• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

内蒙古额仁淖尔凹陷赛汉组砂(泥)岩地球化学特征及其对铀成矿作用的制约

段明, 张博, 汤超, 谢瑜, 滕雪明, 张祺, 徐增连, 魏安军, 蒋职权

段明,张博,汤超,谢瑜,滕雪明,张祺,徐增连,魏安军,蒋职权. 2024. 内蒙古额仁淖尔凹陷赛汉组砂(泥)岩地球化学特征及其对铀成矿作用的制约[J]. 中国地质, 51(3): 932−950. DOI: 10.12029/gc20210807001
引用本文: 段明,张博,汤超,谢瑜,滕雪明,张祺,徐增连,魏安军,蒋职权. 2024. 内蒙古额仁淖尔凹陷赛汉组砂(泥)岩地球化学特征及其对铀成矿作用的制约[J]. 中国地质, 51(3): 932−950. DOI: 10.12029/gc20210807001
Duan Ming, Zhang Bo, Tang Chao, Xie Yu, Teng Xueming, Zhang Qi, Xu Zenglian, Wei Anjun, Jiang Zhiquan. 2024. Geochemical characteristics of sandstone (mudstone) of Saihan Formation in Erennur Sag, Inner Mongolia and their constraints on uranium mineralization[J]. Geology in China, 51(3): 932−950. DOI: 10.12029/gc20210807001
Citation: Duan Ming, Zhang Bo, Tang Chao, Xie Yu, Teng Xueming, Zhang Qi, Xu Zenglian, Wei Anjun, Jiang Zhiquan. 2024. Geochemical characteristics of sandstone (mudstone) of Saihan Formation in Erennur Sag, Inner Mongolia and their constraints on uranium mineralization[J]. Geology in China, 51(3): 932−950. DOI: 10.12029/gc20210807001

内蒙古额仁淖尔凹陷赛汉组砂(泥)岩地球化学特征及其对铀成矿作用的制约

基金项目: 国家重点研发计划(2018YFC0604200)和中国地质调查局项目(DD20190121)联合资助。
详细信息
    作者简介:

    段明,男,1983年生,高级工程师,主要从事铀矿预测与研究工作;E-mail:duanming000@126.com

    通讯作者:

    张博,男,1991年生,工程师,主要从事砂岩型铀矿调查及研究工作;E-mail:zhangbo0354@163.com。

  • 中图分类号: P619.14

Geochemical characteristics of sandstone (mudstone) of Saihan Formation in Erennur Sag, Inner Mongolia and their constraints on uranium mineralization

Funds: Supported by National Key Research and Development Program Plan (No.2018YFC0604200) and the project of China Geological Survey (No.DD20190121).
More Information
    Author Bio:

    DUAN Ming, male, born in 1983, senior engineer, mainly engaged in the uranium prediction and research; E-mail: duanming000@126.com

    Corresponding author:

    ZHANG Bo, male, born in 1991, engineer, mainly engaged in investigation and research of sandstone type uranium deposit; E-mail: zhangbo0354@163.com

  • 摘要:
    研究目的 

    查明二连盆地额仁淖尔凹陷赛汉组含铀砂(泥)岩的岩石矿物及地球化学特征,探讨铀成矿作用。

    研究方法 

    包括野外地质编录、偏光显微镜、电子探针能谱分析、主微元素、环境地球化学及铀的价态分析等。

    研究结果 

    (1)铀矿物以吸附态和独立铀矿物的形式存在,常与炭屑和黄铁矿共(伴)生并发现闪锌矿。(2)矿石具有高C、S、CO2的特征,泥岩U6+/U4+平均为1.01,砂岩U6+/U4+平均为0.57。(3)砂(泥)岩的CIA值为50.83~66.34,稀土元素特征与蚀源区花岗岩一致,主微量元素特征均显示存在明显的后期沉积−成岩阶段的水岩作用。

    结论 

    (1)海西期花岗岩是赛汉组砂(泥)岩的主要物源,沉积环境为半干旱—半湿润古气候。(2)吸附作用和氧化还原作用是研究区铀富集的主要机理,泥岩型铀矿以吸附作用为主,砂岩型铀矿以氧化还原作用为主。(3)深部流体可能参与了成矿作用。

    创新点:

    (1)通过电子探针能谱分析和铀的价态分析查明了二连盆地额仁淖尔凹陷赛汉组砂(泥)岩中的铀矿物赋存状态。(2)岩石地球化学和环境地球化学相结合,把CIA (化学蚀变指数)和ICV (成分变异系数)引入研究区砂岩铀矿研究,解析古气候和蚀源区基岩风化程度。(3)提出吸附作用和氧化还原作用并存的铀富集机理。

    Abstract:

    This paper is the result of mineral exploration engineering.

    Objective 

    This study aims to ascertain the petrological, mineralogical, and geochemistrial signatures of the sandstone (mudstone) of the uranium bearing target layer in Erennur Sag, Erlian Basin, and to discuss uranium mineralization.

    Methods 

    Research methods include field geological cataloging, polarized light microscopy, electron probe spectroscopy analysis, major trace elements, environmental geochemistry, and uranium valence analysis.

    Results 

    (1) Uranium minerals exist in the form of adsorbed and independent uranium minerals, often co-existing (associated) with carbon chips and pyrite, with occasionally with presence of sphalerite. (2) The ore exhibits the characteristics of high organic carbon, S and CO2. The average U6+/U4+ of mudstone is 1.01, and the average U6+/U4+ of sandstone is 0.57. (3) The CIA value of sandstone (mudstone) is 50.83 to 66.34. The characteristics of rare earth elements are consistent with those of granite in the erosion source area, the characteristics of main and trace elements all show that there is obvious water−rock interaction in the late sedimentation−diagenesis stage.

    Conclusions 

    The following conclusions can be drawn: (1) The Hercynian granite is the dominant source of the sandstone (mudstone) of the Saihan Formation. The sedimentary environment is a semi−arid−semi−humid paleo−climate. (2) Adsorption and oxidation−reduction are the main mechanisms of uranium enrichment in the study area. Mudstone−type uranium enrichment is mainly in the form of adsorption, while sandstone−type uranium enrichment is mainly in the form of oxidation−reduction. (3)The deep fluid may have participated in the mineralization.

    Highlights:

    (1) The occurrence state of uranium minerals in the sandstone (mudstone) of Saihan Formation in Erennur Sag, Erlian basin is detected by electron microprobe energy spectrum analysis and uranium valence analysis. (2) In combination with rock−related and environment−related geochemical data, the CIA (chemical alteration index) and ICV (coefficient of variation of composition) are invoked to discuss the paleoclimate and the weathering degree of bedrock in the erosion source area for further studies of uranium mineralization. (3) Both the form of adsorption and redox have been proposed to illustrate the mechanism of uranium enrichment.

  • 鄂尔多斯盆地陕北地区长8油层组是近年来油气勘探新的后备领域,在姬塬、西峰、镇北、马岭地区都发现了大规模油藏,展示出巨大勘探前景。陕北地区长8段属东北沉积物源体系,砂体发育,储层孔隙度平均值为8.45%,渗透率平均值为0.12 × 10-3μm2,为典型的低孔超低渗致密储层(图 1),并且紧邻长7段烃源岩,在志丹一带发育长9段烃源岩,平面上油水分布关系复杂,成藏期次以及石油聚集关系不明确,长期制约着石油勘探开发。近年来不少学者对鄂尔多斯盆地长8石油成藏机理及分布规律进行了研究,区域多集中于陇东和姬塬地区,前人认为伊陕斜坡构造简单,延长组油藏主要受沉积相控制,发育岩性油藏(赵靖舟等,2006);盆地长7油层组与长8油层组之间存在的过剩压力差是油气纵向运移的主要驱动力,横向上过剩压力低值区为油气运聚成藏的有利区(楚美娟等,2013姚泾利等,2015);把姬塬地区长8油层划分为五种成岩相,认为层序界面控制了早期的溶蚀作用和碳酸盐胶结作用(赖锦等,2014)。相比较而言,陕北地区长8研究主要包括烃源岩、低幅度构造、储盖组合、运移动力等方面(王维斌等,2017任瑞清等,2017),石油成藏条件分析薄弱,尤其是借助流体包裹体对成藏时期各个关键时刻与油气聚集关系的分析少有涉及。

    图  1  研究区构造位置及延长组情况
    Figure  1.  Structural location and strata of Yanchang Formation in the study area

    目前确定成藏时间的主要技术包括生排烃史法、油藏地球化学法、饱和压力法、流体包裹体均一温度、自生伊利石K-Ar法、Re-Os元素测年法等(刘德汉等,2007陈梦娜等,2018),其中,流体包裹体是矿物结晶生长时,被包裹在矿物晶格缺陷的成矿流体。流体包裹体形成后,由于既没有外来物质的加入也没有自身物质的流出,因而可以作为原始的成矿流体进行研究。流体包裹体方法最初主要应用于矿床学的研究,20世纪70年代末到80年代初随着石油地球化学的发展,流体包裹体已作为一种重要的手段应用于石油地质研究,并且逐渐发展成为最广泛和最有效的手段之一。从目前的应用情况看,流体包裹体应用于石油地质研究主要有两个方面:一是根据包裹体均一温度测定数据以及捕获温度、捕获压力的计算资料,研究盆地烃源岩的热演化历史和储层的成岩演化历史;二是根据各类烃包裹体的观测分析资料,剖析油气生成—运移—聚集的成藏信息(赵桂萍,2017)。

    本文利用流体包裹体分析技术,厘定了陕北地区长8成藏年代时间,结合该区热演化史和埋藏史,对油藏聚集的规律进行分析,明确了下一步勘探的主要方向。

    沉积物沉积、成岩演化各阶段形成的新生矿物、矿物加大边、碎屑矿物裂隙的愈合面,以及矿物、岩石的重结晶等都可能捕获沉积、成岩环境中的介质流体,而所形成的各种包裹体记录着地质演化的历程信息。储层成岩自生矿物组构、相互包裹、穿插关系和形成时间序列,油气包裹体相态、形态、颜色、分布、均一温度和荧光特征等均记载了地质演化信息(赵彦德等,2016)。

    本次研究,共选择了陕北地区中生界延长组长8的12口井32个砂岩样品,岩性主要为岩屑长石砂岩,在中国石油兰州石油地质研究所实验研究中心进行了包裹体测温。受包裹体分布的影响,在23个样品薄片中检测到了油包裹体,并对荧光光谱和均一温度进行测试。

    流体包裹体透光和荧光分析在MPV-SP显微镜光度计上进行。其中,流体包裹体均一化温度测试对象主要为石英次生加大边和方解石胶结物中与油包裹体共生的盐水包裹体,若无油气包裹体,则选择盐水包裹体测量。

    目前对包裹体荧光光谱进行定量描述的参数主要有主峰波长和红绿商两种。其中,主峰波长(λmax)指最大荧光强度(Imax)所对应的发射波长,它随着小分子成分含量的增加,成熟度增大,荧光会发生明显的“蓝移”,光谱主峰波长减小;反之,光谱主峰波长增大;红绿商(QF535和Q650/500)指荧光颜色中红色部分与绿色部分的比值,可以定量化描述荧光光谱形态和结构。QF535为发射波长535~750 nm范围内的积分面积与发射波长430~535 nm范围内的积分面积之比,Q650/500为650 nm波长处荧光强度与500 nm波长处荧光强度的比值。QF535和Q650/500值越大,反映石油的成熟度越低,反之,成熟度越高(付金华等,2017)。

    本次实验由于游离烃荧光强度较弱,无法进行光谱特征测试,重点对石英、长石和碳酸盐胶结物等不同宿主矿物内的包裹烃进行荧光光谱特征分析。结果表明,长石包裹体烃的主峰波长值最大,为477.2~532.8 nm,平均494.2 nm,石英包裹体烃较小,主峰波长为472.0~529.1 nm,平均为488.4 nm,碳酸盐胶结物中包裹体烃最小,主峰波长为459.3~ 488.0 nm,平均为477.0 nm。红绿商在长石包裹体中平均值为0.208,在石英包裹体中为0.194,在碳酸盐胶结物烃中为0.173(表 1)。因此,不同包裹体烃的荧光光谱主峰波长和红绿商参数变化趋势一致,长石和石英包裹体烃的数值较大且差距不大,而碳酸盐胶结物烃值最小。

    表  1  陕北地区长8储集层部分包裹体荧光光谱参数特征
    Table  1.  Characteristics of fluorescence spectrum parameters of inclusions in Chang 8 reservoir in northern Shaanxi
    下载: 导出CSV 
    | 显示表格

    根据镜下薄片、扫描电镜等观察,陕北地区长8储集砂岩经历了多种成岩作用,压实作用中等—强压实程度,可见长石等碎屑颗粒紧密接触、颗粒定向排列或塑性岩屑变形,石英及长石颗粒的加大边现象普遍,高岭石含量较低,绿泥石分布形态以绿泥石环边、薄膜为主,长石和岩屑溶蚀普遍但发育程度不高,铁方解石及铁白云石胶结明显。研究区长8成岩序列可以概括为:压实作用→石英、长石次生加大→伊利石、高岭石沉淀→长石、岩屑溶蚀→高岭石胶结、自形石英微晶→铁方解石、铁白云石胶结(王维斌等,2017叶博等,2018)。

    在以上成岩作用序列基础上,对研究区长8储层中流体包裹体的物理相态、颜色、形态及分布情况进行镜下观察,长8储集层油气包裹体大致可分为早、晚两期,分别代表两次油气运移、成藏事件。第一期包裹体主要分布在石英碎屑颗粒的石英次生加大边以及石英颗粒内部裂隙,偏光下为褐色,无荧光或者很淡的黄色荧光,反映包裹体形成较早。第二期包裹体主要分布在切穿石英颗粒裂隙周缘,主要呈现成串的珠状定向分布,外形以椭圆或者不规则状为主。该期包裹体具有黄色荧光,荧光较强,形成时间相对较晚(图 2)。

    图  2  陕北地区长8储层包裹体镜下特征
    a—石英加大边中气液包体,Q108,1165.2 m;b—石英溶蚀孔隙中气液包体,Q108,1165.2 m;c—石英中气液包体,Q130,1712.3 m;d—长石中浅黄色气液包裹体(荧光),Q108,1165.2 m;e—石英晚期裂隙,烃类包裹体,X94,2209.5 m;f—石英晚期裂隙,有烃类充注(荧光),X94,2209.5 m;g—石英裂隙中的包裹体,S220,2046.4 m;h—石英裂隙中有机液+盐水包裹体,X85, 1907.3 m;i—石英裂隙中气液包裹体,Q130, 1712.3 m
    Figure  2.  Microscopic characteristics of inclusions in Chang 8 reservoir in northern Shaanxi
    a-Gas-liquid inclusion in quartz enlarged edge, Q108, 1165.2 m; b-Gas-liquid inclusions in quartz dissolution pores, Q108, 1165.2 m; c-Gas-liquid inclusions in quartz, Q130, 1712.3 m; d-Light yellow gas-liquid inclusions in Feldspar (fluorescence), Q108, 1165.2 m; e-Inclusions in quartz fractures, X94, 2209.5 m; f- Inclusions in quartz fractures with hydrocarbon filling (fluorescence), X94, 2209.5 m; g-Inclusions in quartz fractures, S220, 2046.4 m; h-Inclusions of organic liquid and brine in quartz fractures, X85, 1907.3 m; i-Gas-liquid inclusions in quartz fractures, Q130, 1712.3 m

    早期包裹体其物理相态主要有气态烃+液态烃+少量盐水、气态烃+液态烃和纯液态烃3种。气液比较大,颜色为黑色或深褐色;气态烃呈灰色,在包裹体中央部位;液态烃为黄褐色,半透明;盐水无色透明,分布在包裹体边缘。这类包裹体形态为近圆形、椭圆状,部分为不规则状,常常见于溶蚀孔隙中,沿早期裂隙呈串珠状分布,形成于沉积埋藏之后。

    晚期油气包裹体物理相态主要包括气态烃+液态烃+大量盐水及气态烃+大量盐水2种。所捕获的油气包裹体较大,其包裹体形态主要为椭圆型和不规则状,多呈串珠状分布。油、气、水3种相态边界清晰可见。这类包裹体主要分布在晚成岩阶段的裂隙,同时在晚期硅质胶结物和亮晶方解石胶结物中也可见,荧光颜色较浅,反映出有机质流体中烃类含量相对较低(时保宏等,2012)。

    陕北地区长8储层中的两期油气包裹体主要分布在与多期构造运动有关的构造裂隙和溶蚀孔隙中,燕山运动和喜山运动两期裂隙形成(曾联波等,2007郭川等,2009)与当时的构造活动息息相关,而构造活动是成岩作用和油气形成以及运移成藏的主要因素。因此,两期油气包裹体分别代表了研究区两次油气运移成藏过程,油气运移与早、晚期构造活动有关(万永平等,2010张莉等,2019)。

    流体包裹体均一温度是指气-液两相流体变为单一均匀相流体时所需的温度,烃类包裹体由于甲烷的存在容易散失氢离子,从而改变包裹体的成分,造成所测的均一温度与捕获时的均一温度不同。与烃类包裹体同幕的盐水包裹体均一温度分布不仅可以用来作为古温度的近似值和热事件的标志,而且还可以用作油气成藏幕次划分的有效依据,是了解流体古温度、推测盆地古地温和热演化史的主要依据。盐水包裹体分幕依据有两点原则:一是具有相同产状和相似气/液比的流体包裹体组合;二是相似产状和相似气/液比包裹体内部均一温度大致按15℃间隔分幕(陶士振,2006)。因此,与烃包裹体共生的盐水包裹体能够提供自生矿物结晶时古地层流体的温度,利用流体包裹体均一温度作分析研究时,通常采用的都是盐水包裹体(陈刚等,2012)。

    陕北地区长8储层流体包裹体类型主要包括盐水包裹体和含液态烃包裹体。本次在成岩自生矿物序次分析基础上,选取与油气包裹体相伴生的盐水包裹体测定其均一温度,以判别不同充注期形成的包裹体,测点数共计326个。统计数据后发现,储层包裹体均一化温度集中在80~140℃内(图 3),虽然分布范围较宽,但都主要存在85~105℃和115~135℃两个峰值区间,分布连续,表明油气为连续充注,整个充注过程未发生大的构造事件,而出现两个峰值说明该区烃类充注是一个由强到弱,再由弱到强的连续充注过程,为两期成藏过程(白玉彬等,2014)。

    图  3  陕北地区长8储层包裹体均一温度和盐度分布
    Figure  3.  Homogenization temperature and salinity of fluid inclusions in Chang 8 reservoir in northern Shaanxi

    流体包裹体盐度可反映沉积时流体的环境,通常开放系统中的流体盐度要低于封闭系统中的流体盐度,它的大小是根据流体包裹体中水溶液的冰点温度来测得计算的。结果表明,长8砂岩储集层包裹体盐度总体较低,呈不对称偏态分布,一般在1%~7%,盐度整体在1%~5%,分别有2%~3%和4%~5%两个峰值区间,也进一步证明了陕北长8砂岩储层存在两期流体包裹体。同时,流体包裹体盐度变化范围较广,说明地层流体交换作用很普遍。

    近些年来,流体包裹体广泛应用于油气成藏研究,尤其是基于流体包裹体测温与热演化史相结合间接确定油气成藏期次的研究,有力推进了油气成藏年代学的定量研究。

    受区域构造演化历史的控制,陕北地区中生代经历了多期次的构造运动,构造变形与燕山运动和喜马拉雅运动密切相关。盆地东缘的基本构造形态在燕山运动期形成,受到古太平洋板块与亚洲大陆俯冲产生的远程构造效应的影响,主要表现为NW-SE向挤压作用,区内发育一系列NE-NNE走向的开阔平缓的背斜带和单斜构造;新生代以来,由于印度板块向欧亚板块的碰撞和碰撞期后的陆内俯冲所产生的远程效应,盆地东缘古构造应力场挤压方向由燕山期的NW-SE向转变为NE-SW向(王锡勇等,2010赵振宇等,2012)。在鄂尔多斯盆地多旋回沉积与多阶段抬升改造的区域背景下,研究区中新生代经历了多期非匀速的快速沉降沉积过程与强度不等的构造抬升剥蚀事件(丁超等,2016)。

    目前利用流体包裹体分析是确定油气成藏时期的主要方法,它是将包裹体测温数据投射到沉积埋藏史与古地温场演化史图上,然后进一步确定地层流体达到相应温度的地质历史时间、地质年代。

    盆地热演化史控制着油气成藏时期,详细的埋藏史及热史恢复对油气成藏研究的不同方法得出的结果有限定作用,可以提高成藏期次研究的精度,使之更符合实际。地层埋藏史及其地层温度的演化过程史是包裹体定年的依据,将包裹体均一温度数据与盆地热史中温度的演化史进行对比,可以判定油气运移成藏的时间。研究区长8包裹体均一化温度主要分布在80~140℃,热演化埋藏史如图 4所示。

    图  4  陕北地区埋藏及热演化史
    Figure  4.  Burial and thermal evolution history in northern Shaanxi

    由包裹体均一温度分布特征来看,分布范围较宽,集中在85~105℃和115~135℃两个峰值区间,分别对应晚侏罗世—早白垩世。陕北地区主要发育长7烃源岩,从热演化历史的模拟结果看,侏罗纪晚期—白垩纪早期延长组烃源岩的 Ro值接近0.7%,达到生烃门限,可以大规模生烃。将构造演化史同油气包裹体宿主矿物与均一温度、Ro值结合起来,参照任战利等(2007)测定的鄂尔多斯盆地古地温梯度3.68℃/100 m和地表温度15℃计算,得出研究区延长组长8应为连续一期两幕成藏。结合长8地层埋藏−热演化史图,推测长8储层包裹体形成时间距今135~110 Ma,对应的地质时间为早期充注时间的晚侏罗世和大规模充注期的早白垩世两个时期,这也与前人对于鄂尔多斯盆地延长组油气成藏时期的研究相吻合(任战利,1996柳益群等,1997)。

    成藏模式是对具有代表性油藏特征的油气成藏作用充分而且高度的概括与归纳,在同一成藏模式中的油藏应该具有相似的成藏作用和成藏特征。成藏模式是在充分解剖典型油气藏、明确油藏形成条件和成藏特征的基础上建立的,对指导下一步勘探方向具有启示意义。

    陕北地区成藏地质条件主要包括烃源岩展布与厚度、剩余压力、沉积砂体、储层物性、顶面构造等因素(陈世加等,2012王奇等,2018),如果各成藏地质条件及生油关键时刻配置良好,就能形成有利的油气富集区。由以上埋藏和热演化史分析可知,陕北地区在早白垩世最大生排烃阶段构造相对稳定,生成的油气不易被后期构造破坏,是形成大型油气藏的有利条件,因而影响该区石油富集的最主要的因素为烃源岩、储层及充注动力等因素。本次从烃源岩出发,以包裹体充注时间为纽带,以输导体系为重点,建立陕北地区长8石油成藏模式。

    烃源岩是油气生成的物质基础。鄂尔多斯盆地三叠系延长组长7、长9暗色泥岩为该区主要烃源岩(图 5),长9烃源岩在志丹一带局限分布(师磊等,2011)。两种烃源岩相比较,最有利的生烃来源仍然是长7,其有机母质类型为Ⅰ~Ⅱ1型,有机质丰度4.10%~9.23%,镜质体反射率Ro为0.8~1.4,处于成熟阶段,厚度为10~35m,具有机质丰度高、类型好的特征。研究区长8油藏是最有利于石油富集的层位,其分布主要受生烃中心的展布以及厚度控制,即距长7生烃中心越近,成藏越好,越远则越差,长7、长9泥岩厚度分布在平面存在差异,因此暗色泥岩厚度大的地区往往是有利的勘探目标区。

    图  5  陕北地区长7、长9烃源岩与长8油藏分布图(据任瑞清等,2017
    Figure  5.  Source rock distribution in Chang 7 and Chang 9 and reservoir distribution in Chang 8 in northern Shaanxi (modified from Ren Ruiqing et al., 2017)

    延长组长8为三角洲沉积体系,三角洲前缘水下分流河道砂体和三角洲平原分支河道砂体发育,局部砂体具有厚度大,连片性强的特点。储层特征也是制约石油聚集的关键因素,其主要受沉积环境的控制,现今陕北地区长8砂岩储层压实和胶结作用是储层致密化的重要原因。结合埋藏史,从晚侏罗世研究区进入快速埋深压实阶段,原生孔隙迅速降低,在早白垩世埋深达到最大。长7、长9烃源岩生成的石油选择物性相对较好的储层聚集成藏。通过统计,吴起地区砂岩储层平均孔隙度为8.9%,渗透率平均为0.25×10-3μm2,高桥—西河口地区储层平均孔隙度为7.2%,渗透率平均为0.16×10-3 μm2,前者工业井明显多于后者,很好地验证了以上由于储层物性变化明显,油气差异聚集的结论。

    从油包裹体分析来看,研究区砂岩储层普遍具有含油气荧光显示,只是荧光颜色有区别,反映了油气充注强弱不同。本文利用含油包裹体颗粒指数(GOI=含油包裹体颗粒数/颗粒总数×100%)对陕北地区长8充注程度进行了分析,该指数用于识别古油藏及石油运移路径等,储层石油包裹体丰度大于5%则为油层或古油层,小于5%为低充注或主要输导层(陈梦娜等,2018)。由于样品数量限制,只对7个含油包裹体样品做了GOI分析,其中有3个GOI值大于5%,都分布在吴起一带,说明该区总体石油充注强度较大,但在其他地区GOI值小于5%,分析认为可能是由于距离长7主力烃源岩远,长9生烃能力有限,储层非均值影响,石油充注程度不高,长8储层中滞留大量地层水,测试过程中往往产水(图 6)。

    图  6  吴起地区X199井长8段GOI值纵向分布图
    Figure  6.  Vertical distribution of GOI value in Chang 8 section of well X199 in Wuqi area

    鄂尔多斯盆地中生界延长组砂岩主要为低渗透储层,前人通过对运移动力的研究,认为影响该区油气大规模成藏的主要动力为由于泥岩欠压实作用形成的过剩压力(楚美娟等,2013姚泾利等,2015),长7烃源岩生成的油气在过剩压力驱动下,通过近源叠置的砂体和周围裂缝向下运移至长8砂岩储层成藏,甚至运移至下覆长9、长10地层。在典型油气藏解剖的基础上,综合油藏分布、类型、输导体系、充注程度等因素,认为长8原油主要富集在邻近烃源岩的相对高孔高渗的水下分支河道、河口坝等砂体中,其中西部(吴起—顺宁)长8原油来自上覆长7烃源岩,东部(志丹—高桥)长8原油主要来自于原地下伏长9烃源岩,具有“双源供烃,差异聚集”的成藏特点(图 7)。

    图  7  陕北地区延长组长8-长9石油成藏模式图
    Figure  7.  Oil accumulation pattern of Chang 8-9 of Yanchang Formation in northern Shaanxi

    (1)长8砂岩储层中的流体包裹体主要分布于细砂岩的石英加大边或裂隙中,以气液烃包裹体、气液两相盐水包裹体为主,可分为早、晚两期,与气液烃包裹体伴生的盐水包裹体均一温度主要存在85~105℃和115~135℃两个峰值区间,分布范围广,油气为连续充注。

    (2)陕北地区长8石油充注的主要时期为110~135 Ma,分别为晚侏罗世的早期充注和早白垩世的大规模充注两个时期。主要发育长7烃源岩,晚侏罗世—早白垩世期间延长组烃源岩的Ro值均接近1.0%,达到生烃门限,可以大规模生烃,长9烃源岩在志丹地区局部分布。

    (3)陕北长8油藏受烃源岩、储层及充注动力等因素控制,发育岩性油藏,在平面上分布不均匀。西部吴起—顺宁地区长8含油包裹体颗粒指数GOI值多大于5,油藏相对东部志丹—高桥地区分布更多,区域上具有“双源供烃、差异聚集”的成藏特点。

  • 图  1   研究区赛汉期沉积相图

    1—铀工业孔;2—铀矿化孔;3—铀异常孔;4—超大型泥岩型铀矿床;5—铀矿点;6—凹陷边界;7—河道;8—河道砂;9—心滩;10—湖相;11—过渡相;12—陆相;13—采样孔位

    Figure  1.   Sedimentary facies map of Saihan period in the study area

    1−Uranium industrial hole; 2−Uranium mineralization hole; 3−Uranium anomaly hole; 4−Super large mudstone type uranium deposit; 5−Uranium ore occurrence; 6−Sag boundary; 7−River channel; 8−River channel sand; 9−Heart beach; 10−Lake facies; 11−Transition facies; 12−Continental facies; 13−Sampling hole locations

    图  2   铀矿物赋存状态

    a—铀石与草莓状黄铁矿共生充填于炭屑细胞腔内;b—产于碎屑颗粒间的草莓状黄铁矿与铀石或沥青铀矿共生:c—草莓状黄铁矿集合体与铀石共生;d—铀石与闪锌矿共生;e—铀石成分图;f—沥青铀矿成分图;C—炭质;Si—石英;Py—黄铁矿;Cof—铀石;Spn—闪锌矿

    Figure  2.   Occurrence state of uranium minerals

    a−Uranite and strawberry pyrite coexist and fill the cavity of carbon debris cells; b−Strawberry pyrite produced between clastic particles is symbiotic with uranite or pitchblende; c−Strawberry pyrite aggregate is symbiotic with uranite; d−Symbiosis of uranite and sphalerite; e−Diagram of Uranium ore composition; f−Diagram of pitchblende composition; C−Carbonaceous; Si−Quartz; Py−Pyrite; Cof−Uranite; Spn−Sphalerite

    图  3   额仁淖尔凹陷赛汉组不同类型砂(泥)岩主量元素平均值趋势图

    Figure  3.   Trend graph of average content of major elements in different kinds of Saihan Formation sandstone (mudstone) in Erennur Sag

    图  4   研究区赛汉组砂(泥)岩稀土配分模式图(北美页岩标准化数据来自于Haskin and Haskin, 1966

    Figure  4.   REE distribution patterns of sandstone (mudstone) of Saihan Formation in the study area (North American shale standardization data from Haskin and Haskin, 1966)

    图  5   研究区赛汉组砂(泥)岩环境参数平均值变化趋势图

    Figure  5.   Variation trend of average environmental parameters of sandstone (mudstone) of Saihan Formation

    图  6   研究区赛汉组砂(泥)岩A−CN−K图解(底图据Fedo et al., 1995

    T-英闪岩;Gr-花岗闪长岩;A-石英二长岩;G-花岗岩

    Figure  6.   A−CN−K triangle diagram for the sandstone (mudstone) of Saihan Formation in the study area (base map after Fedo et al., 1995)

    T−Tonalite; Gr−Granodiorite; A−Quartz monzonite; G−Granite

    图  7   额仁淖尔凹陷赛汉组砂(泥)岩及蚀源区花岗岩稀土元素配分图(球粒陨石标准化数据据Sun and McDonough, 1989;蚀源区花岗岩来自于未发表数据)

    Figure  7.   The distribution of rare earth elements in the Saihan Formation sandstone (mudstone) and granites in erosion source area in Erennur Sag (The chondrite−normalized data according to Sun and McDonough, 1989; the granite data in the erosion source area is unpublished)

    图  8   额仁淖尔凹陷赛汉组砂(泥)岩主量元素构造环境判别图解(底图据Roser and Korsch,1986

    OIA—大洋岛弧;CIA—大陆岛弧;ACM—活动大陆边缘;PM—被动大陆边缘

    Figure  8.   Major elements discrimination diagram of the Saihan Formation sandstone (mudstone) for tectonic setting in Erennur Sag (base map after Roser and Korsch, 1986)

    OIA−Oceanic island arc; CIA−Continental island arc; ACM−Active continental margin; PM−Passive continental margin

    表  1   额仁淖尔凹陷砂(泥)岩主量元素测试结果(%)

    Table  1   Results of major elements of sandstone (mudstone) in Erennur Sag (%)

    样品编号铀矿化砂岩铀矿化泥岩氧化砂岩原生砂岩原生泥岩
    N463-319-U21N22-139-U9N85-3-U5N6-13-U8N463-319-U22N6-13-U12N85X-U5N399-159-U9N85X-U3351-U4N80-U3N6-13-H2N85-4-H4N6-13-H1N85-1-H2N85-1-H1N85-1-H3N85-5-H1N6-13-U16N6-13-U10N6-13-U11N80-U2
    SiO267.8763.1166.9460.7668.1660.7565.5962.0564.5762.4158.3969.4471.9669.371.4379.0673.9571.6955.1261.8557.3960.91
    Al2O315.1516.7417.2418.2313.631713.214.3813.7616.1714.9614.8513.5115.6914.5310.5813.7114.2514.5814.218.6914.98
    MgO0.21.260.631.730.431.570.620.970.651.62.010.440.390.480.470.310.240.381.480.991.952.07
    CaO4.450.820.850.862.41.60.450.760.480.861.271.220.770.870.810.540.870.635.533.311.22
    Na2O2.383.442.82.393.362.462.032.792.092.971.752.722.572.882.531.553.172.0622.562.321.96
    K2O3.283.623.143.73.553.523.783.683.913.533.764.34.244.413.83.773.883.8433.83.53.59
    P2O50.050.120.060.150.070.160.050.140.060.170.390.060.070.050.030.020.090.030.430.150.130.29
    MnO0.080.060.020.030.050.10.030.020.020.030.040.040.020.030.010.010.010.010.740.220.360.05
    TiO20.230.740.50.730.310.650.430.440.490.610.650.450.40.410.320.20.190.340.540.410.690.65
    FeO0.932.281.55 1.04 2.031.222.021.261.34 2.74 3.82.482.034.03   1.01
    Fe2O31.442.182.365.820.985.380.891.670.981.942.532.453.12.552.821.621.752.165.074.396.832.73
    TFe2O32.474.71  2.14 3.153.033.223.344.02     4.01    3.85
    SO30.590.25  1.3 0.711.741.040.671.57          2.04
    LOI3.634.440.535.563.997.099.389.419.277.0310.553.050.063.060.310.060.320.1311.097.37.177.75
    H3O+  35.42 4.64     2.41.822.582.421.741.323.185.33.726.08 
    H2O  6.61         0.385 0.720.460.370.64    
    下载: 导出CSV

    表  2   额仁淖尔凹陷砂(泥)岩稀土元素测试结果(10−6

    Table  2   Results of REE in sandstone (mudstone) in Erennur Sag (10−6)

    样品编号 氧化砂岩 铀矿化泥岩 铀矿化砂岩 原生砂岩 原生泥岩
    N6-13-H1 N6-13-H2 N85-4-H4 N6-13-U12 N85X-U3 N85X-U5 N399-159-U9 N80-U3 N22-139-U9 N351-U4 N463-319-U21 N463-319-U22 N85-3-U5 N6-13-U8 N399-159-U6 N80-U2 N6-13-U16 N6-13-U11 N85-1-H1 N85-1-H2 N85-3-U1 N85-3-U4 N22-55X-H1
    La 41.5 51.5 35.4 58.9 38.4 29.2 31.8 44.6 56.4 45.7 24.9 28.9 47.3 70.8 45.1 46.4 56.9 75.6 19.5 42.5 27.1 19.8 61.7
    Ce 77.1 97.5 76.2 109 72 54.6 50.1 91.6 105 86.6 45.8 70 91.1 129 85.4 93.1 106 139 42.3 84.2 49.8 36.3 116
    Pr 9.48 11.6 6.94 12.9 7.73 5.63 5.74 9.87 11.7 9.61 4.76 8.38 12 17 9.3 10 13 15.6 2.91 8.19 6.77 4.8 14.9
    Nd 31.5 37.8 24.5 42.5 24.8 17.5 19.1 34.2 37.7 32.4 16 27.4 38.1 55.4 30.2 34.9 42.6 50.8 14.4 27.9 21.2 15.5 50.3
    Sm 5.65 6.66 3.89 7.07 3.79 2.85 3.96 6.7 6.53 6.5 3.29 4.41 6.05 10.5 5.57 6.75 7.78 9.09 2.27 4.74 3.29 2.51 8.45
    Eu 1.33 1.24 1 1.49 0.68 0.62 0.67 1.16 1.22 1.04 0.74 0.73 1.4 2.33 0.95 1.15 1.66 1.86 0.66 1.07 0.9 0.8 1.71
    Gd 5.71 6.3 3.87 6.62 3.26 2.37 3.77 5.84 6.05 5.78 2.94 3.94 6.03 11.2 4.84 5.85 7.93 8.64 2.06 4.5 3.19 2.6 8.12
    Tb 0.93 0.93 0.54 0.99 0.31 0.26 0.46 0.74 0.82 0.73 0.38 0.47 0.96 1.81 0.61 0.72 1.15 1.24 0.34 0.63 0.46 0.43 1.21
    Dy 4.66 4.47 2.37 4.8 1.63 1.41 2.98 4.68 5.39 4.58 2.49 2.6 5.06 9.38 3.75 4.52 5.68 5.45 1.54 2.69 2.32 2.41 5.9
    Ho 0.94 0.9 0.49 0.99 0.26 0.23 0.5 0.87 1.02 0.79 0.43 0.46 0.96 1.94 0.67 0.78 1.2 1.1 0.32 0.52 0.42 0.49 1.17
    Er 2.9 2.71 1.45 2.93 0.78 0.69 1.51 2.63 2.86 2.4 1.25 1.38 2.85 5.87 1.97 2.45 3.33 3.37 0.97 1.48 1.27 1.46 3.7
    Tm 0.42 0.37 0.25 0.42 0.1 0.1 0.23 0.37 0.41 0.34 0.18 0.2 0.44 0.75 0.3 0.35 0.46 0.44 0.15 0.23 0.2 0.23 0.52
    Yb 2.48 2.27 1.6 2.38 0.83 0.68 1.46 2.62 2.77 2.49 1.31 1.4 3.01 4.28 2.29 2.46 2.8 2.67 1 1.41 1.45 1.53 3.22
    Lu 0.39 0.4 0.24 0.42 0.11 0.096 0.22 0.35 0.39 0.35 0.17 0.19 0.44 0.72 0.34 0.32 0.46 0.44 0.16 0.22 0.22 0.23 0.55
    Y 24.1 23.6 12.5 23.4 8.41 7.17 19.3 30.5 36.1 28.8 15.6 17.3 27.9 47.2 23.9 26.3 27 26.7 8.74 14.2 16.7 21.1 30
    ΣREE 184.99 224.65 158.74 251.41 154.68 116.24 122.50 206.23 238.26 199.31 104.64 150.46 215.70 320.98 191.29 209.75 250.95 315.30 88.58 180.28 118.59 89.09 277.45
    LREE 166.56 206.30 147.93 231.86 147.40 110.40 111.37 188.13 218.55 181.85 95.49 139.82 195.95 285.03 176.52 192.30 227.94 291.95 82.04 168.60 109.06 79.71 253.06
    HREE 18.43 18.35 10.81 19.55 7.28 5.84 11.13 18.10 19.71 17.46 9.15 10.64 19.75 35.95 14.77 17.45 23.01 23.35 6.54 11.68 9.53 9.38 24.39
    LREE/HREE 9.04 11.24 13.68 11.86 20.25 18.92 10.01 10.39 11.09 10.42 10.44 13.14 9.92 7.93 11.95 11.02 9.91 12.50 12.54 14.43 11.44 8.50 10.38
    La/Yb) N 1.58 2.14 2.09 2.33 4.36 4.05 2.05 1.61 1.92 1.73 1.79 1.95 1.48 1.56 1.86 1.78 1.92 2.67 1.84 2.84 1.76 1.22 1.81
    δEu 1.10 0.90 1.21 1.02 0.91 1.12 0.81 0.87 0.91 0.80 1.12 0.82 1.09 1.01 0.86 0.86 0.99 0.99 1.43 1.09 1.30 1.47 0.97
    δCe 0.92 0.95 1.15 0.94 0.99 1.01 0.88 1.04 0.97 0.98 1.00 1.07 0.91 0.88 0.99 1.03 0.92 0.96 1.33 1.07 0.87 0.88 0.91
    下载: 导出CSV

    表  3   额仁淖尔凹陷砂(泥)岩伴生元素地球化学测试结果(10−6

    Table  3   Geochemical test results of associated elements of sandstone (mudstone) in Erennur Sag (10−6)

    样品编号 原生砂(泥)岩 铀矿化砂岩 铀矿化泥岩
    N6-13-U13 N6-13-U15 N85-3-U4 N85-4-U2 N6-13-U9 N22-55X-U2 N6-13-U10 N6-13-U6 N85-3-U3 N80-U2 N399-159-U6 N351-U3 N463-319-U21 N22-139-U9 N85-3-U5 N6-13-U8 N463-319-U22 N85-4-U7 N85X-U3 N85X-U5 N399-159-U9 N80-U3 N6-13-U11 N351-U4
    U 7.79 12.2 13.2 15.6 21.3 25.5 27.2 38.8 42.3 42.6 46.9 49.9 120 142 344 558 942 1100 102 230 136 114 364 108
    V 3.41 10.5 5.59 47.9 6.76 11.5 12.4 9.63 11.8 90.6 53.4 70.4 17.8 75.8 7.03 14.7 23 58.5 59.3 54.5 56.2 158 10.5 55.9
    Ga 9.82 16.6 15.2 22.2 15.5 20.9 23.3 17.8 32.8 20.8 27.5 25.4 16.5 24.5 27.8 24.5 19.3 25.2 20.6 19 22.8 21.5 18.5 24.1
    Sc 25.3 57.2 15 12.1 41.7 61.5 80.6 54.8 104 11.3 7.81 10.2 2.46 10.7 72 88 3.69 14.9 7.37 6.17 6.78 13.2 65.6 9.58
    Mo 1.89 3.6 1.18 1.77 3.65 1.1 0.86 0.51 1.64 3.45 13.5 2.53 3.83 1.52 2.05 1.35 6.64 230 1079 1040 33.5 4.04 1.39 2.71
    Re       0.005           0.095 0.11 0.17 0.089 0.12     0.19 0.018 0.089 0.089 0.089 0.13   0.2
    Ge 0.17 0.35 2.8 0.96 0.28 1.23 0.74 1.04 4.45 1.18 1.29 4.5 2.48 2.01 6.32 1.47 5.14 8.1 16.1 22.5 0.62 1.19 0.41 6.89
    Se 1 1.35 0.13 0.16 1.36 0.19 1.36 1.07 11.1 0.49 0.17 21.6 3.85 0.13 2.43 0.31 1.7 0.18 0.58 0.51 0.83 3.1 1.5 31.9
    下载: 导出CSV

    表  4   额仁淖尔凹陷砂(泥)岩环境地球化学测试结果

    Table  4   Environmental geochemical test results of sandstone (mudstone) in Erennur Sag

    样品编号 泥岩型铀矿石 砂岩型铀矿石 氧化砂岩 原生砂岩 原生泥岩
    N351-U8 N463-319-U5 N85X-U5 N351-U18 N85X-U4 N85X-U1 N463-319-U22 N463-319-U11 N463-319-U19 N85X-U7 N463-319-U29 N351-U16 N463-319-H15 N22-139-U6 N463-319-U14 N463-319-U26 N85X-H9 N85X-H12 N80-U1 N85-1-U1 N85-1-U9 N80-H1 N85X-U8
    U 179 204 230 1220 2577 571 942 155 156 239 287 4.72 6.73 10.1 11.3 11.8 2.78 4.52 6.1 4.18 12.1 12.3 9.29
    Th 30.7 32.4 16.2 29.6 18.6 23 16.6 17.2 20.6 4.83 39.6 27.5 24.7 13.1 8.21   31.2 9 27 25.6 13.2
    Ra 4.33 4.81 22.4 13.8 58.2 15.5 18 3.62 3.15 5.27 9.66 0.74 0.803 0.649 0.438   1.46 0.14 0.54 0.689 0.616
    K 2.71 2.81 3.14 2.51 2.9 3.19 2.98 2.75 3.08 2.94 2.87 2.85 3.24 2.95 2.72   2.74 3.26 2.75 3.23 3.41
    C 1.04 0.04 3.33 0.9 1.6 1.49 0.39 0.04 0.03 0.05 0.26 0.1 0.05 0.15 0.06 0.03 0.07 0.44 0.06 0.077 1.11 0.19 0.49
    CO2 0.45 0.54 0.11 0.61 0.05 0.07 1.41 2.65 0.37 8.51 0.33 0.29 0.29 0.26 0.4 0.21 0.13 0.17 0.38 <0.50 <0.50 1.73 0.07
    S 0.4 0.94 0.45 0.092 1.08 0.56 0.35 0.43 0.52 1.64 0.48 0.016 0.067 0.071 0.53 0.39 0.014 0.02 0.11 0.13 0.065 0.4 0.17
    Fe2+ 1.11 0.79 0.93 1.22 1.34 0.74 0.47 0.39 0.52 0.23 0.54 0.39 0.61 0.77 0.43 0.32 0.15 0.25 0.29 0.5 0.5 0.69 0.2
    Fe3+ 1.99 2.53 0.78 2.36 0.9 1.3 0.85 1.88 1.44 2.11 1.8 2.29 1.19 1.68 1.62 1.51 1.97 1.18 3.62 1.09 2 2.12 0.78
    Fe3+/Fe2+ 1.8 3.2 0.8 1.9 0.7 1.8 1.8 4.8 2.8 9.2 3.3 5.9 2 2.2 3.8 4.7 13.1 4.7 12.5 2.2 4 3.1 3.9
    S2- 72.84 49.1 10.64 13.91 52.7 1.96 18 33.55 15.71 43.38 46.98 4.58 9.49 18.99 17.02 15.22 1.31 4.18 11.78 37.5 21.5 30.33 8.51
    Eh值 682 700 645 695 643 656 700 715 708 701 699 727 715 708 701 708 731 705 712 712 668 694 691
    ∆Eh值 64 46 103 51 103 90 46 31 38 45 47 19 31 38 45 38 15 39 34 32 75 52 55
    pH 8.8 9.65 6.85 9.1 5.9 7.7 9.4 9.86 9.76 8.5 9.68 9.16 9.61 9.4 9.77 9.8 9.5 9.7 9.45 9.22 9.03 9.4 8.8
    下载: 导出CSV

    表  5   额仁淖尔凹陷砂(泥)岩价态U测试结果(10−6

    Table  5   Valence U test results of sandstone (mudstone) in Erennur Sag(10−6)

    岩性 样品编号 U U6+ U4+ U6+/U4+
    泥岩 ZKN85-1-U9 12.1 6.26 5.83 1.07
    ZKN85-1-U7 23 10.6 12.4 0.85
    ZKN85-1-U3 51 23.1 28 0.83
    YZK399-159-U8 110 52.9 56.8 0.93
    ZK淖80-U7 122 72.2 49.8 1.45
    ZK淖85X-U6 187 100 87 1.15
    ZK淖80-U4 350 65.2 285 0.23
    砂岩 ZK淖85X-U1 571 329 242 1.36
    YZK399-159-U7 624 417 207 2.01
    ZK淖85X-U4 2577 512 2065 0.25
    ZK351-U11 55.5 19.8 35.7 0.55
    YZK463-319-U27 66.8 16.3 50.5 0.32
    YZK463-319-U22 942 328 614 0.53
    YZK463-319-U21 120 65.2 54.8 1.19
    ZK淖22-139-U2 154 40 114 0.35
    ZK淖22-139-U3 118 38.7 79.3 0.49
    下载: 导出CSV
  • [1]

    Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 91(6): 611−627. doi: 10.1086/628815

    [2]

    Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks. Provenance and tectonic control[J]. Sedimentary Geology, 45(1/2): 97−113. doi: 10.1016/0037-0738(85)90025-9

    [3]

    Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 92(2): 181−193. doi: 10.1007/BF00375292

    [4]

    Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M, Zhu R. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia)[J]. Gondwana Research, 24: 412−428. doi: 10.1016/j.gr.2012.10.011

    [5]

    Chen Junqiang, Zeng Wei, Wang Jiaying, Ma Liang, Yang Jun. 2021. Analysis of supply and demand situation of uranium resources in the world and China[J]. North China Geology, 44(2): 25−34 (in Chinese with English abstract).

    [6]

    Chen Lulu, Tang Chao, Li Jianguo, Zhong Yanqiu, Gu Shefeng, Wei Jialin, Xiao Peng, Xu Zenglian, Zeng Hui, Liu Huajian, Chen Yin. 2018. Petrology characteristics of the uranium−bearing layer of Sifantai Formation in Daqing placanticline of Songliao basin and their geological implications[J]. Geological Survey and Research, 161(1): 33−39 (in Chinese with English abstract).

    [7]

    Chen Zhaobo, Chen Zuyi, Li Shengxiang. 2003. Comparison of metallogenic geological characteristics between interlayer oxidation zone sandstone type and paleovalley sandstone type uranium deposits[J]. Word Nuclear Geoscience, 20(1): 1−10 (in Chinese with English abstract).

    [8]

    Cheng Yinhang, Jin Ruoshi, Cuney M, Petrov V A, Miao Peisen. 2024. The strata constrainton large scale sandstone-type uranium mineralization in Meso-Cenozoic basins, northern China[J]. Acta Geologica Sinica, 1–25. https://doi.org/10.19762/j.cnki.dizhixuebao.2023299 (in Chinese with English abstract).

    [9]

    Ding Bo, Liu Hongxu, Zhang Bin, Yi Chao, Liu Hongjun, Wang Gui, Ren Zhiyong. 2020. The formation mechanism of Tabular orebody of sandstone−type uranium in the northern Ordos Basin: Constraints on the study of kaolinite content from different zones of ore−bearing sandstone[J]. Acta Geologica Sinica, 94(10): 80−88 (in Chinese with English abstract).

    [10]

    Fan Xiujun, Nie Fengjun, Chen Yiping, Wang Wei. 2008. Discussion on age and paleogeographical environment of ore bearing strata for sandstone type uranium deposits in Bayanwula area, Erlian basin[J]. Uranium Geology, 24(3): 150−154 (in Chinese with English abstract).

    [11]

    Fedo C M, Nesbitt H W, Young G. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921−921. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    [12]

    Feng Lianjun, Chu Xuelei, Zhang Tonggang, Huang Jing. 2006. Liantuo sandstone: Sedimentary record of climate cooling before the great glacial age in Nanhua[J]. Acta Petrologica Sinica, (9): 141−147 (in Chinese with English abstract).

    [13]

    Feng Xiaoxi, Teng Xueming, Chen Lulu, Chen Yin, Zhao Hualei, Zhang Tianfu. 2023. Identification of provenance on uranium-bearing rocks from the Zhiluo Formation in the Nanlinggou uranium deposit, northern Ordos Basin[J]. Geology in China, 50(6): 1765−1787(in Chinese with English abstract).

    [14]

    Floyd P A, Leveridge B E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Comwall: Framework mode and geochemical evidence from Turbiditic sandstones[J]. Journal of the Geological Society, 144(4): 531−542.

    [15]

    Guo Hongwei. 2014. Study on Metallogenic Characteristics and Metallogenic Law of Bayan Wula Uranium Deposit, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing) (in Chinese).

    [16]

    Haskin M A, Haskin L A. 1966. Rare earths in European shales: A redetermination[J]. Science, 154: 507−509. doi: 10.1126/science.154.3748.507

    [17]

    Hu Junjie, Ma Yinsheng, Wu Yi, Li Zongxing, Peng Bo, Wei Xiaojie. 2019. Jurassic palaeoclimate evolution of the Qaidam Basin: Evidence from chemical weathering analyses[J]. Geological Journal of China Universities, 25(4): 548−557 (in Chinese with English abstract).

    [18]

    Hu Junjun, Nie Fengjun, Deng Juzhi, Kang Shihu. 2011. Study on occurrence state of sandstone type uranium deposit in Saihan Gaobi area, Erlian Basin[J]. Mining Technology, 11(2): 35−37 (in Chinese with English abstract).

    [19]

    Jaireth S, McKay A, Lambert I. 2008. Association of large sandstone uranium deposits with hydrocarbons[J]. AusGeo News, 89: 1−6.

    [20]

    Jaireth S, Roach I C, Bastrakov E, Liu S F. 2015. Basin−related uranium mineral systems in Australia: A review of critical features[J]. Ore Geology Reviews, 76: 360−394.

    [21]

    Jiang Zhe, Han Xiaozhong, Hu Hang, Wu Zhaojian, Li Zinan, Lai Qiang, Guo Peng. 2020. Geological characteristics and ore−forming process of the engeriyin large sandstone−type uranium deposit in the manite Sag, Erlian Basin[J]. Geotectonica et Metallogenia, 44(4): 184−195 (in Chinese with English abstract).

    [22]

    Jiao Guihao, Wang Tonghe, Xing Housong. 2003. Tectonic Evolution and Oil & Gas in the Erlian Basin[M]. Beijing: Petroleum Industry Press.

    [23]

    Jin R S, Feng X X, Teng X M, Nie F J, Cao H Y, Hou H Q, Liu H X, Miao P S, Zhao H L, Chen L L, Zhu Q, Zhou X X. 2020. Genesis of green sandstone/mudstone from Middle Jurassic Zhiluo Formation in the Dongsheng Uranium orefield, Ordos basin and its enlightenment for uranium mineralization[J]. China Geology, 3(1): 52−66. doi: 10.31035/cg2020002

    [24]

    Li Huaming, Li Ling, Yang Jianxin. 2015. Grain size characteristics of clasts in the upper Saihan Formation of Bayan Wula uranium deposit, Inner Mongolia[J]. Geological Review, 61(S1): 333−334 (in Chinese with English abstract).

    [25]

    Li Xide, Liu Jungang. 2020. Study on weathering feature of Wejing Pluton in Erlian Basin, Inner Mongolia[J]. Uranium Geology, 36(5): 14−23 (in Chinese with English abstract).

    [26]

    Li Yuexiang, Yu Jinshui, Qin Mingkuan, Chen Daisheng, Cao Jianying, Wei Sanyuan. 2009. Exploration orientation of leachable sandstone type uranium deposit in Erlian basin[J]. Uranium Geology, 25(6): 20−25 (in Chinese with English abstract).

    [27]

    Li Ziying, Chen Anping, Fang Xiheng, Ou Guangxi, Xia Yuliang, Sun Ye. 2010. Origin and superposition metallogenic model of the sandstone−type uranium deposit in the northeastern Ordos basin, China[J]. Acta Geologica Sinica, 82(4): 745−749.

    [28]

    Liu Dameng, Yang Qi, Zhou Chunguang, Tang Dazhen, Kang Xidong. 1999. Occurrence and geological genesis of Pyrites in Late Paleozoic coals in North China[J]. Geochimica, 28(4): 340−350 (in Chinese with English abstract).

    [29]

    Liu Hanbin, Xia Yuliang, Lin Jinrong, Fan Guang. 2004. Isotope geology of the sandstone type uranium deposit in Turpan−Hami Basin[J]. Acta Geoscientica Sinica, 25(2): 196−198 (in Chinese with English abstract).

    [30]

    Liu Jinhui, Sun Zhanxue. 2004. A new method to determine the position of sandstone type uranium ore−body−Water rock system Eh−pH method[J]. Journal of Jilin University(Earth Science Edition ), 34(1): 44−48 (in Chinese with English abstract).

    [31]

    Liu Wusheng, Kang Shihu, Jia Licheng, Shi Qingping, Peng Cong. 2013. Characteristics of paleo−valley sandstone type uranium mineralization in the middle of Erlian Basin[J]. Uranium Geology, 29(6): 328−335 (in Chinese with English abstract).

    [32]

    Liu Wusheng, Kang Shihu, Zhao Xingqi, Shi Qingping, Zhang Zinan. 2015. Metallogenic mechanism and prospecting direction of paleochannel sandstone type uranium deposit in the middle of Erlian Basin[J]. Uranium Geology, 31(1): 40−51 (in Chinese with English abstract).

    [33]

    Liu Wusheng, Zhao Xingqi, Kang Shihu, Shi Qingping, Zhang Zinan. 2018. Inversion structure and its relationship with sandstone type uranium metallization in Erlian Basin[J]. Uranium Geology, 34(2): 81−89 (in Chinese with English abstract).

    [34]

    Liu Xiaoxue, Tang Chao, Sima Xianzhang, Zhu Qiang, Li Guangyao, Chen Yin, Chen Lulu. 2016. Major elements geochemical characteristics of sandstone−type uranium deposit in north−east Ordos basin and its geological implactions[J]. Geological Survey and Research, 39(3): 169−176 (in Chinese with English abstract).

    [35]

    Lu Chao, Jiao Yangquan, Peng Yunbiao, Yang Jianxin, Chen Fazheng. 2016. Effect of the episodic rifting in the western Manite Sag in Erlian Basin on sandstone−type uranium mineralization[J]. Acta Geologica Sinica, 90(12): 3483−3491 (in Chinese with English abstract).

    [36]

    Lu Chao, Peng Yunbiao, Liu Xinyang, Jiao Yangquan, Yang Jianxin, Chen Fazheng, Shen Kefeng, Li Ronglin. 2013. Sedimentary backgrounds of sandstone type uranium deposits in Western Manite Sag of Erlian Basin[J]. Uranium Geology, 29(6): 336−343 (in Chinese with English abstract).

    [37]

    Lu Chao. 2019. Tectonic Ore Controlling Mechanism and Metallogenic Model of Bayanwula Uranium Ore Field in Erlian Basin[D]. Wuhan: China University of Geosciences (in Chinese with English abstract).

    [38]

    Luo Yi, He Zhongbo, Ma Hanfeng, Sun Xiang. 2012. Metallogenic characteristics of Qianjiadian sandstone uranium deposit in Songliao basin[J]. Mineral Deposits, 31(2): 391−400 (in Chinese with English abstract).

    [39]

    Mao Shidong, Yang Rongsheng, Qin Yan, Guo Junhua. 2009. Characteristics of gold−bearing mineral and occurrence of gold in the Yangshan gold feld, Gansu Province[J]. Acta Petrologica Sinica, 25(11): 2776−2790 (in Chinese with English abstract).

    [40]

    McLennan S M, Hemming S R, Taylor S R, Eriksson K A. 1995. Early Proterozoic crustal evolution: Geochemical and Nd Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 59(6): 1153−1177. doi: 10.1016/0016-7037(95)00032-U

    [41]

    McLennan S M, Taylor S R, McCulloch M T, Maynard J B. 1990. Geochemical and Nd−Sr isotopic composition of deep−sea turbidites: Crustal evolution and plate tectonic associations[J]. Geochimica et Cosmochimica Acta, 54(7): 2015−2050. doi: 10.1016/0016-7037(90)90269-Q

    [42]

    Miao Peisen, Chen Yin, Cheng Yinhang, Zhao Hualei, Chen Lulu, Li Jianguo, Jin Ruoshi, Tang Chao, Yu Reng’an, Yang Tao, Hu Yongxing. 2020. New deep exploration discoveries of sandstone−type Uranium deposits in North China[J]. Geotectonica et Metallogenia, 44(4): 563−575 (in Chinese with English abstract).

    [43]

    Min Maozhong, Peng Xinjian, Wang Guo, Yin Jianhua. 2006. Existing state of uranium in ore from interlayer oxidation zone sandstone−hosted uranium deposits, NW China[J]. Uranium Geology, 22(4): 193−201 (in Chinese with English abstract).

    [44]

    Nesbitt H W, Young G M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0

    [45]

    Nie Fengjun. 2010. Paleochannel Sandstone Type Uranium Deposit in Erlian Basin[M]. Beijing: Geological Publishing House(in Chinese).

    [46]

    Nie Fengjun, Chen Anping, Hu Qinghua, Shen Kefeng, Qin Minkuan, Li Mangen, Li Meizhu. 2007. Discussion on the Early Cretaceous sandstone type uranium deposits, Erlian Basin, Inner Mongolia[J]. Journal of Stratigraphy, 31(3): 272−279 (in Chinese with English abstract).

    [47]

    Nie Fengjun, Lin Shuangxing, Yan Zhaobin, Rao Minghui, Zhang Chengyong, Yan Yongjie. 2010. Hydrothermal mineralization of uranium in sandstone, Teguida, Niger[J]. Acta Geoscientica Sinica, 31(6): 819−831 (in Chinese with English abstract).

    [48]

    Nie Fengjun, Yan Zhaoshan, Li Manyin, Peng Yunbiao, Xia Fei. 2019. Multi Type Uranium Deposit in Erlian Rift Basin[M]. Beijing: Geological Publishing House (in Chinese).

    [49]

    Peng Yunbiao, Jiao Yangquan, Zhang Jindai, Kang Shihu. 2015. Synsedimentary Mudstone-Type Uranium Deposit – Analysis of the typical Nuheting super-large uranium deposit in the Erlian Basin [M]. Beijing: Geological Publishing House (in Chinese).

    [50]

    Peng Yunbiao, Li Huaming, Li Ling, Kang Shihu. 2018. Influence of paleoclimate transition on the mineralization of sandstone−type uranium deposit: A case study of 2081 uranium deposit in the Erlian Basin, Inner Mongolia China[J]. Acta Minerailogica Sinica, 38(5): 490−498 (in Chinese with English abstract).

    [51]

    Peng Yunbiao, Lu Chao. 2019. Metallogenic model of sandstone−type uranium deposits in the lower section of Saihantala Formation, Western Ulanchabu Depression, Erlian Basin[J]. Northwestern Geology, 52(3): 46−57 (in Chinese with English abstract).

    [52]

    Qi Tianjiao, Li Xide, Liu Xu, Lü Yonghua, Xu Bixia. 2020. Geochemical characteristics of the hosting rocks in Manglai sandstone−type uranium deposit, Erlian Basin[J]. Uranium Geology, 36(5): 40−50 (in Chinese with English abstract).

    [53]

    Ren J, Tamaki K, Li S, Zhang J. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344: 175−205. doi: 10.1016/S0040-1951(01)00271-2

    [54]

    Ren Jianye, Li Sitian, Jiao Guihao. 1998. Extensional tectonic system of Erlian fault basin group and its deep background[J]. Earth Science—Journal of China University of Geosciences, 23(6): 567−572 (in Chinese with English abstract).

    [55]

    Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone−mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology, 94(5): 635−650. doi: 10.1086/629071

    [56]

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    [57]

    Tang Chao, Xiao Peng, Wei Jialin, Xu Zenglian, Liu Huajian, Zhao Lijun. 2021. Geological and geochemical characteristics of uranium mineralization in Anding Formation in Zhidan Area, Ordos basin[J]. North China Geology, 44(2): 4−13.

    [58]

    Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[J]. Oxford: Blackwell Scientific Publications.

    [59]

    Tong Bolin, Tang Dawei, Liu Bo. 2017. Paleovalley tectonic formation and uranium prospecting model in Wulanchabu sag, Erlian Basin[J]. Western Resources, (2): 21−25 (in Chinese).

    [60]

    Wang Zhengbang. 2002. Current status and prospects of uranium geology developments of foreign in−situ leachable sandstone type uranium depoits[J]. Uanium Geology, 18(1): 9−21 (in Chinese with English abstract).

    [61]

    Wei Sanyuan, Qin Mingkuan, Li Yuexiang, He Zhongbo, Chen Anping, Shen Kefeng, Cao Jianying. 2006. Tectono−sedimentary evolution of Erlian basin since Late Mesozoic and sandstone−hosted uranium metallogenesis[J]. Uranium Geology, 22(2): 76−82 (in Chinese with English abstract).

    [62]

    Wen Sibo, Zhu Qiang, Cheng Yinhang. 2023. The northwestern boundary location on Langshan area of North China Craton and its tectonic significance[J]. North China Geology, 46(3): 1−11 (in Chinese with English abstract).

    [63]

    Wu F Y, Sun D Y, Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in northeast China[J]. Acta Petrologica Sinica, 15(2): 181−189.

    [64]

    Yu R G, Wang S B, Zhu Q, Si Q H, Teng X M, Liu X X, Liu H N, Tang Y X. 2021. Zircon U−Pb ages and provenance characteristic of sandstone from Zhiluo Formation and debating of formation background of uranium deposit in Huangling area, Ordos Basin, China[J]. China Geology, 4(1): 1−16.

    [65]

    Zhang Bo, Li Jianguo, Miao Peisen, Zhao Long, Si Qinghong, Li Hongliang, Cao Minqiang, Zhu Qiang, Wei Jialin. 2021. The occurrence state and origin of uranium in Qianjiadian uranium deposit, Kailu Basin[J]. North China Geology, 44(2): 40−48 (in Chinese with English abstract).

    [66]

    Zhang Guangrong, Nie Haikuan, Tang Xuan, Du Wei, Sun Chuanxiang, Chen Song. 2020. Pyrite type and its effect on shale gas accumulation: A case study of Wufeng−Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 42(3): 459−466 (in Chinese with English abstract).

    [67]

    Zhang Jindai. 2015. Major Progress and Breakthrough in Uranium Exploration in China Since The Beginning of the New Century−Major Progress and Breakthrough in Uranium Exploration in China[M]. Beijing: Geological Publishing House, 3−19 (in Chinese).

    [68]

    Zhang Tianfu, Sun Lixin, Zhang Yun. 2016. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 90(12): 3454−3472 (in Chinese with English abstract).

    [69]

    Zhang Tianfu, Zhang Yun, Miao Peisen, Yu Reng’an, Li Jianguo, Jin Ruoshi, Sun Lixin. 2018. Study on the chemical index of alteration of the Middle and Late Jurassic Strata in the western margin of Ordos basin and its implications[J]. Geological Survey and Research, 41(4): 258−262, 279 (in Chinese with English abstract).

    [70]

    Zhang Weijie, Li Shujing. 1998. Petrological characteristics and age of the Gejigeyin volcanic edifice on the western margin of the Abag basalt in the Xinlin Gol League, Inner Mongolia[J]. Regional Geology of China, 17(4): 25−29 (in Chinese with English abstract).

    [71]

    Zhang Wendong, Liu Wusheng, Zhang Zinan, Shi Qingping, Liu Chiheng. 2020. Geochemical characteristics of Hadatu paleo channel sandstone type uranium deposit in Erlian Basin[J]. Journal of East China University of Technology (Natural Science), 152(4): 27−38 (in Chinese with English abstract).

    [72]

    Zhao H L, Li J G, Xiao Z B, Miao P S, Si Q H, Chen L L, Yu R G, Chen Yin. 2021. Determination of formation age of the Pengyang sandstone−type uranium deposit in the Ordos Basin, China: Using in situ femtosecond LA−MC−ICP−MS method[J]. China Geology, 4(4): 2.

    [73]

    Zhao Lijun, Liu Xiaoxue, Zhang Chao, Feng Ping, Si Dan. 2023. Analysis on the metallogenic conditions and prospecting direction of sandstone-type uranium deposits in Yuejin area northwestern margin of Qaidam Basin[J]. North China Geology, 46(3): 12−20 (in Chinese with English abstract).

    [74] 陈军强, 曾威, 王佳营, 马亮, 杨君. 2021. 全球和我国铀资源供需形势分析[J]. 华北地质, 44(2): 25−34.
    [75] 陈路路, 汤超, 李建国, 钟延秋, 谷社峰, 魏佳林, 肖鹏, 徐增连, 曾辉, 刘华建. 2018. 松辽盆地大庆长垣南端四方台组含铀砂岩岩石学特征及地质意义[J]. 地质调查与研究, 161(1): 33−39. doi: 10.3969/j.issn.1672-4135.2018.01.005
    [76] 陈肇博, 陈祖伊, 李胜祥. 2003. 层间氧化带砂岩型与古河谷砂岩型铀矿成矿地质特征对比[J]. 世界核地质科学, 20(1): 1−10.
    [77] 程银行, 金若时, Cuney M, Petrov V A, 苗培森. 2024. 中国北方盆地大规模铀成矿作用:地层篇[J]. 地质学报, 1–25. https://doi.org/10.19762/j.cnki.dizhixuebao.2023299.
    [78] 丁波, 刘红旭, 张宾, 易超, 刘洪军, 王贵, 任志勇. 2020. 鄂尔多斯盆地北缘砂岩型铀矿板状矿体形成机制: 来自含矿层不同分带砂岩中高岭石含量研究的约束[J]. 地质学报, 94(10): 80−88.
    [79] 凡秀君, 聂逢君, 陈益平, 王维. 2008. 二连盆地巴彦乌拉地区砂岩型铀矿含矿地层时代与古地理环境探讨[J]. 铀矿地质, 24(3): 150−154. doi: 10.3969/j.issn.1000-0658.2008.03.004
    [80] 冯连君, 储雪蕾, 张同钢, 黄晶. 2006. 莲沱砂岩—南华大冰期前气候转冷的沉积记录[J]. 岩石学报, 22(9): 141−147. doi: 10.3321/j.issn:1000-0569.2006.09.015
    [81] 冯晓曦, 滕雪明, 陈路路, 陈印, 赵华雷, 张天福. 2023. 鄂尔多斯盆地北部纳岭沟铀矿直罗组含铀岩系蚀源区识别[J]. 中国地质, 50(6): 1765−1787.
    [82] 郭宏伟. 2014. 内蒙古巴彦乌拉铀矿床成矿特征及成矿规律研究[D]. 北京: 中国地质大学(北京).
    [83] 胡俊杰, 马寅生, 吴祎, 李宗星, 彭博, 魏小洁. 2019. 柴达木盆地侏罗纪古气候演变过程: 来自化学风化特征的证据[J]. 高校地质学报, 25(4): 548−557.
    [84] 胡珺珺, 聂逢君, 邓居智, 康世虎. 2011. 二连盆地赛汉高毕地区砂岩型铀矿赋存状态研究[J]. 采矿技术, 11(2): 35−37. doi: 10.3969/j.issn.1671-2900.2011.02.014
    [85] 蒋喆, 韩效忠, 胡航, 吴兆剑, 李紫楠, 来强, 郭鹏. 2020. 二连盆地恩格日音砂岩型铀矿床地质特征及成矿作用初探[J]. 大地构造与成矿学, 44(4): 184−195.
    [86] 焦贵浩, 王同和, 邢厚松. 2003. 二连裂谷构造演化与油气[M]. 北京: 石油工业出版社.
    [87] 李华明, 李玲, 杨建新. 2015. 内蒙古巴彦乌拉铀矿床赛汉组上段碎屑物粒度特征研究[J]. 地质论评, 61(S1): 333−334.
    [88] 李西得, 刘军港. 2020. 二连盆地卫镜岩体风化作用地球化学特征研究[J]. 铀矿地质, 36(5): 14−23. doi: 10.3969/j.issn.1000-0658.2020.05.002
    [89] 李月湘, 于金水, 秦明宽, 陈戴生, 曹建英, 卫三元. 2009. 二连盆地可地浸砂岩型铀矿找矿方向[J]. 铀矿地质, 25(6): 20−25. doi: 10.3969/j.issn.1000-0658.2009.06.003
    [90] 李子颖, 陈安平, 方锡珩, 欧光习, 夏毓亮, 孙晔. 2010. 鄂尔多斯盆地东北部砂岩型铀矿床成因和叠合成矿模式[J]. 世界核地质科学, 27(3): 177−177.
    [91] 刘大锰, 杨起, 周春光, 汤达祯, 康西栋. 1999. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学, 28(4): 340−350. doi: 10.3321/j.issn:0379-1726.1999.04.004
    [92] 刘汉彬, 夏毓亮, 林锦荣, 范光. 2004. 吐哈盆地砂岩型铀矿U−Pb同位素地质特征[J]. 地球学报, 25(2): 196−198. doi: 10.3321/j.issn:1006-3021.2004.02.019
    [93] 刘金辉, 孙占学. 2004. 确定砂岩型铀矿体定位新方法—水岩体系Eh−pH法[J]. 吉林大学学报(地球科学版), 34(1): 44−48.
    [94] 刘武生, 康世虎, 贾立城, 史清平, 彭聪. 2013. 二连盆地中部古河道砂岩型铀矿成矿特征[J]. 铀矿地质, 29(6): 328−335. doi: 10.3969/j.issn.1000-0658.2013.06.002
    [95] 刘武生, 康世虎, 赵兴齐, 史清平, 张梓楠. 2015. 二连盆地中部古河道砂岩型铀矿成矿机理及找矿方向[J]. 铀矿地质, 31(1): 164−175.
    [96] 刘武生, 赵兴齐, 康世虎, 史清平, 张梓楠. 2018. 二连盆地反转构造与砂岩型铀矿成矿作用[J]. 铀矿地质, 34(2): 81−89.
    [97] 刘晓雪, 汤超, 司马献章, 朱强, 李光耀, 陈印, 陈路路. 2016. 鄂尔多斯盆地东北部砂岩型铀矿常量元素地球化学特征及地质意义[J]. 地质调查与研究, 39(3): 169−176. doi: 10.3969/j.issn.1672-4135.2016.03.002
    [98] 鲁超, 焦养泉, 彭云彪, 杨建新, 陈法正. 2016. 二连盆地马尼特坳陷西部幕式裂陷作用对铀成矿的影响[J]. 地质学报, 90(12): 3483−3491. doi: 10.3969/j.issn.0001-5717.2016.12.015
    [99] 鲁超, 彭云彪, 刘鑫扬, 焦养泉, 杨建新, 陈法正, 申科峰, 李荣林. 2013. 二连盆地马尼特坳陷西部砂岩型铀矿成矿的沉积学背景[J]. 铀矿地质, 29(6): 336−343. doi: 10.3969/j.issn.1000-0658.2013.06.003
    [100] 鲁超. 2019. 二连盆地巴彦乌拉铀矿田构造控矿机制和成矿模式[D]. 武汉: 中国地质大学.
    [101] 罗毅, 何中波, 马汉峰, 孙祥. 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征[J]. 矿床地质, 31(2): 391−400. doi: 10.3969/j.issn.0258-7106.2012.02.018
    [102] 毛世东, 杨荣生, 秦艳, 郭俊华. 2009. 甘肃阳山金矿田载金矿物特征及金赋存状态研究[J]. 岩石学报, 25(11): 2776−2790.
    [103] 苗培森, 陈印, 程银行, 赵华雷, 陈路路, 李建国, 金若时, 汤超, 俞礽安, 杨涛, 胡永兴. 2020. 中国北方砂岩型铀矿深部探测新发现及其意义[J]. 大地构造与成矿学, 44(4): 563−575.
    [104] 闵茂中, 彭新建, 王果, 殷建华. 2006. 我国西北地区层间氧化带砂岩型铀矿床中铀的赋存形式[J]. 铀矿地质, 22(4): 193−201. doi: 10.3969/j.issn.1000-0658.2006.04.001
    [105] 聂逢君. 2010. 二连盆地古河道砂岩型铀矿[M]. 北京: 地质出版社.
    [106] 聂逢君, 陈安平, 胡青华, 申科峰, 秦明宽, 李满根, 姜美珠. 2007. 内蒙古二连盆地早白垩世砂岩型铀矿目的层时代探讨[J]. 地层学杂志, 31(3): 272−279. doi: 10.3969/j.issn.0253-4959.2007.03.010
    [107] 聂逢君, 林双幸, 严兆彬, 饶明辉, 张成勇, 严永杰. 2010. 尼日尔特吉达地区砂岩中铀的热流体成矿作用[J]. 地球学报, 31(6): 819−831.
    [108] 聂逢君, 严兆彬, 李满根, 彭云彪, 夏菲. 2019. 二连裂陷盆地“同盆多类型”铀矿[M]. 北京: 地质出版社.
    [109] 彭云彪, 焦养泉, 张金带, 康世虎. 2015. 同沉积泥岩型铀矿床—二连盆地超大型努和廷铀矿床典型分析[M]. 北京: 地质出版社.
    [110] 彭云彪, 李华明, 李玲, 康世虎. 2018. 古气候转换对砂岩型铀矿成矿的影响—以内蒙古二连盆地2081砂岩型铀矿床为例[J]. 矿物学报, 38(5): 490−498.
    [111] 彭云彪, 鲁超. 2019. 二连盆地乌兰察布坳陷西部赛汉塔拉组下段砂岩型铀矿成矿模式[J]. 西北地质, 52(3): 46−57.
    [112] 齐天骄, 李西得, 刘旭, 吕永华, 许碧霞. 2020. 二连盆地芒来铀矿赋矿砂岩地球化学特征[J]. 铀矿地质, 36(5): 40−50. doi: 10.3969/j.issn.1000-0658.2020.05.005
    [113] 任建业, 李思田, 焦贵浩. 1998. 二连盆地群伸展构造系统及其发育的深部背景[J]. 地球科学, 23(6): 567−572. doi: 10.3321/j.issn:1000-2383.1998.06.005
    [114] 汤超, 肖鹏, 魏佳林, 徐增连, 刘华建, 赵丽君. 2021. 鄂尔多斯盆地志丹地区安定组铀矿化地质地球化学特征[J]. 华北地质, 44(2): 4−13.
    [115] 童波林, 唐大伟, 刘波. 2017. 二连盆地乌兰察布凹陷古河谷构造建造及铀矿找矿模式[J]. 西部资源, (2): 21−25. doi: 10.3969/j.issn.1672-562X.2017.02.009
    [116] 王正邦. 2002. 国外地浸砂岩型铀矿地质发展现状与展望[J]. 铀矿地质, 18(1): 9−21. doi: 10.3969/j.issn.1000-0658.2002.01.002
    [117] 卫三元, 秦明宽, 李月湘, 何中波, 陈安平, 申科锋, 曹建英. 2006. 二连盆地晚中生代以来构造−沉积演化与铀成矿作用[J]. 铀矿地质, 22(2): 76−82. doi: 10.3969/j.issn.1000-0658.2006.02.003
    [118] 文思博, 朱强, 程银行. 2023. 鄂尔多斯盆地砂岩型铀矿成矿时代及铀富集时空规律[J]. 华北地质, 46(3): 1–11.
    [119] 张博, 李建国, 苗培森, 赵龙, 司庆红, 里宏亮, 曹民强, 朱强, 魏佳林. 2021. 开鲁盆地钱家店铀矿床铀的赋存状态及成因探[J]. 华北地质, 44(2): 40−48.
    [120] 张光荣, 聂海宽, 唐玄, 杜伟, 孙川翔, 陈松. 2020. 页岩中黄铁矿类型及其对页岩气富集的影响—以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 石油实验地质, 42(3): 459−466. doi: 10.11781/sysydz202003459
    [121] 张金带. 2015. 进入新世纪以来我国铀矿勘查的重大进展和突破—我国铀矿勘查的重大进展和突破[M]. 北京: 地质出版社, 3−19.
    [122] 张天福, 孙立新, 张云, 程银行, 李艳锋, 马海林, 鲁超, 杨才, 郭根万. 2016. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 90(12): 3454−3472. doi: 10.3969/j.issn.0001-5717.2016.12.013
    [123] 张天福, 张云, 苗培森, 俞礽安, 李建国, 金若时, 孙立新. 2018. 鄂尔多斯盆地西缘中晚侏罗世地层化学蚀变指数(CIA)研究及其意义[J]. 地质调查与研究, 41(4): 258−262,279. doi: 10.3969/j.issn.1672-4135.2018.04.002
    [124] 张维杰, 李述靖. 1998. 内蒙古格吉格音乌拉火山机构的岩石特征及时代[J]. 中国区域地质, 17(4): 25−29.
    [125] 张文东, 刘武生, 张梓楠, 史清平, 刘持恒. 2020. 二连盆地哈达图古河道砂岩型铀矿成矿地球化学特征研究[J]. 东华理工大学学报(自然科学版), 152(4): 27−38.
    [126] 赵丽君, 刘晓雪, 张超, 冯平, 司丹. 2023. 柴达木盆地西北缘跃进地区砂岩型铀矿成矿条件和潜力分析[J]. 华北地质, 46(3): 12–20.
  • 期刊类型引用(9)

    1. 金爱芳,殷秀兰,李长青,李文娟,庞菊梅,金晓媚. 张家口地区枯水期地下水水化学特征及其成因机制分析. 环境科学. 2024(02): 826-836 . 百度学术
    2. 孟瑞芳,杨会峰,包锡麟,徐步云,李磊,李谨丞. 京津冀平原非常规水资源利用前景分析及其生态环境效应. 中国地质. 2024(01): 221-233 . 本站查看
    3. 李晓波,李静. 大汶河流域中下游浅层地下水水化学特征及其影响因素. 环境科学研究. 2024(05): 1015-1026 . 百度学术
    4. 唐辉,何欣琳,郭晓静,马兴瑾,朱家葆. 郑州市城区浅层地下水环境化学特征及成因分析. 河南科学. 2024(08): 1192-1201 . 百度学术
    5. 刘春燕,刘景涛,朱亮,张玉玺,荆继红,黄冠星,周冰,陈玺,解飞,李备. 高原河谷城市浅层地下水铁锰分布特征、影响因素及其对生态环境的影响——以西宁市为例. 中国地质. 2024(05): 1776-1790 . 本站查看
    6. 张博深,李海明,苏思慧,李梦娣,张翠霞. 天津平原地下水水化学特征与碳酸盐风化碳汇特征的时空演变. 南水北调与水利科技(中英文). 2024(05): 1016-1028 . 百度学术
    7. Jing-jie Li,Sheng Lian,Ming-guo Wang,Huai-sheng Zhang,Tao Yang. Hydrochemical characteristics of surface water in Hengduan mountain region of Eastern Tibet and its response to human activities: A case study of Duoqu Basin, Jinsha River. China Geology. 2024(04): 630-641 . 必应学术
    8. 邹银先,褚学伟,刘埔,段先前,王中美,王益伟. 贵州喀斯特山区地下水化学特征分析. 地质与资源. 2024(06): 846-854+860 . 百度学术
    9. 李月,李洋,周盈,黄晓燕. 苏锡常地区深层地下水化学特征及成因探讨. 上海国土资源. 2024(04): 171-178+202 . 百度学术

    其他类型引用(1)

图(8)  /  表(5)
计量
  • 文章访问数:  2224
  • HTML全文浏览量:  995
  • PDF下载量:  339
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-12-29
  • 刊出日期:  2024-05-24

目录

/

返回文章
返回
x 关闭 永久关闭