Evaluation method of soil heavy metal harm to groundwater: Taking Huichun basin,Jilin Province as an example
-
摘要:研究目的
土壤中不断富集的重金属对地下水产生潜在危害,但以往研究缺少定量评价土壤重金属对地下水危害度的方法。
研究方法本文以地下水循环和固液平衡理论相结合,构建了简便易用的土壤重金属进入地下水的通量模型,在评价地下水环境容量的基础上,创新提出了土壤重金属对地下水危害评价方法。
研究结果以珲春盆地为例进行了应用,结果表明:研究区土壤重金属进入地下水通量从大到小依次为Zn、Cu、As、Pb、Cd、Ni、Hg,大部分地区地下水重金属(As、Hg、Cu、Pb、Zn、Ni、Cd)在10年内达不到环境容量限值,大部分乡镇土壤重金属对地下水的危害等级在中度及以下级别。
结论通过该评价方法能够简单快捷的定量计算土壤重金属进入地下水的通量,判定地下水重金属剩余容量,评价土壤重金属对地下水的危害状况,为相关部门开展土壤及地下水的环境保护提供支撑,为相关学者开展类似研究提供借鉴。
创新点:(1)创新提出了土壤重金属进入地下水的简便易行的定量化通量评价模型,为土壤重金属对地下水的危害评价提供基础;(2)结合地下水环境容量评价,构建提出土壤重金属对地下水的危害性评价方法,并进行了实地应用,为区域土壤重金属危害性评价提供有效借鉴。
Abstract:This paper is the result of environmental geological survey engineering.
ObjectiveThe continuous accumulation of heavy metals in soil has potential harm to groundwater, but there is no quantitative method to evaluate the harm of heavy metals in soil to groundwater in previous studies.
MethodsBased on the theory of groundwater circulation and solid−liquid equilibrium, a simple and easy−to−−use flux model of soil heavy metals into groundwater is constructed in this paper. On the basis of evaluating groundwater environmental capacity, an innovative method for evaluating the harm of soil heavy metals to groundwater is proposed.
ResultsThe application was carried out in Hunchun Basin as an example, and the results showed that the fluxes of soil heavy metals into groundwater in the study area were Zn, Cu, As, Pb, Cd, Ni, and Hg in descending order, and that the heavy metals of the groundwater in most of the areas could not reach the limit of the environmental capacity within 10 years, and the damage level in most towns and villages to groundwater was moderate or below.
ConclusionsThrough this evaluation method, the flux of heavy metals in soil into groundwater can be calculated simply and quickly, the residual capacity of heavy metals in groundwater can be determined, and the harm of heavy metals in soil to groundwater can be evaluated, which provides support for relevant departments to carry out environmental protection of soil and groundwater, and provides reference for relevant scholars to carry out similar research.
Highlights:(1) A simple and easy quantitative flux evaluation model of soil heavy metals into groundwater is proposed,which provides the basis for the hazard evaluation of soil heavy metals to groundwater; (2) Combined with the assessment of groundwater environmental capacity, the hazard assessment method of soil heavy metals on groundwater was constructed and applied in the field, which provided an effective reference for the hazard assessment of regional soil heavy metals.
-
1. 研究目的(Objective)
湘中坳陷作为南方复杂构造区页岩气勘探的热点地区之一,也是中国油气勘探久攻未克的地区。前期在湘中地区北部的涟源凹陷泥盆系和石炭系获得了页岩气突破和发现,证实了湘中地区上古生界页岩气资源丰富。但对湘中地区南部的邵阳凹陷调查程度较为薄弱,针对邵阳凹陷二叠系仅开展了少量基础地质调查工作,页岩气资源潜力评价方面的工作尤为欠缺。本次研究依托邵阳湘邵地1井(XSD1井)钻探工程建立了邵阳凹陷二叠系地层层序序列,揭示了主要含气页岩层系的分布特征,获取了含气性评价参数,对湘中地区二叠系页岩气勘探开发和重新评价湘中坳陷页岩气资源潜力具有重要的现实意义。
2. 研究方法(Methods)
中国地质调查局武汉地质调查中心在收集分析区域地质相关资料的基础上,结合邵阳凹陷短陂桥向斜的煤田浅钻、非震物探等资料开展页岩气地质综合评价,采用页岩埋深500~4500 m,页岩有机碳含量≥1.0%,页岩厚度≥15 m,页岩有机质热演化程度1.0%~3.5%的评价参数在短陂桥向斜区优选页岩气远景区,论证部署了1口小口径页岩气地质调查井—XSD1井,湖南煤田地质勘查有限公司组织实施钻探(图 1a)。该井采样全井段取心钻井工艺,测井选取PSJ-2数字测井系统,录井采用SK-2000G气测录井,钻获二叠系大隆组156.05 m(暗色硅质页岩、钙质泥岩94.48 m),龙潭组349.95 m(暗色泥岩216.93 m,粉砂质泥岩36.9 m),对这两套层系共采集暗色泥岩样品33件,进行解析气含量测定分析,落实了含气性评价参数。
3. 结果(Results)
本次样品分析工作由武汉地质调查中心古生物与生命-环境协同演化重点实验室完成,采用YSQ-IIIA岩石解析气测定仪(燃烧法)对含气段岩心共计33件样品进行分析。该井钻获二叠系大隆组厚度156.05 m,为一套硅质岩、硅质页岩、炭质钙质泥岩地层。其中在井深842~930.2 m硅质页岩、钙质泥岩段,气测全烃值从1.06%上升至16.54%,甲烷值从1.01%上升至14.04%,13件大隆组硅质页岩现场解析总含气量为1.29~9.97 m3/t,平均4.85 m3/t。实现了湘中坳陷二叠系页岩气新发现,有效拓展了华南地区大隆组勘探范围。
钻获龙潭组厚度349.95 m,上段为一套细砂岩、粉砂岩夹泥岩潮坪相沉积地层,下段为一套炭质泥岩、粉砂质泥岩夹薄层细砂岩泻湖相沉积地层。在井深1013.4~1048 m泥岩与粉砂岩互层段气测全烃值最高可达19.87%,甲烷值最高为16.94%,7件泥岩与粉砂岩样品现场解析总含气量0.57~3.42 m3/t,平均1.78 m3/t;井深1088.10~1199.75 m泥岩夹泥质粉砂岩含气层111.6 m,气测全烃值最高可达28.2%,甲烷值最高为23.6%,13件泥岩、粉砂质泥岩样品现场解析总含气量0.90~4.55 m3/t,平均2.01 m3/t(图 1b),首次查明了湘中坳陷二叠系龙潭组非常规油气分布特点。
通过区域地质背景分析,并结合煤田区域地质资料,本研究认为滑脱断裂(F9)上下盘具有不同的页岩气聚集条件。滑脱断裂之上由一系列的同向逆断层形成的逆冲推覆体,地层变形强烈,且裂缝发育,导致页岩气保存条件变差。滑脱断裂下盘是页岩气主要富集区,地层平缓,不发育次级通天断裂,与下盘地层形成反向遮挡,易形成封闭,保存条件良好(图 1c)。
4. 结论(Conclusions)
(1)二叠系大隆组岩性以硅质岩、硅质页岩为主,夹少量灰岩。主要含气段存在于上段硅质页岩段,厚88.2 m,含气量平均为4.85 m3/t,含气性优越,资源潜力大。
(2)二叠系龙潭组上段以致密砂岩气为主,含气量平均为1.78 m3/t;下段以页岩气为主,泥岩厚达177.47 m,含气量平均为2.01 m3/t,具有泥岩厚度大,含气性好等特征。
(3)保存条件是页岩气富集关键,构造改造弱的封闭演化环境有利于页岩气保存,研究区滑脱断裂下盘是页岩气主要富集区,易形成封闭,保存条件良好。
(4)湘邵地1井在二叠系大隆组和龙潭组获得良好的页岩气显示,证实了湘中地区二叠系具有良好的页岩气资源潜力,对湘中地区页岩气资源潜力评价具有重要意义。
5. 基金项目(Fund support)
本文为中国地质调查局项目“中扬子地区油气页岩气调查评价”(DD20221659)资助的成果。
-
表 1 各元素固相–水分配系数预测模型一览
Table 1 List of prediction models in the solid−water partition coefficients of each element
元素 Kd预测模型 文献来源 As LgKd=0.41lg(total)+0.72lg(AlFeox)
-0.40Groenenberg et al.,
2012Hg 旱田:lgKd=0.021lg(Slit)+2.70
水田:lgKd=1.13lg(S)+3.17王晓晨等, 2018 Cu LgKd=0.21pH +0.51lg(SOM)+1.75 Sauve et al., 2000 Pb LgKd=0.37pH +0.44lg(total)+1.19 Sauve et al., 2000 Zn LgKd=0.60pH +0.21lg(total)-1.34 Sauve et al., 2000 Ni LgKd=1.02pH +0.80lg(SOM)-4.16 Sauve et al., 2000 Cd LgKd=0.48pH+0.82lg(SOM)-0.65 Sauve et al., 2000 注:SOM为有机碳含量,%;total为元素总含量,mg/kg;AlFeox为铁铝氧化物,%(铁铝氧化物/土壤);Slit为土壤黏粒含量,%;S为土壤总硫含量,g/kg。 表 2 土壤重金属对地下水危害程度评价标准
Table 2 Harm degree of soil heavy metals in the groundwater
土壤重金属对地下水
危害度(Dg)危害程度 >50或<0 极严重 1~50 严重 0.2~1 中度 0.1~0.2 轻度 0.04~0.1 警戒 0~0.04 无 表 3 研究区各乡镇土壤重金属进入地下水通量(kg/a)
Table 3 Fluxes (kg/a) of soil heavy metals into groundwater in villages and towns in the study area
乡镇 As Hg Cu Pb Zn Ni Cd 板石镇 114.96 1.07 136.27 18.84 1375.88 2.35 5.17 三家子乡 98.02 0.78 133.36 18.07 1440.23 2.29 6.34 经济合作区 59.29 0.61 73.56 11.16 736.82 1.32 2.15 马川子乡 103.66 1.16 114.23 19.20 1405.70 2.31 3.15 杨泡乡 58.28 0.36 76.79 10.22 695.80 1.35 2.84 英安镇 179.96 1.52 240.91 32.13 2178.65 3.94 7.37 哈达门乡 68.78 0.41 102.35 14.27 1011.68 1.83 4.08 总计 682.94 5.91 877.49 123.89 8844.75 15.40 31.09 表 4 研究区地下水重金属含量(mg/L)
Table 4 Content (mg/L) of heavy metals in groundwater in study area
含量 Cu Pb Zn As Hg Cd Ni 最小值 0.00060 0.00040 0.0036 0.0014 0.0000000 0.000000 0.0006 最大值 0.00910 0.01880 0.4658 0.0094 0.0000357 0.000771 0.0458 平均值 0.00483 0.00244 0.0239 0.0026 0.0000230 0.000084 0.0109 国标Ⅲ级* 1.00 0.01 1.00 0.01 0.001 0.005 0.02 注:*《地下水质量标准》(GB 14848–2017)中Ⅲ级质量标准。 表 5 研究区各乡镇地下水重金属环境容量(kg)
Table 5 Environmental capacity (kg) of heavy metals in groundwater of the study area
行政区 As Hg Cu Pb Zn Ni Cd 板石镇 692.77 92.58 94223.22 545.13 92380.17 706.93 466.76 三家子乡 782.23 100.41 102353.49 702.37 100951.68 1460.23 503.68 经济合作区 126.96 16.74 17014.08 131.77 15952.48 38.10 84.17 马川子乡 230.02 29.93 30468.46 238.12 29753.14 316.12 150.41 杨泡乡 173.52 21.76 22230.00 190.63 22081.60 267.84 109.89 英安镇 745.06 101.97 103863.29 809.86 102593.92 1082.58 513.06 哈达门乡 282.79 36.57 37362.07 342.22 37177.10 334.56 184.90 表 6 研究区土壤重金属对地下水的危害程度一览
Table 6 List of the harm degree of soil heavy metals in the groundwater of the study area
行政区 危害等级 As Cd Cu Hg Ni Pb Zn 总体 板石镇 中度 无 无 无 无 警戒 无 中度 三家子乡 轻度 无 无 无 无 无 无 轻度 经济合作区 中度 无 无 警戒 极严重 警戒 警戒 极严重 马川子乡 中度 无 无 警戒 无 警戒 警戒 中度 杨泡乡 中度 无 无 无 无 警戒 无 中度 英安镇 中度 无 无 无 无 警戒 无 中度 哈达门乡 中度 无 无 无 无 警戒 无 中度 -
[1] Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).
[2] Chen G Q, Zeng G M, Du C Y, Huang D L, Tang L, Wang L, Shen G L. 2010. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions[J]. Journal of Hazardous Materials, 181(1): 211−216.
[3] Chen Zifang, Zhao Yongsheng, Sun Gujiang, Bai Jing, Liu Lu, Zhou Rui. 2014. Study on the migration and release of lead and chromium and in the vadose zone[J]. China Environmental Science, 34(9): 2211−2216 (in Chinese with English abstract).
[4] Cong Xin, Lei Xutao, Fu Ling, Shang Saiyao, Ding Jing, Bi Ran. 2017. Pollution characteristics and ecological risk assessment of heavy metals in soils around the gangue heap of Haizhou coal mine, China[J]. Earth and Environment, 45(3): 329−335 (in Chinese with English abstract
[5] Feng Zhen. 2020. Application of Hydrus–1D in environmental impact assessment of dump in metal mines[J]. World Nonferrous Metals, (13): 161−162 (in Chinese with English abstract
[6] Gao Jianweng, Gong Jingjing, Yang Jianzhou, Tang Shixin, Ma Shengming. 2021. Spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain–Wanling Town, Qiongzhong, Hainan Province[J]. Geologcal Bulletin of China, 40(5): 807−816 (in Chinese with English abstract
[7] Groenenberg J E, Dijkstra J J, Bonten L T C, Vries W D, Comans R N J. 2012. Evaluation of the performance and limitations of empirical partition–relations and process based multisurface models to predict trace element solubility in soils[J]. Environmental Pollution, 166: 98−107. doi: 10.1016/j.envpol.2012.03.011
[8] Guo Xiaodong, Sun Qifa, Zhao Yongsheng, Cai He. 2018. Distribution and sources of heavy metals in the farmland soil of the Hunchun basin of Jilin Province, China[J]. Journal of Agro–environment Science, 37(9): 1875−1883 (in Chinese with English abstract
[9] Hu Yishui, Qi Shi, Li Yutong, Zhou Jinxing, Wu Bingchen. 2020. Effects of sludge composting products on soil and groundwater[J]. China Environmental Science, 40(5): 2157−2166 (in Chinese with English abstract
[10] Jiang Shijie, Zhai Yuanzheng, Wang Jinsheng, Leng Suya, Teng Yanguo. 2016. Derivation of soil environmental criteria for groundwater protection: A comparative study between countries[J]. Hydrogeology and Engineering Geology, 43(4): 52−59 (in Chinese with English abstract
[11] Li Qiuyan, Wei Minghui, Dai Huimin, He Pengfei, Liu Kai. 2021. Characteristics of soil heavy metal pollution and ecological risk assessment of Jinzhou city[J]. Geology and Resources, 30(4): 465−472 (in Chinese with English abstract).
[12] Liao J B, Ru X, Xie B B, Zhang W H, Wu H Z, Wu C F, Wei C H. 2017. Multi–phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage[J]. Ecotoxicol Environ Safety, 141: 75−84. doi: 10.1016/j.ecoenv.2017.03.009
[13] Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749−763 (in Chinese with English abstract).
[14] Lin Ting, Luo Fei, Zhu Yan, Yang Kun, Xi Xiuping. 2019. Calculation of the soil risk control value through a hydrus–1D model for groundwater protection[J]. Chinese Journal of Environmental Science, 40(12): 5640−5648 (in Chinese with English abstract).
[15] Lü Da, Wei Yong, Liu Guijian. 2019. Migration Characteristics of heavy metals in interaction system of soil–groundwater[J]. Journal of Jilin University (Science Edition), 57(6): 1544−1548 (in Chinese with English abstract).
[16] Moon J W, Moon H S, Woo N C, Hahn J S, Won J S, Song Y, Lin X, Zhao Y. 2000. Evaluation of heavy metal contamination and implication of multiple sources from Hunchun basin, northeastern China[J]. Environmental Geology, 39(9): 1039−1052. doi: 10.1007/s002540000112
[17] Sauve S, Hendershot W, Allen H E. 2000. Solid–solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter[J]. Environmental Science & Technology, 34(7): 1125−1125.
[18] Shi Xufei, Zhao Haiqing. 2017. The age and water cycle of shallow the age and water cycle of shallow groundwater in Hunchun basin[J]. Advances in Geosciences, 7(1): 50−57 (in Chinese with English abstract). doi: 10.12677/AG.2017.71006
[19] Vink J P M, Van Zomeren A, Dijkstra J J, Comans R N J. 2017. When soils become sediments: Large–scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater[J]. Environmental Pollution, 227: 146−156. doi: 10.1016/j.envpol.2017.04.016
[20] Wan Shuoyang, Wu Yong, Tang Xuefang, Deng Dongping, Lan Zhen, Han Libi. 2020. Simulation and spatial analysis of heavy metal migration in Xiba Town soil based on Hydrus–1 D[J]. Science Technology and Engineering, 20(2): 854−859 (in Chinese with English abstract).
[21] Wang Xiaochen, Dai Yunan, Qiao Xianliang, Zhang Aijing, Yu Hui, Bai Lou. 2018. Study on adsorption and partitioning behaviors of mercury in agricultural soils[J]. Asian Journal of Ecotoxicology, 13(6): 115−123 (in Chinese with English abstract).
[22] Wu Guanghai, Wang Chensheng, Chen Honghan. 2020. Eco–environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten–molybdenum mine area in Inner Mongolia[J]. Geology in China, 47(6): 1838−1852. (in Chinese with English abstract
[23] Xiao H, Shahab A, Xi B D, Chang Q X, You S H, Li J Y, Sun X J, Huang H W, Li X K. 2021. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China[J]. Environmental Pollution, 269: 116189. doi: 10.1016/j.envpol.2020.116189
[24] Xie Fei, Wu Junfeng, Ren Xiaoming. 2016. Sources and ecological risks of heavy metals in the soils of the typical industry–based development zones in Jiangsu[J]. Journal of Safety and Environment, 16(2): 387−391 (in Chinese with English abstract).
[25] Xu Zengguang. 2012. Numerical Simulation Study on Migration and Remediation of Organic Matter and Heavy Metals in Groundwater [D]. Shanghai: Shanghai Jiaotong University, 1−156 (in Chinese with English abstract).
[26] Yin Dechao, Qi Xiaofan, Wang Yushan, Xu Rongzhen, An Yonghui, Wang Xuqing, Geng Hongjie. 2022. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong'an New Area[J]. Geology in China, 49(3): 979−992 (in Chinese with English abstract).
[27] Zhang M, Chen G, Luo Z T, Sun X, Xu J L. 2020. Spatial distribution, source identification, and risk assessment of heavy metals in seawater and sediments from Meishan Bay, Zhejiang coast, China[J]. Marine Pollution Bulletin, 156: 111217. doi: 10.1016/j.marpolbul.2020.111217
[28] Zhao K L. Zhang L Y, Dong J Q, Wu J S, Ye Z Q, Zhao W M, Ding L Z, Fu W J. 2020. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China[J]. Geoderma, 360: 114011. doi: 10.1016/j.geoderma.2019.114011
[29] 鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636. doi: 10.12029/gc20200602 [30] 陈子方, 赵勇胜, 孙家强, 白静, 刘璐, 周睿. 2014. 铅和铬污染包气带及再释放规律的实验研究[J]. 中国环境科学, 34(9): 2211−2216. [31] 丛鑫, 雷旭涛, 付玲, 商思瑶, 丁静, 毕然. 2017. 海州煤矿矸石山周边土壤重金属污染特征及生态风险评价[J]. 地球与环境, 45(3): 329−335. [32] 冯祯. 2020. Hydrus–1D在金属矿山排土场环境影响评价中的应用研究[J]. 世界有色金属, (13): 161−162. doi: 10.3969/j.issn.1002-5065.2020.13.077 [33] 高健翁, 龚晶晶, 杨剑洲, 唐世新, 马生明. 2021. 海南岛琼中黎母山—湾岭地区土壤重金属元素分布特征及生态风险评价[J]. 地质通报, 40(5): 807−816. [34] 郭晓东, 孙岐发, 赵勇胜, 蔡贺. 2018. 珲春盆地农田重金属分布特征及源解析[J]. 农业环境科学学报, 37(9): 1875−1883. doi: 10.11654/jaes.2017-1718 [35] 胡译水, 齐实, 李昱彤, 周金星, 伍冰晨. 2020. 污泥堆肥施用对土壤及地下水影响研究[J]. 中国环境科学, 40(5): 2157−2166. doi: 10.3969/j.issn.1000-6923.2020.05.036 [36] 蒋世杰, 翟远征, 王金生, 冷苏娅, 滕彦国. 2016. 国内外基于保护地下水的土壤环境基准的推导与比较[J]. 水文地质工程地质, 43(4): 52−59. [37] 李秋燕, 魏明辉, 戴慧敏, 贺鹏飞, 刘凯. 2021. 锦州市土壤重金属污染特征及生态风险评价[J]. 地质与资源, 30(4): 465−472. [38] 林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749−763. doi: 10.12029/gc20210306 [39] 林挺, 罗飞, 朱艳, 杨坤, 郗秀平. 2019. Hydrus–1D模型在推导基于保护地下水的土壤风险控制值中的应用[J]. 环境科学, 40(12): 5640−5648. [40] 吕达, 魏勇, 刘桂建. 2019. 重金属在土壤–地下水交互系统中的迁移特征[J]. 吉林大学学报(理学版), 57(6): 1544−1548. [41] 石旭飞, 赵海清. 2017. 珲春盆地浅层地下水年龄及其水循环特征[J]. 地球科学前沿, 7(1): 50−57. [42] 万朔阳, 吴勇, 唐学芳, 邓东平, 兰真, 韩莉璧. 2020. 基于Hydrus–1D对西坝镇农田土壤重金属迁移模拟及空间解析[J]. 科学技术与工程, 20(2): 854−859. doi: 10.3969/j.issn.1671-1815.2020.02.063 [43] 王晓晨, 代宇楠, 乔显亮, 张艾婧, 余慧, 白露. 2018. 农田土壤中汞的吸附分配行为研究[J]. 生态毒理学报, 13(6): 115−123. [44] 邬光海, 王晨昇, 陈鸿汉. 2020. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 47(6): 1838−1852. doi: 10.12029/gc20200619 [45] 谢飞, 吴俊锋, 任晓鸣. 2016. 江苏省典型工业开发区土壤重金属污染及其潜在生态风险评价[J]. 安全与环境学报, 16(2): 387−391. [46] 许增光. 2012. 地下水有机物和重金属迁移与污染修复的数值模拟研究[D]. 上海: 上海交通大学, 1−156. [47] 尹德超, 祁晓凡, 王雨山, 徐蓉桢, 安永会, 王旭清, 耿红杰. 2022. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价[J]. 中国地质, 49(3): 979−992.