2001. Nature's Building Blocks——An A-Z guide to the Elements[M]. Oxford: Oxford University Press, 1-538.

    Engell J, Hansen J, Jensen M, Kunzendorf H, Løvborg L. 1971. Beryllium mineralization in the Ilimaussaq intrusion, south Greenland, with description of a feldberyllometer and chemical methods[J]. Copenhagen University, Mineralogical and Geological Museum, Contributions to Mineralogy, 82(33): 1-40.

    Epstein W L. 1991. Cutaneous Effects of Beryllium[M]. Baltimore: Williams and Wilkins, 113-117.

    Foley N K, Hofstra A H, Lindsey D A, Seal R R, Jaskula B, Piatak N M. 2012. Occurrence Model for Volcanogenic Beryllium Deposits[M]. Reston, Virginia: U.S. Geological Survey, 1-43.

    Gaillardet J, Viers J, Dupré B. 2003. Trace Elementsin River Waters[M]. Oxford: Elsevier-Pergamon, 225-227.

    Galeschuk C, Vanstone P. 2005. Exploration for buried rare element pegmatites in the Bernic Lake area of southeastern Manitoba[J]. Geological Association of Canada Short Course Notes, 17: 159-173.

    Galeschuk C, Vanstone P. 2007. Exploration techniques for rare-element pegmatite in the Bird-River Greenstone Belt, southeastern Manitoba[J]. Ore Deposits and Exploration Technology, 55: 823-839.

    Global Industry Analysts, Inc. 2012. Global Beryllium Marketto Reach 505.6 Metric Tons by 2017[M]. California: Global Industry Analysts, Inc, 1-32.

    Glover A S, Rogers W Z, Barton J E. 2012. Granitic pegmatites-Storehouses of industrial minerals[J]. Elements, 8(4): 269-273. doi: 10.2113/gselements.8.4.269

    Graedel T E, Allwood J, Birat J P, Buchert M, Hagelüken C, Reck B K, Sibley S F, Sonnemann G. 2011. What do we know about metal recycling rates[J]. Journal of Industrial Ecology, 15(3): 355-366. doi: 10.1111/j.1530-9290.2011.00342.x

    Grew E S. 2002. Mineralogy, petrology and geochemistry of beryllium-An introduction and list of beryllium minerals[J]. Reviews in Mineralogy and Geochemistry, 50(1): 1-76. doi: 10.2138/rmg.2202.50.01

    Grifftts W R. 1954. Beryllium Resources of the Tin-Spodumene Belt, North Carolina[M]. Washington: U.S. Geological Survey Circular, 1-309.

    Grifftts W R, Pratt W P. 1973. United States mineral resources[J]. U.S. Geological Survey Professional Paper, 820: 85-93.

    Grundmann G, Morteani G. 1989. Emerald mineralization during regional metamorphism——The Habachtal(Austria) and Leydsdorp (Transvaal, South Africa) deposits[J]. Economic Geology, 84(7): 1835-1849. doi: 10.2113/gsecongeo.84.7.1835

    Hawkins G. 2001. Open pit surgical mining of bertranditeores at the world's largest beryllium deposit[J]. Forum on the Geology of Industrial Minerals, 37: 105-106.

    Henry C D. 1992. Beryllium and other rare metals in Trans-Pecos, Texas[J]. Bulletin of the West Texas Geological Society, 31: 1-15.

    Hörmann P K. 1978. Beryllium[M]. Berlin: Springer-Verlag, 1-6.

    Hu Z C, Gao S. 2008. Upper crustal abundance of trace elements——A revision and update[J]. Chemical Geology, 253(3/4): 205-221.

    IBC Advanced Alloys Corp. 2010. IBC Advanced Alloyssigns Agreement to Advance Lithium Beryllium Metalhydrides Hydrogen Storage Technology[M]. Vancouver: IBC Advanced Alloys Corp, 1-10.

    IBC Advanced Alloys Corp. 2013. Beryllium Aluminum Alloys-Beralcast Alloys[M]. Vancouver: IBC Advanced Alloys Corp, 1-9.

    Jaskula B W. 2013a. Beryllium[Advance Release] [M]. Reston, Virginia: U.S. Geological Survey Mineral Commodity Summaries, 28-29.

    Jaskula B W. 2013b. Beryllium, in Metals and Minerals[M]. Reston, Virginia: U.S. Geological Survey Minerals Yearbook, 111-117.

    Kabata-Pendias A, Mukherjee A B. 2007. Traceelements from Soil to Human[M]. Berlin: Springer-Verlag, 1-550.

    Keith J D, Christiansen E H, Tingey D G. 1994. Geological and Chemical Conditions of Formation of Redberyl, Wah Wah Mountains, Utah[M]. Utah: Utah Geological Association Publication, 155-169.

    Kesler S E, Gruber P W, Medina P A, Keolwian G A, Everson M P, Wallington T J. 2012. Global lithium resources——Relative importance of pegmatite, brine and otherdeposits[J]. Ore Geology Reviews, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006

    Kim S K, Ko W I, Kim H D, Revankar S T, Zhou W, Daeseong J. 2010. Cost-beneft analysis of BeO-UO2 nuclear fuel[J]. Progress in Nuclear Energy, 52(8): 813-821. doi: 10.1016/j.pnucene.2010.07.008

    Kislov E V, Imetkhenov A B, Sandakova D M. 2010. The Yermakovskoye fluorite-beryllium deposit——Avenues for improving ecological security of revitalization of the mining operations[J]. Geography and Natural Resources, 31(4): 324-329. doi: 10.1016/j.gnr.2010.11.004

    Kovalenko V I, Yarmolyuk V V. 1995. Endogenous raremetal ore formations and rare metal metallogeny of Mongolia[J]. Economic Geology, 90(3): 520-529. doi: 10.2113/gsecongeo.90.3.520

    Krogstad E J, Walker R J, Nabelek P I, Russ-Nabelek C. 1993. Lead isotopic evidence for mixed sources of Proterozoic granites and pegmatites, Black Hills, South Dakota, USA[J]. Geochimica et Cosmochimica Acta, 57(19): 4677-4685. doi: 10.1016/0016-7037(93)90192-Y

    Kuperman R G, Checkai R T, Simini M, Phillips C T, Speicher J A, Barclift D J. 2006. Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsomiacandida, Eeiseniafetida, and Enchytraeuscrypticus[J]. Environmental Toxicology and Chemistry, 25(3): 754-762. doi: 10.1897/04-545R.1

    Laznicka P. 2006. Giant Metallic Deposits——Future Sources of Industrial Metals[M]. Berlin: Springer-Verlag, 1-732.

    Li Jiankang, Zou Tianren, Wang Denghong, Ding Xin. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951-978 (in Chinese with English abstract).

    Li Na, Gao Aihong, Wang Xiaoning. 2019. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 28(4): 69-73 (in Chinese with English abstract).

    Liang Fei. 2018. Discussion on the Characteristics, Supply and Demand Prediction and Development of Beryllium Resources in China[D]. Beijing: Chinese Academy of Geological Sciences, 14-23 (in Chinese with English abstract).

    Lide D R. 2005. CRC Handbook of Chemistry and Physics[M]. Florida: CRC Press, 1-544.

    Lin Bolei, Yin Liwen, Cui Rongguo, Li Bingxin, Xu Guifen. 2018. Global beryllium resources distribution and supply and demand pattern[J]. Natural Resources Information, 1: 13-17 (in Chinese with English abstract).

    Lin Desong. 1985. A preliminary study on genesis of an altered volcanic type beryl deposit in south China[J]. Mineral Deposits, 4(3): 19-30 (in Chinese with English abstract).

    Lin Y, Pollard P J, Hu S X, Taylor R G. 1995. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China[J]. Economic Geology, 90(3): 577-585. doi: 10.2113/gsecongeo.90.3.577

    Lindsey D A. 1975. Mineralization halos and diagenesis in water-laid tuff of the Thomas Range, Utah[J]. U.S. Geological Survey Professional Paper, 818: 1-59.

    Lindsey D A. 1981. Volcanism and uranium mineralization at Spor Mountain, Utah[J]. American Association of Petroleum Geologists Studies in Geology, 13: 89-98.

    Lindsey D A. 1998. Slides of the Fluorspar, Beryllium, and Uranium Deposits at Spor Mountain, Utah[M]. Reston, Virginia: U.S. Geological Survey, 98-524.

    Lindsey D A, Bradley L A, Gardner J, Merritt V. 1973. Mineralogical and Chemical Data for Alteration Studies, Spor Mountain Beryllium Seposits, Juab County, Utah[M]. Reston, VA: U.S. Geological Survey, 220-552.

    Linnen R L, Van Lichtervelde M, Černý P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275-280. doi: 10.2113/gselements.8.4.275

    London D. 2005. Geochemistry of alkali and alkaline earth elements in ore-forming granites, pegmatites and rhyolites[J]. Geological Association of Canada Short Course Notes, 17: 17-43.

    London D, Evensen J M. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 445-486. doi: 10.2138/rmg.2002.50.11

    London D, Kontak D J. 2012. Granitic pegmatites——Scientifc wonders and economic bonanzas[J]. Elements, 8(4): 257-261. doi: 10.2113/gselements.8.4.257

    Lykhin D A, Kovalenko V I, Yarmolyuk V V, Sal'nikova E B, Kotov A B, Anisimova I V, Plotkina Y V. 2010. The Yermakovsky beryllium deposit, western Transbaikal region, Russia——Geochronology of igneous rocks[J]. Geology of Ore Deposits, 52(2): 114-137.

    Martin R F, De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. Canadian Mineralogist, 43(6): 2027-2048.

    McLemore V T. 2010a. Beryllium Deposits in New Mexico and Adjacent Areas[M]. New Mexico: New Mexico Bureau of Geology and Mineral Resources, 1-105.

    McLemore V T. 2010b. Geology, Mineral Resources, and Geoarchaeology of the Montoya Butte Quadrangle, Including the Ojo Caliente No. 2 Mining District, Socorro County, New Mexico[M]. New Mexico: New Mexico Bureau of Geology and Mineral Resources, 1-106.

    McLemore V T, Guilinger J R. 1993. Geology and Mineral Resources of the Cornudas Mountains, Otero County, New Mexico and Hudspeth County, Texas[M]. New Mexico: New Mexico Geological Society, 145-154.

    Meeves H C. 1966. No Pegmatitic Beryllium Occurrences in Arizona, Colorado, New Mexico, Utah, and Four Adjacent States[M]. Virginia: U.S. Bureau of Mines, 1-68.

    Montoya J W, Havens R J, Bridges D W. 1962. Beryllium-bearing Tuff from Spor Mountain, Utah——Its Chemical, Mineralogical and Physical Properties[M]. Virginia: U.S. Bureau of Mines, 1-15.

    Olson D W. 2016. Gemstones[Advance Release], in Metals and Minerals[M]. Reston, Virginia: U.S. Geological Survey, 291-295.

    Pearson R G. 1963. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 85(22): 3533-3539.

    Petkof B. 1985. Beryllium, mineral facts and problems[J]. U.S. Bureau of Mines Bulletin, 675: 75-82.

    Pichavant M, Kontak D J, Briqueu L, Valencia-Herrera J, Clark A H. 1988a. The Miocene-Pliocene Macusani Volcanics, SE Peru-Ⅱ, Geochemistry and origin of a felsic peraluminous magma[J]. Contributions to Mineralogy and Petrology, 100(3): 325-338.

    Pichavant M, Kontak D J, Valencia-Herrera J, Clark A H. 1988b. The Miocene-Pliocene Macusani volcanics, SE Peru——Ⅰ, Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite[J]. Contributions to Mineralogy and Petrology, 100(3): 300-324.

    Qiao Gengbiao, Ding Jiangang, Su Yonghai, Chen Junlu. 2020. The discovery of Li, Be, Nb, Ta rare metal ore spots in the Bieyesamas area in Altay, Xinjiang[J]. Geology in China, 47(2): 542-543 (in Chinese with English abstract).

    Ramsden A R, French D H, Chalmers D I. 1993. Volcanic-hosted rare-metals deposit at Brockman, Western Australia——Mineralogy and geochemistry of the Niobiumtuff[J]. Mineralium Deposita, 28(1): 1-12.

    Ren J P, Wang J, Zuo L B, Liu X Y, Dai C C, Xu K K, Li G Z, Geng J Z, Xiao Z B, Sun K, He F Q, Gu A L. 2017. Zircon U-Pb and biotite 40Ar/39Ar geochronology from the Anzan emerald deposit in Zambia[J]. Ore Geology Reviews, 91: 612-619.

    Ren Junping, Wang Jie, Gu Alei, Zuo Libo, Sun Hongwei, Xu Kangkang, Wu Xingyuan, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2019. Zircon U-Pb geochronology and Lu-Hf isotopic composition of syenogranite, northeastern Zambia[J]. North China Geology, 42(3): 161-165 (in Chinese with English abstract).

    Reyf F G. 2008. Alkaline granites and Be (phenakite-bertrandite) mineralization——An example of the Orot and Ermakovka (Yermakovskoye) deposits[J]. Geochemistry International, 46(3): 213-232.

    Rossman M D. 2004. Elements and their Compounds in the Environment——Occurrence, Analysis and Biological Relevance, General Aspects[M]. Weinheim: Wiley-VCH, 575-586.

    Rubin J N, Price J G, Henry C D, Koppenaal D W. 1987. Cryolite-bearing and rare metal-enriched rhyolite, Sierra Blanca Peaks, Hudspeth County, Texas[J]. American Mineralogist, 72(11/12): 1122-1130.

    Sainsbury C L. 1963. Beryllium Deposits of the Western Seward Peninsula, Alaska[M]. Reston, Virginia: U.S. Geological Survey Circular, 1-23.

    Sainsbury C L. 1964a. Association of beryllium within deposits rich influorite[J]. Economic Geology, 59(5): 920-929.

    Sainsbury C L. 1964b. Geology of the Lost River Mine Area, Alaska[M]. Washington: U.S. Government Printing Office, 1-80.

    Selway J B, Breaks F W, Tindle A G. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 14(1/4): 1-30.

    Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographic a Section A-Foundations, 32(5): 751-767.

    Sirbescu M L, Nabelek P I. 2003. Crystallization conditions and evolution of magmatic fluids in the Harney Peak granite and associated pegmatite, Black Hills, South Dakota——Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 67(13): 2443-2465.

    Smith D B, Cannon W F, Woodruff L G, Solano F, Kilburn J E, Fey D L. 2013. Geochemical and Mineralogical Data for Soils of the Conterminous United States[M]. Reston, Virginia: U.S. Geological Survey, 1-19.

    Smith R E, Perdrix J L, Davis J M. 1987. Dispersioninto pisolitic laterite from the Greenbushes mineralized Sn-Tapegmatite system, Western Australia[J]. Journal of Geochemical Exploration, 28(1/3): 251-265.

    Soloviev S G. 2011. Compositional Features and Rare Metal Mineralization of the Hell Roaring Creek Stock, Southeastern British Columbia (NTS 082F/09), in Geological fieldwork 2011[M]. Victoria: Ministry of Energy and Mines, 181-197.

    Stefaniak A B, Chipera S J, Day G A, Sabey P, Dickerson R M, Sbarra D C, Duling M G, Lawrence R B, Stanton M L, Scripsick R C. 2008. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores——Implications for risk assessment[J]. Journal of Toxicology and Environmental Health, Part A, 71(22): 1468-1481.

    Stilling A, Černý P, Vanstone P J. 2006. The Tanco pegmatite at Bernic Lake, Manitoba——XVI, Zonaland bulk compositions and their petrogenetic signifcance[J]. Canadian Mineralogist, 44(3): 599-623.

    Suter G W. 1996. Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota[J]. Environmental Toxicology and Chemistry, 15(7): 1232-1241.

    Taylor S R, McLennan S M. 1985. The Continental Crust——Its Composition and Evolution; An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Publishing, 1-312.

    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241-265.

    Taylor T P, Ding M, Ehler D S, Foreman T M, Kaszuba J P, Sauer N N. 2003. Beryllium in the environment——A review[J]. Journal of Environmental Scienceand Health, Part A——Toxic/Hazardous Substances and Environmental Engineering, 38(2): 439-469.

    Taylor W R, Esslemont G, Sun S S. 1995a. Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek mobile zone, northwest Australia-Ⅱ, Geochemistry and petrogenesis of the Brockman volcanics[J]. Mineralogy and Petrology, 52(3/4): 231-255.

    Taylor W R, Page R W, Esslemont G, Rock N M S, Chalmers D I. 1995b. Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek mobile zone, northwest Australia——Ⅰ, Volcanic environment, geochronology and petrography of the Brockman volcanics[J]. Mineralogy and Petrology, 52(3): 209-230.

    Walker R J, Hanson G N, Papike J J, O'Neil J R. 1986. Nd, O, and Sr isotopic constraints on the origin of Precambrian rocks, southern Black Hills, South Dakota[J]. Geochimica et Cosmochimica Acta, 50(12): 2833-2846.

    Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 4(5): 1-7 (in Chinese with English abstract).

    Wang Yao, Guo Chihui, Zhuang Shurong, Chen Xijie, Jia Liqiong, Chen Zeyu, Xia Zilong, Wu Zhen. 2021. Major contribution to carbon neutrality by China's geosciences and geological technologies[J]. China Geology, 4(2): 329-352.

    Wood S A. 1992. Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300℃ at saturated vapor pressure-Application to bertrandite/phenakite deposits[J]. Ore Geology Reviews, 7(4): 249-278.

    Xu Demei, Qin Gaowu, Li Feng, Wang Zhanhong, Zhong Jingming, He Jilin, He Lijun. 2014. Advances in beryllium and beryllium-containing materials[J]. The Chinese Journal of Nonferrous Metals, 24(5): 1212-1223 (in Chinese with English abstract).

    Zhang Sen, Shi Lei, Ju Nan, Su Jianwei. 2018. The "Oil-Uranium Co-exploration" idea in Songliao Basin: A practice in Southern Central Depression[J]. Geology and Resources, 27(3): 257-262 (in Chinese with English abstract).

    Zhang Sen, Ju Nan, Zhang Guobin, Zhao Yuandong, Ren Yunsheng, Liu Baoshan, Wang Hui, Guo Rongrong, Yang Qun, Sun Zhenming, Xu Fengming, Wang Keyong, Hao Yujie. 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review[J]. China Geology, 6(1): 100-136.

    Zuo Libo, Ren Junping, Wang Jie, Gu Alei, Sun Hongwei, Xu Kangkang, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2020. Geochemical characteristics, zircon U-Pb age, and Lu-Hf isotopic composition of Granites from the Banweulu Block, Zambia[J]. North China Geology, 43(1): 30-41 (in Chinese with English abstract).

    保善东, 曾彪, 白宗海, 黄青华, 苑永涛, 祁文, 熊寿加. 2022. 综合物探方法在锂铍稀有、稀土矿勘查中的应用研究[J]. 地质与资源, 31(1): 59-68.
    邓伟, 颜世强, 谭洪旗, 杨耀辉, 王昌良. 2023. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 44(1): 148-154.
    李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704011.htm
    李娜, 高爱红, 王小宁. 2019. 全球铍资源供需形势及建议[J]. 中国矿业, 28(4): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201904013.htm
    梁飞. 2018. 我国铍资源特征、供需预测与发展探讨[D]. 北京: 中国地质科学院, 14-23.
    林博磊, 尹丽文, 崔荣国, 李冰心, 徐桂芬. 2018. 全球铍资源分布及供需格局[J]. 国土资源情报, 1: 13-17.
    林德松. 1985. 华南-蚀变火山岩型绿柱石矿床的成因探讨[J]. 矿床地质, 4(3): 19-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198503002.htm
    乔耿彪, 丁建刚, 苏永海, 陈隽璐. 2020. 新疆阿尔泰山别也萨麻斯一带发现新的锂、铍、铌、钽等稀有金属矿点[J]. 中国地质, 47(2): 542-543. http://geochina.cgs.gov.cn/geochina/article/abstract/20200221?st=search
    任军平, 王杰, 古阿雷, 左立波, 孙宏伟, 许康康, 吴兴源, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2019. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 42(3): 161-165.
    王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 4(5): 1-7.
    许德美, 秦高梧, 李峰, 王战宏, 钟景明, 何季麟, 何力军. 2014. 国内外铍及含铍材料的研究进展[J]. 中国有色金属学报, 24(5): 1212-1223.
    张森, 石蕾, 鞠楠, 苏建伟. 2018. "油铀兼探"的找矿思路在松辽盆地的应用——以中央拗陷区南部为例[J]. 地质与资源, 27(3): 257-262.
    左立波, 任军平, 王杰, 古阿雷, 孙宏伟, 许康康, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2020. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 43(1): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001004.htm
图(4)  /  表(2)
计量
  • 文章访问数:  3982
  • HTML全文浏览量:  904
  • PDF下载量:  2150
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-08-11
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2023-04-24

目录

/

返回文章
返回
x 关闭 永久关闭