Genetic types, geological characteristics and genetic mechanism of manganese deposits in Africa
-
摘要:研究目的
非洲锰矿资源丰富,储量3.1亿t、资源量6.6亿t排名在世界上均列第一,加强非洲锰矿床的研究和认识对推动锰矿找矿工作具有重要的指导意义。
研究方法通过对重要成矿带典型矿床的解剖总结了非洲锰矿床的成因类型、地质特征。
研究结果非洲锰矿成因类型主要有前寒武系条带状铁建造(BIF)型、海相沉积型、陆相(三角洲湖相)沉积型、与岩浆作用有关的热液型锰矿床等,其中以前寒武系条带状铁建造(BIF)型和海相沉积型最为重要。
结论非洲锰矿资源具有矿床规模大(以大型、超大型为主)、品位高(30%~50%)、分布相对集中的总体特征;锰矿床的成锰时代较早,以前寒武纪为主;多数锰矿床都遭受2.0 Ga的不整合侵蚀及新生代表生氧化两期风化淋滤作用改造。
创新点:非洲锰矿成因类型以前寒武系条带状铁建造(BIF)型和海相沉积型最为重要;规模大、品位高的锰矿床多数遭受2.0 Ga的不整合侵蚀及新生代表生氧化两期风化淋滤作用改造。
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveManganese ore resources abundant in Africa, where the 310 Mt reserves and 660 Mt resources rank first in the world.Enhance research and awareness of manganese deposits in Africa, It has important guiding significance for promoting the prospecting of manganese ore in my country.
MethodsThrough the dissection of typical deposits in important metallogenic belts, the genetic types and geological characteristics of manganese deposits in Africa are summarized.
ResultsManganese ore types in Africa are diverse, such precambrian banded iron formation (BIF) type, marine sedimentary type, continental (delta-lacustrine) sedimentary type, magmatic hydrothermal type etc., Among them, the precambrian banded iron formation (BIF) type and marine sedimentary type are the most important.
ConclusionsManganese deposits are characterized by large deposits (mainly large and super large), high grade (30%-50%), and relatively concentrated distribution. The manganese-forming age of manganese deposits is earlier, mainly in the Precambrian; Most manganese deposits suffer eluviation weathering supergene processes from 2.0 Ga unconformity erosionand Cenozoic.
-
1. 研究目的(Objective)
通过实施2020年四川省自然资源厅省政府性投资地质勘查项目,对沐川地区上二叠统宣威组底部泥岩中赋存的稀有、稀土、稀散元素进行调查评价,了解“三稀”元素含量与找矿前景,希望在“三稀”找矿方面取得突破性进展,为乌蒙山贫困地区脱贫提供技术服务和支撑产业规划、扶贫开发提供资源保障。
2. 研究方法(Method)
主要采用了1∶10000地质填图、1∶500矿化带剖面测量、探槽工程、钻探工程、采样与测试分析等方法,对上二叠统宣威组底部的富镓泥岩进行了初步研究。
3. 研究结果(Results)
沐川地区位于扬子陆块西缘(图 1a),峨眉山大火成岩省中带(图 1b)。研究区位于五指山背斜核部,其核部地层为上二叠统峨眉山玄武岩(P3e),两翼向两侧依次出露上二叠统宣威组(P3x)、三叠系(T)、侏罗系(J)等(图 1c)。镓矿层产出于峨眉山玄武岩组(P3e)顶部、宣威组(P3x)底部的紫红色铁质泥岩、灰白色铝质泥岩、浅灰绿色泥岩、灰色泥岩、浅灰绿色泥岩及深灰色炭质泥岩中,呈层状分布,层位稳定(图 1d);找矿标志:峨眉山玄武岩组与宣威组(P3x)的平行不整合界线之上,具“成矿界面”特征,颜色上有明显的紫红色、灰白色、灰色及深灰色等,特别是具有特征的紫红色,宏观上易识别;根据地球化学图解判别显示,其成矿物质来源有可能来源于峨眉山玄武岩及峨眉山地幔柱演化末期喷发的火山灰。
采集钻孔岩心1/2切分样品,送样至自然资源部成都矿产资源监督检测中心采用电感耦合等离子体质谱仪(ICP-MS)进行测试分析,结果显示ZK01钻孔镓(Ga)平均品位104 μg/g,矿层厚度6.27 m;ZK02钻孔镓(Ga)平均品位68.1 μg/g,矿层厚度8.67 m;ZK03钻孔镓(Ga)平均品位55.3 μg/g,矿层厚度13.87 m;三个工程的镓(Ga)平均品位为75.8 μg/g,平均厚度9.60 m。可以看出,沐川地区宣威组底部的泥岩中镓(Ga)品位较高,厚度较大,达到了中国现行的Ga矿资源工业指标要求(30 μg/g)。
4. 结论(Conclusion)
经初步估算沐川地区镓(Ga)资源量可达数万吨到数十万吨,有望找到超大型镓矿床(>2000 t) 的潜力。沐川地区峨眉山玄武岩分布面积较广,为镓的富集成矿提供了丰富的物源。经地质填图及工程取样显示,宣威组底部富镓泥岩层厚度大,分布面积广泛,镓元素含量较高,具有巨大的找矿潜力。研究宣威组底部“三稀”元素成矿特征有助于中国在战略性关键矿产找矿方面取得重大突破,对地方国民经济发展具有重要意义。
5. 基金项目(Fund support)
本文为四川省自然资源厅2020年省政府性投资地质勘查项目(DZ20 2002)和四川省自然资源厅科技项目(kj-2022-6)资助成果。
-
图 2 南非西格里夸兰(Griqualand)德兰士瓦超群区域地质图(a,显示了卡拉哈里锰矿田(KMF)和黑山(Black Ridge)逆冲断裂的分布)以及卡拉哈里锰矿田(KMF)横向剖面示意图(b)(据Cairncross and Beukes, 2013)
Figure 2. Regional map of the Transvaal supergroup in Griqualand west showing the distribution of the Kalahari manganese field and Black Ridge thrust fault (a) and schematic diagram indicating lateral of the Kalahari manganese field (b) (after Cairncross and Beukes, 2013)
图 3 马尔曼(Maremane)穹隆地质图(a)、N-S向横剖面示意图(b)、东部矿带(Manganore地区)的喀斯特(岩溶)地区锰矿床(c)及西部矿带(Lohatlha地区)的喀斯特(岩溶)矿床(d)
在图d中请注意,在约2.0 Ga Gamagara/Mapedi红层底部为不整合接触,Sishen型高品位BIF赤铁矿铁矿床覆盖了东部矿带的锰矿床(据Gutzmer and Beukes, 1996b;Cairncross et al., 1997)
Figure 3. Geological map of the Maremane dome(a), schematic N-S cross section(b), Karst-hosted Postmasburg manganese deposits along the Eastern Belt (Manganore area) (c), and Western Belt (Lohatlha area) (d)
Note in (d) that Sishen-type high-grade BIF-hosted hematite iron deposits overlie the manganese deposits of the Eastern Belt below the unconformity at the base of the ~2.0 Ga Gamagara/Mapedi red bed succession (modified from Gutzmer and Beukes, 1996b; Cairncross et al., 1997)
图 4 加蓬Francevillian锰矿区地质简图(a)和莫安达(Moanda)附近的Bangombe高原的横剖面(b)(据Nicolas et al., 2016)
Figure 4. Simplified geological map of the Francevillian succession in Gabon(a) and cross section of the Bangombe plateau near Moanda (b) (after Nicolas et al., 2016)
图 5 加蓬Francevillian次级盆地古地理剖面示意图和锰矿床位置图(据Gauthier-Lafaye and Weber, 2003)
Figure 5. Schematic diagram of the palaeogeographic section of the Francevillian sub-basin and the location of the manganese deposit in Gabon (after Gauthier-Lafaye and Weber, 2003)
图 6 西非比利姆(Birimian)岩系的简化地质图(据Baratoux et al., 2011)
显示了以火山-沉积岩为主的造山带、曼(Man)克拉通和赋存在黑色页岩型的碳酸盐/石英锰榴岩锰矿床的位置
Figure 6. Simplified geological map of the Birimian succession in West Africa (after Baratoux et al., 2011)
showing major volcanic-and sediment-dominated orogenic belts, the Man Craton, tectono-sedimentary development of the successionand location of black shale-hosted carbonate/gondite manganese deposits
图 7 西非Birimian岩系锰矿带典型的富含高品位表生氧化锰矿石的示意图(据Nicolas et al., 2016)
Figure 7. Schematic diagram of a typical supergene-enriched manganese oxide ore capping a carbonate or gondite black shale-hosted manganese bed of the Birimian in West Africa (after Nicolas et al., 2016)
图 8 摩洛哥伊米尼(Imini)锰矿带位置图(a)、伊米尼(Imini)锰矿带的简化地质图(b,显示了森诺曼—土仑阶白云岩中所含锰矿体的分布)及Lantenois锰矿床的地层柱状图(c,显示了三层Mn矿体(C1、C2、C3);三个沉积旋回系统(S1、S2、S3))(据Mohammed, 2016)
Figure 8. Location of Imini district, south of South Atlas Front (SAF) (a), simplified geological map of Imini district showing distribution of Mn orebodies hosted in c, enomanian-Turonian dolostone (b) and detailed stratigraphic column of Lantenois deposit(c) showing three stratabound Mn levels (C1, C2, C3);Designation of three sedimentary systems (S1, S2, S3)(after Mohammed, 2016)
图 9 伊米尼(Imini)锰矿带含矿地层柱状图(据Mohammed, 2016)
Figure 9. Stratigraphic columns from west to east across the district showing stratabound but not stratiform character of Mn orebodies; inset shows plan view of Mn belt and locations of mines (after Mohammed, 2016)
图 10 非洲主要锰矿床与含铁建造形成时间分布示意图(据Cairncross and Beukes, 2013;Nicolas et al., 2016有修改)
Figure 10. Schematic indication of temporal distribution of major manganese deposits compared to that of iron formation (modified from Cairncross and Beukes, 2013; Nicolas et al., 2016)
表 1 非洲主要锰矿资源国锰矿石资源量/储量和锰矿床(点)统计表
Table 1 Summary of manganese ore resources/reserves of major manganese ore resource countries in Africa
表 2 非洲锰矿床成因类型及其典型性矿床的规模和含锰层位
Table 2 The genetic types and their typical manganese deposits in the Mn-bearing strata of African
表 3 非洲重要锰矿床(矿田)主要地质特征
Table 3 The main geological characteristics of important manganese deposits (fields) in Africa
-
Baratoux L, Metelka V, Naba S, Jessell M W, Grégoire M, Ganne J. 2011. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (< 2.2-2.0 Ga), western Burkina Faso[J]. Precambrian Research, 191: 18-45. doi: 10.1016/j.precamres.2011.08.010
Bekker A, Karhu J A, Eriksson K A, KaufmanA J. 2003. A Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: Tectonic forcing or biogeochemical change?[J]. Precambrian Research, 120: 279-325. doi: 10.1016/S0301-9268(02)00164-X
Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 105(3): 467-508. doi: 10.2113/gsecongeo.105.3.467
Beukes N J, Gutzmer J. 2008. Origin and paleoenvironmental significance of major iron formations at the Archaean-Paleoproterozoic boundary[J]. Reviews in Economic Geology, 15: 5-47. https://pubs.geoscienceworld.org/segweb/books/book/1224/chapter/107022386/Origin-and-Paleoenvironmental-Significance-of
Bühn B, Stansistreet I G, Okrusch M. 1992. Late Proterozic outer shelf manganese and iron deposits at Otjosondu (Namibia) related to the Damaran oceanic opening[J]. Economic Geology, 87: 1393-1411. doi: 10.2113/gsecongeo.87.5.1393
Caby R, Buscail F, Dembe D, Diakite S, Sacko S, Bal M. 2008. Neoproterozoic garnet-glaucophanites and eclogites: New insights for subduction metamorphism of the Gourma fold and thrust belt (eastern Mali)[C]//Ennih N, Liegeois J P (eds. ). The Boundaries of the West African Craton. Geological Society, London, Special Publications, 297: 203-216.
Cairncross B, Beukes N J. 2013. The Kalahari Manganese Field[M]. Assore, Johannesburg, Random House Struik, 1-384.
Cairncross B, Beukes N J, Gutzmer J. 1997. The Manganese Adventure: The South African Manganese Fields[M]. Assore, Johannesburg, Associated Ore & Metal Corporation Limited, 1-236.
Cannon W F, Kimball B E, Corathers L A. 2017. Manganese[C]//Schulz K J, De Young J H, Seal IIRR, Bradley D C. Critical mineral resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. Reston, Virginia: U.S. Geological Survey Professional Paper, 1802-L, 1-40.
Chang Honglun, Kong Fanhui, Song Xiaodong, Du Jun, Zhao Jin, Li Jianfeng, Wang Congying. 2014a. Geological characteristics and genesis analysis of deposits in Postmasburg area, South Africa[J]. Geological Review, 60(3): 580-590(in Chinese with English abstract).
Chang Honglun, Kong Fanhui, Song Xiaodong, Du Jun, Zhao Jin, Li Jianfeng, Wang Congying. 2014b. Dolostone controls in Postmasburg manganese field, South Africa[J]. Acta Sedimentology, 32(5): 832-839(in Chinese with English abstract).
Chen Jiabin, Yu Lianghui. 2020. Comparative Analysis of Mineral Resources Situation in China, America and Europe[M]. Beijing, Geological Publishing House(in Chinese with English abstract).
Clout J M F, Simonson B M. 2005. Precambrian iron formations and iron formation-hosted iron ore deposits[C]//Hedenquist J W, Thompson J F H, Goldfard R J, Richards J P. Economic Geology One Hundredth Anniversary Volume, 1905-2005. Littleton: Economic Geology: 643-679.
Cong Yuan, Dong Qingji, Xiao Keyan, Chen Jianping, Gao Yongbao, Yin Jiangning. 2018. Characteristics and predicted potential of Mn resources in China[J]. Geoscience Frontier, 25(3): 118-137(in Chinese with English abstract).
Dekoninck A, Bernard A, Barbarand J, Saint-Bezar B, Missenard Y, Lepretre R, SaddiqiO, Yans J. 2016. Detailed mineralogy and petrology of manganese oxyhydroxide deposits of the Imini district (Morocco)[J]. Miner Deposita, 51: 13-23. doi: 10.1007/s00126-015-0590-3
De Putter T, Ruffet G, Yans J, Mees F. 2015. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region[J]. Ore Geology Reviews, 71: 350-362. doi: 10.1016/j.oregeorev.2015.06.015
DoyenL. 1973. The manganese ore deposit of Kisenge-Kamata (Western Katanga), mineralogical and sedimentological aspects of the primary ore[J]. Ores in Sediments, 3: 93-100.
Fan D L, Yang P. 1999. Introduce to and classification of manganese deposits of China[J]. Ore Geology Reviews, ,15: 1-15. doi: 10.1016/S0169-1368(99)00011-6
Feybesse J L, Johan V, Triboulet C, Guerrot C, Mayaga-Mikolo F, Bouchot V, N'Dong J E. 1998. The West Central African belt: A model of 2.5-2.0 Ga accretion and two-phase orogenic evolution[J]. Precambrian Research, 87: 161-216. doi: 10.1016/S0301-9268(97)00053-3
Fu Yong, Xu Zhigang, Pei Haoxiang, Jiang Ran. 2014. Study on metallogenic regularity of manganese ore deposits in China[J]. Acta Geologica Sinica, 88(12): 2192-2207(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201412004.htm
Gauthier-Lafaye F, Weber F. 2003. Natural nuclear fission reactors: Time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere[J]. Precambrian Research, 120: 81-100. doi: 10.1016/S0301-9268(02)00163-8
Gutzmer J, Beukes N J. 1995. Fault-controlled metasomatic alteration of Earl Proterozoic sedimentary manganese ores in the Kalahari Manganese Field, South Africa[J]. Economic Geology, 90: 823-844. doi: 10.2113/gsecongeo.90.4.823
Gutzmer J, Beukes N J. 1996a. Mineral paragenesis of the Kalahari manganese field, South Africa[J]. Ore Geology Reviews, 11: 405-428. doi: 10.1016/S0169-1368(96)00011-X
Gutzmer J, Beukes N J. 1996b. Karst-hosted fresh water Palaeoproterozoic manganese deposits, Postmasburg, South Africa[J]. Economic Geology, 91: 1435-1454. doi: 10.2113/gsecongeo.91.8.1435
Gutzmer J, Beukes N J. 1998. Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic[J]. Geology, 26: 263-266. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/26/3/263/187228/Earliest-laterites-and-possible-evidence-for
Gutzmer J, Beukes N J, Rhalmi M, Mukhopadhyay J. 2006. Cretaceous karstic cave-fill manganese-lead-barium deposits of Imini, Morocco[J]. Economic Geology, 101: 385-405. doi: 10.2113/gsecongeo.101.2.385
Gutzmer J, Du Plooy A P, Beukes N J. 2012. Timing of supergene enrichment of low-grade manganese ores in the Kalahari manganese field, South Africa[J]. Ore Geology Reviews, 47: 136-153. doi: 10.1016/j.oregeorev.2012.04.003
Gutzmer J, Schaefer M O, Beukes N J. 2002. Red bed-hosted oncolitic manganese ore of the Paleoproterozoic Soutpansberg Group, Bronkhorstfontein, South Africa[J]. Economic Geology, 97: 1023-1039.
Hoffman P F, Schrag D P. 2000. Snowball earth[J]. Scientific American, 282: 68-75. doi: 10.1038/scientificamerican0100-68
Holland H D, Beukes N J. 1990. A paleoweathering profile from Griqualand West, South Africa: Evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 BYBP[J]. American Journal of Science, 290A: 1-34. https://pubmed.ncbi.nlm.nih.gov/11538688/
Kim A A H, Asinne T. 2016. Manganese deposits of the Oudalan province in the northeast of Burkina Faso, and Ansongo Inlier in eastern Mali[J]. Ore Geology Reviews, 78: 645-651. doi: 10.1016/j.oregeorev.2015.11.008
Klein C. 2005. Some Precambrian banded iron-formations(BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin[J]. American Mineralogist, 90(10): 1473-1499. doi: 10.2138/am.2005.1871
Klein C, Beukes N J. 1993. Sedimentology and geochemistry of glaciogenic Late Proterozoic Rapitan iron formation in Canada[J]. Economic Geology, 88: 542-565. doi: 10.2113/gsecongeo.88.3.542
Konhauser K O. 2008. Introduction to Geomicrobiology[M]. John Wiley & Sons, Blackwell Publishing, 1-425.
Mohammed Bouabdellah. 2016. Mineral Deposits of North Africa[M]. Springer International Publishing Switzerland, 1-585.
Mücke A, Dzigbodi-Adjimah K, Annor A. 1999. Mineralogy, petrography, geochemistry and genesis of the Paleoproterozoic Birimian manganese-formation of Nsuta/Ghana[J]. Mineralium Deposita, 34: 297-311. doi: 10.1007/s001260050205
Nicolas J B, Edward P W S, Herve Wabo. 2016. Manganese deposits of Africa[J]. Episodes, 39(2): 285-317. doi: 10.18814/epiiugs/2016/v39i2/95779
Nyame F K. 1998. Mineralogy, Geochemistry, and Genesis of the Nsuta Manganese Deposit[D]. Unpublished Ph. D dissertation, Okayama University, 1-213.
Nyame F K. 2001. Petrological significance of manganese carbonate inclusions in spessartine garnet and relation to the stability of spessartine in metamorphosed manganese-rich rocks[J]. Contributions to Mineralogy and Petrology, 141: 733-746. doi: 10.1007/s004100100257
Nyame F K, Kase K, Yamamoto M. 1998. Spessartine garnets in a manganiferous carbonate formation from Nsuta, Ghana[J]. Resource Geology, 48: 13-22. doi: 10.1111/j.1751-3928.1998.tb00003.x
Nyame F K, Beukes N J, Kase K, Yamamoto M. 2003. Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: Product of authigenic precipitation or post-formational diagenesis?[J]. Sedimentary Geology, 154: 159-175. doi: 10.1016/S0037-0738(02)00128-8
Ren Junping, Zuo Libo, Xu Kangkang, Wang Jie, Liu Xiaoyang, He Shengfei, Liu Yu, He Fuqing. 2016. Geodynamic evolution and mineral resources present research in Bangweulu Block, Northern Zambia[J]. Geological Review, 62(4): 979-996(in Chinese with English abstract).
Rhalmi M, Pascal A, Lang J. 1997. Contrôle sédimentaire et diagénétique de la minéralisation manganésifère au cours du Crétacé Supérieur dans la région d'Imini (Haut-Atlas central, Maroc)[J]. Comptes Rendus Académie Sciences 323(2): 213-220.
Schaefer M O, Gutzmer J, Beukes N J. 2001. Late Paleoproterozoic Mn-rich oncoids: Earliest evidence for microbially mediated Mn precipitation[J]. Geology, 29: 835-838. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/29/9/835/191832/Late-Paleoproterozoic-Mn-rich-oncoids-Earliest
Shen Chengheng, Wang Shoulun, Chen Senhuang. 1995. The World's Ferrous Metal Mineral Resources[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
Swindell E P W. 2015. Manganese Deposits of Africa-A short review[C]//Internal Report (unpublished). Swindell Consulting Geologist, Krugersdorp, South Africa, 1-94.
Tetteh G M. 2010. Geology and mineralization of the Paleoproterozoic Nsuta manganese deposit in the Birimian of Ghana[D]. PhD thesis (unpublished), University of Ghana, Legon, 1-186.
Thein J. 1990. Paleogeography and geochemistry of the "Cenomano-Turonian" formations in the manganese district of Imini (Morocco) and their relation to ore deposition[J]. Ore Geology Reviews, 5: 257-291. doi: 10.1016/0169-1368(90)90034-K
Thierry D P, Jean-Paul L, Stijn D, Jacques C, Adrian B, Floria M. 2018. Paleoproterozoic manganese and base metals deposits at Kisenge-Kamata (Katanga, D.R. Congo)[J]. Ore Geology Reviews, 96: 558-563.
Trendall A F. 2002. The signify cance of iron-formation in the Precambrian stratigraphic record[J]. Special Publication International Association of Sedimentologists, 33(1): 33-66. doi: 10.1002/9781444304312.ch3
Tshibubudze A, Hein K A A. 2013. Structural setting of gold deposits in the Oudalan-Gorouol volcano-sedimentary belt east of the Markoye Shear Zone, West African craton[J]. Journal of African Earth Sciences, 80: 31-47. doi: 10.1016/j.jafrearsci.2012.11.010
Tsikos H, Moore J M. 1997. Petrography and geochemistry of the Paleoproterozoic Hotazel iron-manganese formation, Kalahari manganese field, South Africa: Implications for Precambrian manganese metallogenesis[J]. Economic Geology, 92: 87-97. doi: 10.2113/gsecongeo.92.1.87
Tsikos H, Moore J M. 1998. The Kalahari manganese field: An enigmatic association of iron and manganese[J]. South African Journal of Geology, 101: 287-290. https://pubs.geoscienceworld.org/gssa/sajg/article/101/4/287/121770/The-Kalahari-manganese-field-an-enigmatic
Varentsov I M. 1964. Sedimentary Manganese Ores[M]. Elsevier Publishing Company, Elsevier, Amsterdam, 1-119.
Vasconcelos P M, Renne P R, Brimhall G H, Becker T A. 1994. Direct dating of weathering phenomena by 40 Ar- 39 Ar and K-Ar analysis of supergene K-Mn oxides[J]. Geochimica et Cosmochimica Acta, 58: 1635-1665. doi: 10.1016/0016-7037(94)90565-7
Wang Changle, Zhang Lianchang, Liu Li, Dai Yanpei. 2012. Research progress of precambrian iron formations abroad and some problems deserving further discussion[J]. Mineral Deposits, 31(6): 1311-1325(in Chinese with English abstract). http://www.adearth.ac.cn/article/2018/1001-8166/1001-8166-33-2-152.shtml
Weber F. 1973. Genesis and Supergene evolution of Precambrian sedimentary manganese deposit at Moanda (Gabon), UNESCO, Genesis of Precambrian Iron and Manganese deposits. Proceedings Kiev Symposium[J]. Earth Sciences, 9: 307-322.
Yao Peihui, Lin Zhentai, Du Chunlin. 1995. China Manganese Ore Chronicle[M]. Beijing: Metallurgical Industry Press(in Chinese with English abstract).
Ye Lianjun, Fan Delian, Yang Peiji. 1994. Manganese Deposits in China[M]. Beijing: Geological Publishing House(in Chinese with English abstract).
Yin Jiangning, Xiao Keyan. 2014. Resources potential analysis and metallogenic prospect of Mn resources in China[J]. Geology in China, 41(5): 1424-1437(in Chinese with English abstract).
Zouhri S, Kchikach A, Saddiqi O, Haïmer F Z E, Baid-der L, Michard A. 2008. The Cretaceous-Tertiary Plateaus[C]//Michard A, Saddiqi O, Chalouan A, de Lamotte D F (eds. ). Continental Evolution: the Geology of Morocco. Springer, Berlin-Heidelberg 116: 331-358.
常洪伦, 孔繁辉, 宋晓东, 杜俊, 赵晋, 李建锋, 王聪颖. 2014a. 南非Postmasburg地区锰矿床地质特征及成因分析[J]. 地质论评, 60(3): 580-590. 常洪伦, 孔繁辉, 宋晓东, 赵晋, 李建锋, 杜俊, 王聪颖. 2014b. 南非Postmasburg锰矿田白云岩的控矿作用[J]. 沉积学报, 32(5): 832-839. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405005.htm 陈甲斌, 余良晖. 2020. 中美欧矿产资源形势对比分析[M]. 北京: 地质出版社. 丛源, 董庆吉, 肖克炎, 陈建平, 高永宝, 阴江宁. 2018. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 25(3): 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm 付勇, 徐志刚, 裴浩翔, 江冉. 2014. 中国锰矿成矿规律初探[J]. 地质学报, 88(12): 2192-2207. 任军平, 左立波, 许康康, 王杰, 刘晓阳, 何胜飞, 刘宇, 贺福清. 2016. 赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J]. 地质论评, 62(4): 979-996. 沈承珩, 王守伦, 陈森煌. 1995. 世界黑色金属矿产资源[M]. 北京: 地质出版社. 王长乐, 张连昌, 刘利, 代堰锫. 2012. 国外前寒武纪铁建造的研究进展与有待深入探讨的问题[J]. 矿床地质, 31(6): 1311-1325. doi: 10.3969/j.issn.0258-7106.2012.06.015 姚培慧, 林镇泰, 杜春林. 1995. 中国锰矿志[M]. 北京: 冶金工业出版社. 阴江宁, 肖克炎. 2014. 中国锰矿资源潜力分析及成矿预测[J]. 中国地质, 41(5): 424-437. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20140502&flag=1 叶连俊, 范德廉, 杨培基. 1994. 中国锰矿床[M]. 北京, 地质出版社.