Zircon U-Pb dating of Late Paleozoic alkali-feldspar granite in Duobaoshan, Great Xing'an Range: Constrains on collision and assembly time of Xing'an and Songnen Blocks
-
摘要:研究目的
大兴安岭多宝山地区位于兴蒙造山带东部的兴安地块与松嫩地块之间的构造带上,区内构造演化复杂,岩浆活动频繁,本文通过对多宝山地区晚古生代碱长花岗岩的年代学和岩石地球化学研究,旨在约束兴安地块与松嫩地块碰撞拼合的时限。
研究方法开展了LA-ICP-MS锆石U-Pb测年和岩石主微量元素的测试分析工作。
研究结果测年获得的2件样品的加权平均年龄分别为(300.3±2.0)Ma和(307.3±1.7)Ma,属晚石炭世。岩石具有高硅SiO2=69.70%~77.42%,相对富铝Al2O3=11.60%~15.05%,富钾和钠(K2O=4.09%~5.67%; Na2O=3.13%~4.13%),贫钙和镁(CaO=0.02%~0.8%; MgO=0.02%~0.48%)的特征; 微量元素表现出富集Rb、Th、Zr和Hf,亏损Ba、Sr、Nb和Ta,(Zr+Nb+Ce+Y)含量较高,平均值为529.10×10-6; 稀土元素配分模式呈右倾,具明显Eu负异常; 同时岩石具有较高的锆石饱和温度,符合A型花岗岩的特征。
结论结合区域构造演化史,认为该期碱长花岗岩为造山期后伸展构造环境下岩浆活动的产物,并指示兴安地块和松嫩地块碰撞拼合的结束。
创新点: 厘定多宝山地区晚古生代碱长花岗岩类型; 约束兴安地块与松嫩地块碰撞-拼合的时限。
Abstract:This paper is the result of geological survey engineering.
ObjectiveThe Duobaoshan area of the Great Xing'an Range is located on the tectonic belt between the Xing'an block and the Songnen block in the east of the Xingmeng orogenic belt. In this paper, the chronology and petrogeochemistry of the Late Paleozoic alkali feldspar granites in the Duobaoshan area are used to constrain the time limit of the collision between the Xing'an block and the Songnen block.
MethodsIn this paper, the zircon U-Pb geochronology and the whole rock geochemistry were carried out.
ResultsThe LA-ICPMS U-Pb ages of zircons from two alkali-feldspar granite samples were (300.3±2.0)Ma and (307.3±1.7) Ma, respectively. Two samples have the similar geochemistry characteristics, with high silicon (SiO2= 69.70% to 77.42%), relatively high aluminum (Al2O3=11.60% to 15.05%), and high alkali (K2O+ Na2O=7.22% to 9.80%), low Ca and Mg (CaO=0.02% to 0.8%, MgO=0.02% to 0.48%), enrichment of Rb, Th, Zr and Hf, depleted of Ba, Sr, Nb and Ta, relatively high (Zr+Nb+Ce+Y). In addition, they also have significantly negative Eu anomalies, with the right-leaningdistribution of rare earth elements and high zircon saturation temperature, suggesting both of them are A-type granites.
ConclusionsCombined with the regionally tectonical evolution, it is concluded that the alkali-feldspar granite formed at extensional geological background of post-collision regime, marking the end of the collision between the Xing'an block and the Songnen block.
-
1. 引言
巴音戈壁盆地为叠置在克拉通基底与晚古生代褶皱基底接合部位上的伸展断坳复合型盆地(罗毅等,2009; 张成勇等,2015),盆地中南部是古生代滨浅海相基础上发育的盆地建造带,其坳陷的基底为多期富铀花岗岩活化的古克拉通基底,是成熟度高的富铀基底,是铀成矿的有利区。近年来,核工业二〇八大队在盆地中南部开展了一系列的铀矿调查评价与勘查工作,取得突出的找矿成果(申科峰等,2014; 李鹏等,2017; 彭云彪等,2018b)。
根据水成铀矿理论,砂岩型铀矿是一种产在近地表砂体中的外生铀矿床,是活化的六价铀元素沿含矿含水层运移,遇有机碳、黄铁矿或油气等还原剂,在过渡带被还原成四价铀元素富集沉淀成矿(陈路路等,2014)。盆地(坳陷)内能否铀成矿,取决于其所在地区的大地构造背景及构造-沉积演化特征,并通过影响区域构造、沉积演化、铀(物)源、水动力、氧化还原蚀变等成矿地质条件来控制砂岩型铀矿床的形成。因此,通过研究巴音戈壁盆地中南部构造-沉积演化及其对铀成矿的关系,对盆地内继续寻找铀矿床具有一定的积极作用。
2. 地质背景
2.1 大地构造背景
巴音戈壁盆地位于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北板块的结合部位,是巴尔喀什—天山—兴安岭晚古生代增生碰撞带。以恩格尔乌苏—巴音查干NEE向晚古生代陆-陆碰撞板块缝合线为界,巴音戈壁盆地中南部处于华北板块北缘阴山隆起带与宝音图—锡林浩特火山型被动陆缘的结合带。其北界为宗乃山—沙拉扎山隆起带,南界为巴丹吉林断裂(图 1),属弧间盆地。
根据前人的划分方案,盆地中南部属于中构造域,为西部挤压与东部拉张环境的结合部,构造应力比较复杂(Darby et al., 2005; 陈戴生等,2011; Shi et al., 2015; 苗培森等,2017; 刘波等,2020; Jin et al., 2020; Yu et al., 2021)。区域上自中生代以来先后经历了印支期、燕山期、喜山期共7次构造运动,导致其上覆盖层中形成隆起和坳陷(凹陷)相间出现的局面(表 1)。
表 1 巴音戈壁盆地中南部主要凹陷特征一览Table 1. Characteristic list of main depressions in the central and southern Bayin Gobi Basin2.2 地质概况
巴音戈壁盆地中南部基底地层主要为太古界乌拉山群深变质岩,古元古界阿拉善群中深变质岩、寒武系—泥盆系碎屑岩、碳酸盐岩及浅变质岩,石炭系中酸性火山岩、碎屑岩,二叠系碎屑岩、火山岩、碳酸盐岩等组成(张成勇等,2015; 刘波等,2020)。盖层主要为中新生界,主要为侏罗系、下白垩统巴音戈壁组、上白垩统乌兰苏海组,局部见下白垩统苏红图组,其中巴音戈壁组上段为盆地内主要的找矿目的层(何中波等,2010; 丁叶等,2012; 肖国贤等,2017; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020; Liu et al., 2021a)。盆地内岩浆岩主要发育于元古宙、古生代和显生宙,主要分布于宗乃山—沙拉扎山、狼山—巴彦诺尔公地区,主要为花岗岩、花岗闪长岩、花岗闪长玢岩、黑云闪长岩、石英闪长玢岩等(史兴俊等,2015),以花岗岩类最为发育。断裂主要有宗乃山—沙拉扎山南缘断裂和巴丹吉林断裂,基本控制了盆地中南部坳陷带的发育。
3. 构造活动对目的层的制约
3.1 构造样式
巴音戈壁盆地中南部凹陷的构造样式主要为双断型、单断型与复合型(刘波等,2020)。从凹陷形态及其演化继承性分析,具有两种类型,表现为叠合型和迁移型(陈启林等,2005; 彭云彪等, 2018a, 2018b)。不同的凹陷形态具有不同的构造样式(卫三元等,2006),不同构造样式控制了不同的沉积充填类型(图 2),同时控制了凹陷后期构造反转、流体运移和铀矿化的分布等(刘波等, 2016, 2017a, 2017b, 2018, 2020)。
图 2 因格井—尚丹坳陷各凹陷构造样式a—单断断槽式; b—单断迁移型; c—单断叠置型; d—双断地堑式; 1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—中下侏罗统; 5—地层界线; 6—正断层; 7—性质不明断层; 8—反转断层Figure 2. Structuralstyles of sags in Inger-Shangdan Depressiona-Single and slot; b-Single fault migration; c-Single fault superimposed; d-Double break graben; 1-Ulansuhai Formation of Upper Cretaceous; 2-Upper Member of Bayin Gobi Formation of Lower Cretaceous; 3- Lower Part of Bayin Gobi Formation of Lower Cretaceous; 4-Middle-Lower Jurassic; 5-Stratigraphic boundary; 6-Normal fault; 7-Unidentified fault; 8-Inversion fault单断箕状凹陷在盆地中南部发育规模最广,如因格井凹陷、乌力吉凹陷等。这种凹陷易于在断陷端发育冲积扇—扇三角洲沉积,远离断陷端多为湖泊沉积,扇三角洲平原分流河道和扇三角洲前缘多发育有利砂体,利于成矿流体运移及铀成矿,如塔木素铀矿床砂岩型铀矿体即赋存于因格井凹陷北部扇三角洲砂体中(李鹏等,2017; 彭云彪等,2018b; 刘波等,2020)。复合型凹陷在盆地中南部局部发育,如本巴图矿产地,赋存于单断箕状凹陷的复合部位。该部位因差异性抬升易于遭受剥蚀,继而形成大型剥蚀窗口,而剥蚀窗口有利于后生氧化发育,进而形成铀矿化。
3.2 构造演化
3.1.1 侏罗纪构造演化
早中侏罗世,受燕山运动影响,盆地中南部开始局部裂陷,裂陷主要受北东向断裂控制,主要呈箕状和不对称地堑。在晚侏罗世,盆地整体抬升剥蚀,地层剥蚀殆尽,大部分残存于盆地中南部的沉降中心,少量在坳陷边缘局部呈残留体形式存在(罗毅等,2009)。
3.1.2 白垩纪构造演化
早白垩世巴音戈壁期为强烈断陷期,主要发育了下白垩统巴音戈壁组,在坳陷带内具有广泛连通的特征,古构造地貌表现为北高南低,东高西低。在断陷发育扩张的早期,首先沉积了巴音戈壁组下段冲积扇砂砾岩层。巴音戈壁组上段早期湖泊相细粒沉积物不断向盆地外侧超覆沉积,反映出断陷不断扩张。随着断陷继续发育,巴音戈壁组上段沉积物供给<凹陷的可容纳空间,发育扇三角洲—湖沼沉积。这一时期在三角洲平原分流河道和三角洲前缘,既发育了有利的铀储层砂体,又在河道分流间湾沉积了暗色泥岩、粉砂质泥岩,构成了有利于地浸砂岩型铀矿形成的“泥-砂-泥”储层结构,成为本区砂岩型铀矿的主要找矿目的层。此后,盆地中南部差异性隆升,大部分地区沉积滨浅湖与半深湖亚相细碎屑物,表现为退积型沉积特点。
在苏红图期,延续早白垩世巴音戈壁期北高南低和东高西低的基础上,银根地区发育为沉降沉积中心,发育了一定厚度的苏红图组,而其他大部分地区诸如塔木素、乌力吉地区依旧缓慢隆升,遭受剥蚀。
在早白垩世苏红图沉积后,银根地区抬升遭受剥蚀,在原有古构造地貌基础上,表现为中央局部隆升,局部遭受剥蚀(He et al., 2015)。
早白垩世晚期银根期,盆地中南部受滨西太平洋俯冲远程影响(Shi et al., 2014; Zhang et al., 2014; Liu et al., 2019),整体抬升强烈,普遍缺失银根组(图 3)。古构造地貌特征为北东高南西低的特点。
图 3 巴音戈壁盆地中南部白垩纪地层沉积与剥蚀天窗示意图1—乌兰苏海组; 2—巴音戈壁组上段三岩段; 3—巴音戈壁组上段二岩段; 4—地质界线; 5—角度不整合界线; 6—钻孔孔号及标高(m); 7—工业矿孔; 8—矿化孔; 9—无矿孔Figure 3. Schematic diagram of Cretaceous sedimentation and denudation windows in the central and southern Bayin Gobi Basin1-Ulansuhai Formation; 2-Third rock section inthe Upper Member of Bayin Gobi Formation; 3-Second rock section in the Upper Member of Bayin Gobi Formation; 4-Geological boundary; 5-Angular unconformity boundary; 6-Borehole number and elevation (m); 7-Industrial ore hole; 8-Mineralization hole; 9-Non ore Hole晚白垩世乌兰苏海期,受古亚洲板块俯冲影响,盆地中南部受北西-南东应力作用,整体从北西向南东阶梯式抬升(刘春燕等,2006; Feng et al., 2017; 张建新等,2018),在局部表现为伸展作用,在因格井坳陷、尚丹坳陷的南部,乌兰苏海组坳陷内沉积厚度较大; 在宗乃山—沙拉扎山隆起带边缘表现为缺失乌兰苏海组或厚度较小(图 3),此时古构造地貌表现为北西高-南东低。
3.1.3 古近纪以来构造演化
古近纪以来,受印度板块俯冲影响,盆地中南部受南西-北东应力作用影响,使得老构造重新活动和北东向断裂的新生(Tapponnier et al., 2001; 施炜等,2013; Cui et al., 2018; 赵衡等, 2019a, 2019b); 由南向北发育阶梯式抬升,导致在相邻的雅不赖盆地缺失白垩系,盆地内整体缺失古近系,近于直接出露厚层的乌兰苏海组(图 3)。而盆地中南部乌兰苏海组同样遭受抬升剥蚀,表现为厚度较薄或缺失。该时期地貌表现为南高北低,西高东低的特点,垂直高差300~500 m。
3.3 构造对沉积充填的影响
巴音戈壁组在上、下段沉积过程中,其沉积相、沉积体系出现了明显的变化,下段沉积期间,显示相对单一的以重力流沉积为主体的冲积扇沉积和扇三角洲沉积,上段沉积时则演变为相对复杂的以重力流和牵引流沉积并重的多种沉积体系所构成的沉积格局,特别是扇三角洲沉积体系的广泛发育,为巴音戈壁盆地中南部砂岩铀矿的形成提供了最基本的砂体条件。这种沉积体系的演变虽然直接与沉积环境的变化有关,但空间上有规律的分布则明显与构造活动有关(丁叶等,2012; 陈路路等,2014; 彭云彪等, 2018a, b)。
在巴音戈壁组沉积时,各凹陷虽构造样式不同(因格井凹陷为双断型、新尼乌苏凹陷为单断箕状),但在北东向控盆及控坳断裂控制下,在陡坡快速接受碎屑物沉积。结合气候干旱,流水作用不发育,决定了巴音戈壁组下段在盆地(坳陷)的南北两侧发育冲积扇沉积体系,以及局部地段的扇三角洲沉积体系。至巴音戈壁组上段沉积时,构造沉降作用进一步加剧,同时,气候环境明显改变,流水作用显著增强,湖盆发生快速扩张,除某些地段沉积仍显示陡坡特点形成冲积扇沉积体系与扇三角洲沉积体系外,在其他地段特别是北东向构造的闭合端,由于河流的发育,成为碎屑补给的主要地段,并使沉积坡降进一步降低,在构造交汇处形成由平原亚相逐步入湖的扇三角洲沉积体系(刘波等,2020; Liu et al., 2021b)。
后期的构造反转,差异的块断升降导致原来形成的沉积格局发生改变。反转断裂以逆冲压性为主要构造性质,构造方向呈北东向,由若干条相互平行的断裂带组成。由于断裂构造的反转,使原有沉积相带在空间上的有序规律发生了变化,即由冲积扇-扇三角洲-湖相组合递变的沉积相带或由冲积扇-辫状河-辫状三角洲-湖相组合递变的沉积相带在空间上出现了错位或缺失,同时也使巴音戈壁组上、下段沉积地层在空间叠置关系上出现了错断和突变(何中波等,2010; 张成勇等,2015; 刘波等,2020)(图 4)。
图 4 巴音戈壁盆地中南部白垩纪构造-沉积演化模式图a—早白垩世巴音戈壁组下段; b—早白垩世巴音戈壁组上段早期; c—早白垩世巴音戈壁组上段晚期; d—早白垩世末期; 1—扇三角洲; 2—冲积扇; 3—扇三角洲平原; 4—扇三角洲前缘; 5—湖泊相; 6—基底; 7—亚相界线; 8—正断层; 9—逆断层Figure 4. Cretaceous tectonic-sedimentary evolution model diagram in the central and southern Bayin Gobi Basina-The lower part of Bayin Gobi Formation in Early Cretaceous; b-Early upper member of Bayin Gobi Formation in Early Cretaceous; c-Late upper member of Bayin Gobi Formation in Early Cretaceous; d-Late Early Cretaceous; 1-Fan delta; 2-Alluvial fan; 3-Fan delta plain; 4-Fan delta front; 5-Lake facies; 6-Basement; 7-Subfacies boundary; 8-Normal fault; 9-Reverse fault4. 构造-沉积演化对铀成矿的制约
4.1 构造-沉积演化对成矿流体的影响
巴音戈壁盆地中南部地下水的水动力方向和状态的改变,主要受构造隆升或掀斜构造的影响,而地下水的水动力条件改变,会使铀成矿作用产生变化。巴音戈壁盆地中南部在早白垩世巴音戈壁组上段沉积期,地势比较开阔,巴音戈壁组上段地层呈水平沉积; 巴音戈壁组沉积后,巴音戈壁盆地中南部受古亚洲造山带和滨西太平洋的双向挤压,北部宗乃山—沙拉扎山隆起抬升明显,使得下白垩统巴音戈壁组上段抬升剥蚀,形成早白垩世巴音戈壁期—晚白垩世长期的沉积间断,形成大型的剥蚀窗口。巴音戈壁盆地中南部内的含铀含氧水顺剥蚀窗口向盆地内运移,在巴音戈壁组上段的“泥-砂-泥”储层结构的约束下,与砂体内本身的有机质、还原(流)性介质发生作用,形成铀矿体(图 5)。在晚白垩世乌兰苏海期,巴音戈壁盆地中南部进入坳陷期,在坳陷(凹陷)内沉积了乌兰苏海组,形成了区域盖层。在古近纪,受喜山运动的影响,巴音戈壁盆地中南部由南西向北东发生掀斜式抬升,巴音戈壁盆地中南部地层整个抬升翘起,巴音戈壁组形成微向斜,含铀含氧水继续呈“C”型或者“U”型沿着剥蚀窗口向盆地内运移。在新近纪,受喜山运动影响,巴音戈壁盆地中南部受到由南西向北东掀斜的整体剧烈抬升,使得古近系、上白垩统在南部遭受剥蚀,宗乃山隆起被大量剥蚀改造,造山带和盆地的高差减小。由于剥蚀抬升,使得含铀含氧水向盆地内继续运移。由于受巴彦诺尔公隆起的影响,巴音戈壁盆地中南部内地下水由径流—弱径流,转为滞水。该时期由于气候持续干旱炎热,水岩作用强烈,NaCl型高矿化度地下水中的Na+替换了斜长石中的Ca2+,后者与地下水中的CO32-、HCO3-和Mg2+形成白云石等碳酸盐矿物,促使地下水中以[UO2(CO3)3]4-、[UO2(CO3)3]2-等碳酸铀酰络合离子及MgCO3·NaUO2(CO3)2复盐发生分离而形成了铀的沉淀(王凤岗等,2018; 刘波等,2020)。
图 5 巴音戈壁盆地中南部下白垩统巴音戈壁组上段岩性-岩相示意图1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—侏罗系; 5—上石炭统; 6—盆地边界; 7—岩相界线; 8—扇三角洲平原; 9—扇三角洲前缘; 10—滨浅湖; 11—花岗岩; 12—矿床/矿产地; 13—乌兰苏海组剥蚀界线; 14—铀矿体; 15—断裂; 16—示意剖面Figure 5. Lithology-lithofacies sketch map of upper member of lower Cretaceous Bayin Gobi Formation in south-central Bayin Gobi Basin1-Ulansuhai formation of upper Cretaceous; 2-Upper member of Bayin Gobi Formation of Lower Cretaceous; 3-Lower part of Bayin Gobi Formation of Lower Cretaceous; 4-Jurassic; 5- Upper Carboniferous; 6-Basin boundary; 7-Lithofacies boundary; 8-Fan delta plain; 9-Fan delta front; 10-Shore-shallow lake; 11-Granite/Orefield; 12-Deposit; 13-Denudation boundary of Wulansuhai Formation; 14-Uranium ore body; 15-Fault; 16-Schematic section总体来看,巴音戈壁盆地中南部在白垩纪—古近纪以来,北部地下水一直保持由北向南的径流趋势,南部地下水总体流向一直保持由南向北的径流趋势,在不同的次级凹陷中略呈分散状。地下水流向与当时的沉积物迁移和地层相带展布方向长期保持一致,这对铀的稳定迁移、层间氧化带的稳定发育及铀在氧化带前锋线一带沉积成矿是非常有利的。
4.2 构造-沉积演化对氧化还原蚀变的影响
巴音戈壁盆地中南部主要经历了3次大规模的铀成矿作用,主要为第一期早白垩世中晚期(109.7±1.5)Ma ~(115.5±1.5)Ma,第二期为晚白垩世晚期—古近纪(45.4±0.6)Ma ~(70.9±1.0)Ma和第三期为新近纪(12.3±0.2)Ma ~(2.5±0.0)Ma(刘波等,2020)。在早白垩世中晚期,伴随着恩格尔乌苏断裂的活动,宗乃山隆起发生抬升,使得含铀含氧水向盆地内运移,发育层间氧化作用。从塔木素铀矿床的赤铁矿化发育情况看,该期氧化作用强烈,可能为主要成矿期。在晚白垩世晚期65~80 Ma(韩进等,2015; 刘溪等,2017),盆地经历了由北向南的强烈的推覆作用,这与巴音戈壁盆地中南部内典型矿床的第二期成矿年龄相对应。伴随着盆地晚白垩世晚期—古近纪盆地由北向南的推覆抬升,盆地内在原有基础上发育有叠加的黄色褐铁矿化层间氧化作用,该期盆地抬升较第一期弱,故层间氧化带的规模较上期小,表现为盆地内褐铁矿化分布较赤铁矿化分布范围小。但是该时期盆地古气候炎热干旱,盆地蒸发量增强,使得表生盐度高卤水向内入渗,在巴音戈壁组上段二岩段层间破碎、裂陷、微孔隙充填发育了大量石膏和碳酸盐(李鹏等,2017)。同时,斜长石因水岩作用(溶解、溶蚀等),在解理面及表面形成了次生的缝隙及孔洞等,为铀沉淀提供了空间。此外,含CO32-、SO42-等的酸性地表水沿层间下渗,溶解了砂岩中碳酸盐胶结物而形成了溶洞,为后期再次迁移的铀提供了沉淀空间,并形成了铀的进一步叠加、富集(王凤岗等,2018)。受盆地挤压抬升影响,后期近地表成矿流体促进了大规模潜水氧化与层间氧化的发育,深部有机流体(还原气体)上侵与SO42-发生反应生成黄铁矿。正是黄铁矿和植物炭屑的还原作用导致了渗入型含氧含铀地下水中矿质的沉淀,形成铀矿体。
4.3 构造-沉积演化与铀成矿的关系
早白垩世巴音戈壁期,巴音戈壁盆地断陷发育; 早白垩世苏红图—银根期,在太平洋俯冲远程效应下,巴音戈壁盆地发生断坳转换,发育走向北东的断裂与线性褶皱,致使地层发生差异性掀斜式抬升; 晚白垩世乌兰苏海期为坳陷期,沉积物以“填平补齐”的形式覆盖在早期的地质单元上,同时受喜山运动的影响,发育走向北西的断裂; 古近纪至今,受印度板块向北俯冲的影响,北东向构造活化与新生,区内差异性抬升更为明显,地层多被剥蚀(卫三元等,2006; 肖国贤等,2017; 彭云彪等,2018a; 赵衡等, 2019a, b; 刘波等,2020)。多期次构造叠加使得因格井—尚丹坳陷的地质体形成不同的块体。受早白垩世晚期至古近纪时期断续构造运动影响,白垩纪地层受北东向与北西向构造活动影响,形成大小不一的块体,在本巴图、乌力吉和塔木素地区比较明显,在不断抬升与剥蚀过程中局部形成剥蚀天窗(图 6),为后期铀成矿提供了有利条件,控制着层间氧化带由凹陷边缘向凹陷中心发育,加之(滨-浅)湖相地层中富含有机质,在氧化还原障附近形成铀矿化(表 2)。简言之,巴音戈壁盆地中南部内铀成矿在有利的构造背景下,主要受沉积相控制与层间氧化带制约。
图 6 尚丹坳陷银根地区构造形迹示意图a—乌力吉—本巴图地区; b—沙拉扎山北侧; c—银根地区; 1—盆地边界; 2—正断层; 3—逆断层; 4—性质不明断层; 5—向斜; 6—复式褶皱; 7—地质界线; 8—剥蚀天窗Figure 6. Structural trace map of Yingen area in Shangdan depressiona-Wuliji-Benbatu area; b-The north side of the Salazha Mountain; c-Yingen area; 1-Basin boundary; 2-Normal fault; 3-Reverse fault; 4-Unknown fault; 5-Syncline; 6-Compound fold; 7-Geological boundary; 8-Denudation windows表 2 巴音戈壁盆地构造-沉积演化与铀成矿作用的关系Table 2. Relationship between tectonic-sedimentary evolution and uranium mineralizationin in the Bayin Gobi Basin5. 讨论
5.1 扇三角洲类型
因格井坳陷内扇三角洲物源主要为自北向南,自早白垩世以来继承性发育。岩心及测井资料显示砂砾岩层累计厚度大,多表现出叠加正韵律岩性序列,反映出物源补给比较充足、强烈; A/S值虽然发生变化,但总体较小(林畅松,2015)。尚丹坳陷内扇三角洲继承性发育不良,岩石颗粒较细,细砂岩含量相对要高,累计厚度较薄,三角洲前积特征不明显,反映了物源供给的阶段性和微弱性,A/S值主体较大。
现代分析认为,层序地层学和“源-汇”体系研究具有内在紧密关联性。断陷湖盆扇三角洲的分布特征与A/S值密切相关(刘磊等,2015; 吴冬等,2015; 刘波等,2020)。“A”实际上对应着巴音戈壁盆地中南部的“汇”,“S”对应着巴音戈壁盆地中南部的“源”,“源-汇”体系直接控制着沉积扇体的类型和特征。“源-汇”体系主导下的断陷湖盆扇三角洲通常具备两种形态,即“锥状”扇三角洲与“片状”扇三角洲(吴冬等,2015)。所谓“锥状”扇三角洲外形呈锥形,纵向厚度较大,平面分布相对较窄,在地震剖面上,扇根多呈现杂乱、弱振幅、差连续反射特征,扇端多呈现弱振幅、中连续前积特征,横截面为丘状或透镜状; “片状”扇三角洲厚度较薄,平面分布范围较大,呈层堆积,地震反射上难以看出三角洲前积特征(李佳鸿等,2012; 刘磊等,2015)。从能量守恒与转化的角度来看,在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,在某一或者诸多节点处可以形成多种形态的复合扇三角洲,据此可进行扇三角洲垛体的定性预测(图 7)。
图 7 断陷盆地斜坡带扇三角洲发育模式图(吴东,2015)1—断裂; 2—断距; 3—剥蚀区; 4—沉积区Figure 7. Development model of fan delta in slope zone of faulted basin(Wu Dong, 2015)1-Fault; 2-Fault distance; 3-Denudation area; 4-Sedimentary area此外,按相邻的相分类,巴音戈壁盆地中南部扇三角洲又可以分为靠山型与靠扇型扇三角洲。靠山型扇三角洲往往发育于盆缘断层下降盘坡度较陡的斜坡区,并且紧邻高地物源区; 而靠扇型扇三角洲多形成于坡度相对平缓的盆缘斜坡区,它与相邻高地物源区之间通常存在明显可识别的冲积扇相(陈景山等,2007; 刘磊等,2015)。其次,由于构造控制下的斜坡坡度不同,导致这两种扇三角洲的沉积水动力条件有所差别(表 3)。换句话说,巴音戈壁盆地中南部内盆地边缘斜坡较陡和湖泛面较高, 有利于靠山型扇三角洲相的发育; 当盆地边缘斜坡较平缓和湖泛面相对较低时,则有利于靠扇型扇三角洲相的发育。事实上,两种扇三角洲可以交替、叠加演化,在进行扇三角洲垛体定性预测的同时,要对已知扇三角洲铀成矿属性进行判别。
表 3 靠山型与靠扇型扇三角洲特征对比表(据陈景山,2007)Table 3. Characteristic comparison table between hillside fan delta and fan delta(after Chen Jingshan, 2007)5.2 成矿模式
巴音戈壁盆地中南部在早白垩世中晚期((109.7±1.5)Ma~(115.5±1.5)Ma)、晚白垩世晚期—古近纪((45.4±0.6)Ma~(70.9±1.0)Ma)和新近纪((12.3±0.2)Ma~(2.5±0.0)Ma),经受了南东、北西与南西方向的应力改造作用(刘波等,2020; Liu et al., 2021a)。目的层巴音戈壁组上段发育的扇三角洲平原亚相及前缘亚相砂体,长时间暴露地表,使得含铀含氧水沿砂体向盆地(坳陷)内运移,形成较大规模的层间氧化带型铀矿化(李鹏等,2017; 刘波等,2020): 在氧化砂岩与灰色砂岩界面、氧化还原过渡带中多形成砂岩型铀矿体(图 8); 在扇三角洲分流河道砂岩与分流间湾泥岩结合的部位(同时作为氧化还原障),形成砂泥混合型矿体,在泥岩一侧发育微弱氧化作用; 垂向河道之间的分流间湾、河道间、晚期洪泛平原泥质粉砂岩中形成后生泥岩型铀矿体,尤其是溶蚀孔洞和裂隙充填黄铁矿、褐铁矿比较发育的地段。
图 8 断陷湖盆背景下的扇三角洲成矿模式图a—铀矿体产于氧化砂岩中; b—铀矿体产于氧化砂岩与灰色砂岩界面上; c—铀矿体产于灰色砂岩中; d、e—铀矿体产于氧化砂岩与灰色泥岩界面上; f—铀矿体产于氧化砂岩中的泥岩; 1—剥蚀区; 2—扇三角洲; 3—基底; 4—扇三角洲平原; 5—扇三角洲前缘; 6—滨浅湖; 7—砂岩; 8—泥岩; 9—褐铁矿化; 10—赤铁矿化; 11—炭化植物碎屑; 12—黄铁矿; 13—槽状交错层理; 14—正粒序; 15—平行层理; 16—水平层理; 17—流体方向; 18—铀矿体; 19—断裂; 20—裂隙; 21—高岭土化; 22—碳酸盐化; 23—电阻率测井曲线; 24—γ测井曲线Figure 8. Metallogenic model of fan delta underthe background of faulted lacustrine basina-Uranium ore body occurs in oxidized sandstone; b-Uranium ore body occurs at the interface between oxidized sandstone and grey sandstone; c-Uranium ore body occurs in grey sandstone; d/e-Uranium ore bodies occur at the interface between oxidized sandstone and grey mudstone; f-Uranium ore body occurs at mudstone in oxidized sandstone; 1-Denudation area; 2-Fan delta; 3-Basement; 4-Fan delta plain; 5-Fan delta front; 6-Shore shallow lake; 7-Sandstone; 8-Mudstone; 9-Limonition; 10-Hematite mineralization; 11-Carbonized plant debris; 12 -Pyrite; 13-Trough cross bedding; 14-Normal grain sequence; 15-Parallel bedding; 16-Horizontal bedding; 17 -Fluid direction; 18-Uranium ore body; 19 -Fracture; 20-Cranny; 21- Kaolinite; 22-Carbonation; 23-Resistivity logging curve; 24 -Gamma logging curve6. 找矿预测
综合巴音戈壁盆地中南部内铀成矿要素与典型铀矿床成矿特征(李晓翠等,2014; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020),确定主要成矿要素为: ①找矿层位为下白垩统巴音戈壁组上段; ②扇三角洲平原亚相的辫状分流河道与前缘亚相的水下分流河道、河口坝是砂岩型铀矿的有利成矿部位,而分流间湾是泥岩型铀矿的有利成矿部位; ③目的层具有稳定的“泥-砂-泥”结构; ④层间氧化还原转换带控矿—单个黄色氧化舌外侧或两个黄色氧化舌之间还原砂体内,以及氧化砂体内部灰色残留体; ⑤盆缘构造斜坡带控制成矿地质体的发育,同时控制含氧含铀水在目的层砂体中的运移; ⑥多期次构造活动形成“剥蚀天窗”,影响层间氧化带发育规模。因此,定位扇三角洲垛体是找矿预测的基础。
巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块。目前已知的塔木素铀矿床、本巴图矿产地均是位于此类有利构造部位(图 5,图 6)。进一步对比分析巴音戈壁盆地中南部内铀矿床与铀矿化(异常点)的分布可以发现,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。这些地段受不同程度的构造抬升影响,目的层巴音戈壁组上段遭受不同程度的剥蚀,如本巴图地区巴音戈壁组上段较塔木素地区剥蚀深度大于100 m,造成事实上的“剥蚀天窗”,有利于成矿流体的运移以及铀成矿。因此,在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部内铀矿重点找矿预测方向,诸如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。
由于巴音戈壁盆地中南部内构造-沉积演化的不均一性,小型凹陷以及凸起比较发育,现有工作程度比较低,制约着我们的认识。从现有钻孔的揭遇情况来看,沉积间断面附近通常发育较强的氧化还原作用,具有明显的γ异常与增高。因此定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。
7. 结论
(1) 巴音戈壁盆地中南部凹陷的构造样式主要为双断型和单断型; 从凹陷形态及其演化继承性分析,又可以分为叠合型和迁移型。
(2) 不同的凹陷构造样式控制着巴音戈壁组上段不同的沉积相组合,多期次构造叠加使得目的层逐步形成剥蚀天窗,控制着层间氧化带由凹陷边缘向凹陷中心发育,在氧化还原障附近形成铀矿化。
(3) 在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,据此可进行扇三角洲垛体的定性预测,同时要对已知扇三角洲铀成矿属性进行判别,进而对矿化类型进行预判与识别。
(4) 巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部铀矿重点找矿预测方向,如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。
(5) 由于巴音戈壁盆地中南部构造-沉积演化的不均一性,定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。
-
图 1 多宝山地区地质简图(a)及区域构造简图(b)
1—早二叠世碱长花岗岩; 2—下—中奥陶统铜山组; 3—顶志留—中泥盆统泥鳅河组; 4—上志留统卧都河组; 5—下白垩统九峰山组; 6—下白垩统甘河组; 7—河流堆积物; 8—锆石样品位置
Figure 1. Simplified geological map (a) and tectonic setting map (b) of Dobaoshan area
1-Early Permian alkali feldspar granite; 2-Lower-middle Ordovician Tongshan Formation; 3-Upper Silurian-Middle Devonian Niqiuhe Formation; 4-Upper Silurian Woduhe Formation; 5-Lower Cretaceous Jiufengshan Formation; 6-Lower Cretaceous Ganhe Formation; 7-River deposits; 8-Zircon sampling location
图 5 多宝山碱长花岗岩K2O-SiO2(a,据Peccerillo et al., 1976)与A/NK- A/CNK图解(b,据Maniar et al., 1989)
Figure 5. K2O-SiO2(a, after Peccerillo et al., 1976) and A/NK- A/CNK(b, after Maniar et al., 1989)diagrams of the alkali-feldspar granite in Duobaoshan
图 6 多宝山碱长花岗岩稀土元素球粒陨石标准化配分曲线图(a)及微量元素原始地幔标准化蛛网图(b)(标准化数值据Sun et al., 1989)
Figure 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns(b) of the alkali-feldspar granite in Duobaoshan(normalized data after Sun et al., 1989)
图 7 多宝山碱长花岗岩类型判别图解(a,据Collins et al., 1982; b,c,据Whalen et al., 1987)
FG—分异的长英质花岗岩; NG—未分异的M,I和S型花岗岩
Figure 7. Discrimination diagram for granite types in Duobaoshan (a, after Collins et al., 1982; b, c, after Whalen et al., 1987)
FG-Fractional granitoids; NG- Nonfractionated M-I-S-type granitoids
图 8 多宝山碱长花岗岩构造环境判别图
(a,据Eby, 1992; b,据Maniar et al., 1989; c,据Whalen, 1987; d,据Pearce, 1984)
Figure 8. Tectonic discrimination diagrams for the alkali-feldspar granite in Duobaoshan
(a, after Eby, 1992; b, after Maniar et al., 1989; c, after Whalen, 1987; d, after Pearce, 1984)
表 1 多宝山碱长花岗岩LA-ICP-MS锆石U-Pb测年分析结果
Table 1 LA-ICP-MS zircon U-Pb dating results for the alkali-feldspar granite in Duobaoshan
表 2 多宝山碱长花岗岩主量、微量和稀土元素岩石化学分析结果及相关参数
Table 2 Major, rare earth and trace element of alkali-feldspar granite in Duobaoshan
-
Anderson J L, Bender E E. 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America[J]. Lithos, 23(1/2): 19-52.
Breiter K. 2011. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erazgebirge Mts., Central Europe[J]. Lithos, 151: 105-121.
Chen B, Jahn B M, Wildes S, Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications[J]. Tectonophysics, 328(1/2): 157-182.
Chen Huijun, Cui Tianri, Qian Cheng, Li Linchuan, Chen Jingsheng, Li Wei, Wu Xinwei, Jiang Bin, Si Qiuliang, Qin Tao, Tang Zhen, Zhang Yujin, Guo Wei. 2019. Zircon U-Pb geochronology of Bashenghe pluton in northernDaxinganling mountains: Geological implications[J]. Geology and Resources, 28(5): 405-412 (in Chinese with English abstract)
Chen Peirong, Zhang Bangtong, Kong Xinggong, Cai Bicong, Ling Hongfei, Ni Qisheng. 1998. Geochemical characteristics and tectonic implication of Zhaibei A-type granitic intrusives in South Jiangxi Province[J]. Acta Petrologica Sinica, 14(3): 289-298(in Chinese with English abstract).
Clemens J D, Holloway J R, White A J R. 1986. Origin of an A-type granite: Experimental constraints[J]. American Mineralogist, 71(3-4): 317-324.
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contrib. Mineral. Petrol., 80(2): 189-200. doi: 10.1007/BF00374895
Cui Fanghua, Zheng Changqing, Xu Xuechun, Yao Wengui, Shi Lu, Xu Juan, Xu Jiulei. 2013. Late Carboniferous magmatic activities in the Quanshenglinchang area, Great Xing'an Range: Constrains on the timing of amalgamation between Xing'an and Songnen Massifs[J]. Acta Geologica Sinica, 87(9): 1247-1263(in Chinese with English abstract).
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 644.
Ge Wenchun, Wu Fuyuan, Zhou Changyong, Abdel Rahman A A. 2005. The age of Tahe granite in the north of the Daxinganling Mountains and its constraints on the structural allocation of the Erguna Block[J]. Chinese Science Bulletin, 50(12): 1239-1247(in Chinese). doi: 10.1360/csb2005-50-12-1239
Gu Lianxing. 1990. Geological features, petrogenesis and metallogeny of A-type granites[J]. Geological Science and Technology Information, 9(1): 25-31(in Chinese).
Hong Dawei, Wang Shiguang, Han Baofu, Jin Manyuan. 1995. Classification of structural environments of alkaline granites and their identification marks[J]. Science in China(Series B), 25(4): 418-426(in Chinese).
Jackson S E, Pearson N J, Griffin W L, Belousovai E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 211(1/2): 47-69.
Jia Xiaohui, Wang Qiang, Tang Gongjian. 2009. A-type granites: Research progress and implications[J]. Geotectonica et Metallogenia, 33(3): 465-480(in Chinese with English abstract).
Jian Ping, Liu Dunyi, Alfred Kröner, Brian F Windley, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Dondov Tomurhuu. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 118(1/2): 169-190.
Kang Lei, Xiao Peixi, Gao Xiaofeng, Xi Rengang, Yang Zaichao. 2016. Chronology, geochemistry and petrogenesis of monzonitic granite and quartz diorite in Mangai area: Its inspiration to early Paleozoic tectonic-magmatic evolution of the southern Altyn Tagh[J]. Acta Petrologica Sinica, 32(6): 1731-1748(in Chinese with English abstract).
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371
Li Baomin. 2012. Geochemistry and Tectonic Background of the Volcanic Rocks of Early Carboniferous Moergenhe Formation in Nenjiang Area, Heilongjiang Province[D]. Changchun: Jilin University(in Chinese with English abstract).
Li Chenglu, Qu Hui, Zhao Zhonghai, Xu Guozhan, Wang Zhuo, Zhang Jianfeng. 2013. Zircon U-Pb ages, geochemical characteristics and tectonic implications of Early Carboniferous granites in Huolongmen area, Heilongjiang Province[J]. Geology in China, 40(3): 859-868(in Chinese with English abstract).
Li Huaikun, Geng Jianzhen, Hao Shuang, Zhang Yongqing, Li Huimin. 2009. Determination of U-Pb isotope ages in zircon by laser ablative multi-receiver plasma mass spectrometer (LA-MC-ICPMS)[J]. Acta Mineralogica Sinica, 29(S1): 600-601(in Chinese).
Li Shaunglin, Ouyang Ziyuan. 1998. Tectonic framework and evolution of Xing'anling-mongolian orogenic belt (Xmob) and its adjacent region[J]. Marine Geology & Quaternary Geology, 18(3): 46-55 (in Chinese with English abstract).
Li Tong. 1994. Element abundances of China's continental crust and its sedimentary layer and upper continental crust[J]. Geochimica, 23(2): 140-145(in Chinese with English abstract).
Li Xiaowei, Mo Xuanxue, Zhao Zhidan, Zhu Dicheng. 2010. A discussion on how to discriminate A-type granite[J]. Geological Bulletin of China, 29(2/3): 278-285(in Chinese with English abstract).
Liu Binqiang. 2016. Study on the Paleozoic Evolution of the Nenjiang-Heihe Tectonic Belt, Northern Great Xing'an Range[D]. Changchun: Jilin University(in Chinese with English abstract).
Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591(in Chinese with English abstract).
Liu Yongjiang, Zhang Xingzhou, Chi Xiaoguo, Wen Quanbo, Liang Chenyue, Han Guoqing, Zhao Limin, Zhao Yingli. 2011. Deformation and tectonic layer division of the Upper Paleozoic in Daxing'anling Area[J]. Journal of Jilin University(Earth Science Edition), 41(5): 1304-1313(in Chinese with English abstract).
Liu Yongjiang, Zhang Xingzhou, Jin Wei, Chi Xiaoguo, Wang Chengwen, Ma Zhihong, Han Guoqing, Wen Quanbo, Zhao Yingli, Wang Wendi, Zhao Xifeng. 2010. Late paleozoic tectonic evolution in northeast China[J]. Geology in China, 37(4): 943-951 (in Chinese with English abstract).
Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of America, Abstracts with Programs, 11(7): 468
Ludwig K R. 1991. Isoplot-A plotting and regression program for radiogenic-isotope data [J]. US Geological Survey Open-File Report, 39: 91-445.
Ma Yongfei, Liu Yongjiang, Peskov A Yu, Wang Yan, Song Weimin, Zhang Yujin, Qian Cheng, Liu Tongjun. 2021. Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China[J]. China Geology. doi: 10.31035/cg2021079.204.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geologlcal Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
McDonough W F, Sun S S. 1995. The Composition of the Earth[J]. Chemical Geology, 120(3/4): 223-253.
Miao Laicheng, Fan Weiming, Zhang Fuqin, Liu Dunyi, Jian Ping, Shi Guanghai, Tao Hua, Shi Yuruo. 2003. SHRIMP zircon geochronology and its implications on the Xinkailing-Keluo complex, northwestern of Lesser Xing' an Range[J]. Chinese Science Bulletin, 48(22): 2315-2323(in Chinese). doi: 10.1360/csb2003-48-22-2315
Miao Laicheng, Fan Weiming, LiuDunyi, ZhangFuqin, ShiYuruo, Guo Feng. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5/6): 348-370.
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Peccerillo R, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogica & Petrology, 58(1): 63-81.
Qian Cheng, Lu Lu, Qin Tao, Li Linchuan, Chen Huijun, Cui Tianri, Jiang Bin, Na Fuchao, Sun Wei, Wang Yan, Wu Xinwei, Ma Yongfei. 2018. The early Late-Paleozoic granitic magmatism in the Zalantun region, northern Great Xing'an Range, NE China: Constraints on the timing of amalgamation of Erguna-Xing'an and Songnen Blocks[J]. Acta Geologica Sinica, 92(11): 2190-2214(in Chinese with English abstract).
Qu Hui, Li Chenglu, Zhao Zhonghai, Wang Zhuo, Zhang Jianfeng. 2011. Zircon U-Pb ages and geochemical characteristics of the granites in Duobaoshan area, Northeast Da Hinggan Mountains[J]. Geology in China, 38(2): 292-300(in Chinese with English abstract).
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling [J]. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
Sui Zhenmin, Chen Yuejun. 2011. Zirconsaturation temperatures of granites in eastern Great Xing'an Range, and its geological signification[J]. Global Geology, 30(2): 162-172(in Chinese with English abstract).
Sui Zhenmin, Ge Wenchun, Xu Xuechun, Zhang Jiheng. 2009. Characteristics and geological implications of the Late Paleozoic post-orogenic Shierzhan granite in the Great Xing' an Range[J]. Acta Petrologica Sinica, 25(10): 2679-2686(in Chinese with English abstract).
Sun Deyou, Wu Fuyuan, Li Huimin, Lin Qiang. 2000. Empacement age of the post-orogenic A-type granites in northwestern Lesser Xing' an Range, and its relationship to the east-ward extension of Suolunshan-Hegenshan-Zhalaite collisional suture zone [J]. Chinese Science Bulletin, 46(5): 427-432(in Chinese).
Sun S S, Modonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society LondonSpecial Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Watson E B. 1979. Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry[J]. Contributions to Mineralogy and Petrology, 70(4): 407-419. doi: 10.1007/BF00371047
Wang Yang, Yang Xiaoping, Na Fuchao, Zhang Guangyu, Kang Zhuang, Liu Yingcai, Zhang Wenlong, Mao Zhaoxia. 2013. Determination and geological implication of the granitic mylonite in nenjiang-heihe tectonic belt[J]. Geology and Resources, 22(6): 452-459(in Chinese with English abstract).
Whalen J B, Carrie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
Wu Suoping, Wang Meiying, Qi Kaijing. 2007. Present situation of researches on A-type granites a review[J]. Acta Petrologica et Mineralogica, 26(1): 57-66(in Chinese with English abstract).
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
Wu Fuyuan, Sun Deyou, Li Huimin, Jahn B, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1/2), 143-173.
Xu Wenxi, Li Chenglu. 2018. Middle Jurassic granites in Huolongmen area, northeastern Daxing'anling mountains: Zircon U-Pb age, geochemistry and tectonic implications[J]. Geology and Resources, 27(6): 522-530 (in Chinese with English abstract).
Yang Hongzhang, Chen Jiafu, Liu Junlai, Liu Bo, Gao Menghao, Chen Miaoqi, Su Li. 2019. Zircon U-Pb ages and geochemical characteristics of Late Carboniferous plutons in the southeastern Xing' an block and their tectonic implications[J]. Acta Geologica Sinica, 93(9): 2226-2244(in Chinese with English abstract).
Yin Zhigang, Gong Zhaomin, Zhang Yuelong, Han Yu, Wang Yang, Cao Zhongqiang, Li Haina, Li Min. 2018. Geochronology, geochemistry and geological significance of the Early Cretaceous alkali feldspar granites in the Yilehuli Mountain, Da Hinggan, Mountain[J]. Geological Bulletin of China, 37(6): 1061-1074 (in Chinese with English abstract).
Zhan Huanli, Liu Xuguang, Liu Haiyang, Zhu Chunyan. 2011. Petrological evidence of Paleozoic marine basin closure in Duobaoshan of Heilongjiang[J]. Global Geology, 30(1): 18-27(in Chinese with English abstract).
Zhang Lei, Lü Xinbiao, Liu Ge, Chen Jun, Chen Chao, Gao Qi, Liu Hong. 2013. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the inner Mongolia-Da Hinggan Mountains orogenicbelt[J]. Geology in China, 40(3): 869-884(in Chinese with English abstract).
Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite: What is the essence? [J]. Acta Petrologica Sinica, 31(4): 621-626(in Chinese with English abstract).
Zhang X H, Mao Q, Zhang H F, Zhai M G, Yang Y H, Hu Z C. 2011. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passivemargin: The Early Permian Guyang batholith from the northern North China Craton[J]. Lithos, 125(1/2): 569-591.
Zhang Xingzhou, Zhou Jianbo, Chi Xiaoguo, Wang Chenwen, Hu Daqian. 2008. Late Paleozoic tectonic-sedimentation and petroleum resources in northeastern China[J]. Journal of Jilin University(Earth Science Edition), 38(5): 719-725(in Chinese with English abstract).
Zhang Xingzhou. 1992. Evidence from the Caledon Suture Zone of the Heilongjiang Rock Series-Gujiamusi Block[J]. Journal of Changchun Institute of Geology, 22(s): 94-101(in Chinese with English abstract).
Zhang Yanlong, Ge Wenchun, Gao Yan, Chen Jingsheng, Zhao Lei. 2010. Zircon U-Pb ages and Hf isotopes of granites in Longzhen area and their geological implications[J]. Acta Petrologica Sinica, 26(4): 1059-1073(in Chinese with English abstract).
Zhao Yuandong, Zhao Jun, Wang Kuiliang, Che Jiying, Wu Datian, Xu Fengming, Li Shichao. 2013. Characteristics of the Late Carboniferious post-orogenic Dayinhe intrusion in the northwest of the Xiao Hinggan Mountains and their geological implications[J]. Acta Petrol. Mineral., 32(1): 63-72(in Chinese with English abstract).
Zhao Zhenhua, Xiong Xiaolin, Wang Qiang, Qiao Yulou. 2008. Some aspects on geochemistry of Nb and Ta[J]. Geochimica, 37(4): 304-320(in Chinese with English abstract).
Zhao Zhi, Chi Xiaoguo, Pan Shiyu, Liu Jianfeng, Sun Wei, Hu Zhaochu. 2010. Zircon U-Pb LA-ICP-MS dating of Carboniferous volcanics and its geological significance in the northwestern Lesser Xing' an Range[J]. Acta Petrologica Sinica, 26(8): 2452-2464 (in Chinese with English abstract).
Zhao Liangliang, Xu Fuzhong, Zhang Yan, Ni Bin, Ma Xiaohui. 2021. Zircon U-Pb chronology of the Heilongjiang complex in Mudanjiang area: Geological implication[J]. Geology and Resources, 30(4): 405-413(in Chinese with English abstract).
Zhou Changyong, Wu Fuyuan, Ge Wenchun, Sun Deyou, Abdel Rahman A A, Zhang Jiheng, Cheng Ruiyu. 2005. Age, geochemistry and petrogenesis of the cumulate gabbro in Tahe, northern Da Hinggan Mountain[J]. Acta Petrologica Sinica[J], 21(3): 763-775(in Chinese with English abstract).
陈会军, 崔天日, 钱程, 李林川, 陈井胜, 李伟, 吴新伟, 江斌, 司秋亮, 秦涛, 唐振, 张渝金, 郭威. 2019. 大兴安岭北段巴升河岩体锆石U-Pb年代学及其地质意义[J]. 地质与资源, 28(5): 405-412. doi: 10.3969/j.issn.1671-1947.2019.05.001 陈培荣, 章邦桐, 孔兴功, 蔡笔聪, 凌洪飞, 倪琦生. 1998. 赣南寨背A型花岗岩体的地球化学特征及其构造地质意义[J]. 岩石学报, 14(3): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB803.002.htm 崔芳华, 郑常青, 徐学纯, 姚文贵, 施璐, 李娟, 徐久磊. 2013. 大兴安岭全胜林场地区晚石炭世岩浆活动研究: 对兴安地块与松嫩地块拼合时间的限定[J]. 地质学报, 87(9): 1247-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309005.htm 葛文春, 吴福元, 周长勇, Abdel Rahman A A. 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 12(50): 1239-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200512014.htm 顾连兴. 1990. A型花岗岩的特征、成因及成矿[J]. 地质科技情报, 9(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htm 洪大卫, 王式洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 25(4): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199504012.htm 贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 康磊, 校培喜, 高晓峰, 奚仁刚, 杨再朝. 2016. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 32(6): 1731-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201606012.htm 黎彤. 1994. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 23(2): 140-145. doi: 10.3321/j.issn:0379-1726.1994.02.011 李宝民. 2012. 黑龙江省嫩江地区莫尔根河组火山岩的岩石学、地球化学特征及其构造背景[D]. 长春: 吉林大学. 李成禄, 曲晖, 赵忠海, 徐国战, 王卓, 张俭峰. 2013. 黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 中国地质, 40(3): 859-868. doi: 10.3969/j.issn.1000-3657.2013.03.017 李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm 李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化[J]. 海洋地质与第四纪地质, 18(3): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ803.006.htm 李小伟, 莫宣学, 赵志丹, 朱弟成. 2010. 关于A型花岗岩判别过程中若干问题的讨论[J]. 地质通报, 29(2/3): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm 刘宾强. 2016. 大兴安岭北段嫩江-黑河构造带古生代演化研究[D]. 长春: 吉林大学. 刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 刘永江, 张兴洲, 金巍, 迟效国, 王成文, 马志红, 韩国卿, 温泉波, 赵英利, 王文弟, 赵喜峰. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010 刘永江, 张兴洲, 迟效国, 温泉波, 梁琛岳, 韩国卿, 赵立敏, 赵英利. 2011. 大兴安岭地区上古生界变形特征及构造层划分[J]. 吉林大学学报(地球科学版), 41(5): 1304-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105005.htm 苗来成, 范蔚茗, 张福勤, 刘敦一, 简平, 施光海, 陶华, 石玉若. 2003. 小兴安岭西北部新开岭—科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报, 48(22): 2315-2323. doi: 10.3321/j.issn:0023-074X.2003.22.004 钱程, 陆露, 秦涛, 李林川, 陈会军, 崔天日, 江斌, 那福超, 孙巍, 汪岩, 吴新伟, 马永非. 2018. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳—兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 92(11): 2190-2214. doi: 10.3969/j.issn.0001-5717.2018.11.002 曲晖, 李成禄, 赵忠海, 王卓, 张俭峰. 2011. 大兴安岭东北部多宝山地区花岗岩锆石U-Pb年龄及岩石地球化学特征[J]. 中国地质, 38(2): 292-300. doi: 10.3969/j.issn.1000-3657.2011.02.006 隋振民, 陈跃军. 2011. 大兴安岭东部花岗岩类锆石饱和温度及其地质意义[J]. 世界地质, 30(2): 162-172. doi: 10.3969/j.issn.1004-5589.2011.02.003 隋振民, 葛文春, 徐学纯, 张吉衡. 2009. 大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J]. 岩石学报, 25(10): 2679-2686. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910031.htm 孙德有, 吴福元, 李惠民, 林强. 2000. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山—贺根山—扎赉特碰撞拼合带东延的关系[J]. 科学通报, 45(20): 2217-2222. doi: 10.3321/j.issn:0023-074X.2000.20.019 汪岩, 杨晓平, 那福超, 张广宇, 康庄, 刘英才, 张文龙, 毛朝霞. 2013. 嫩江-黑河构造带中花岗质糜棱岩的确定及地质意义[J]. 地质与资源, 22(6): 452-459. doi: 10.3969/j.issn.1671-1947.2013.06.003 吴锁平, 王海英, 戚开静. 2007. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 26(1): 57-66. doi: 10.3969/j.issn.1000-6524.2007.01.009 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 徐文喜, 李成禄. 2018. 大兴安岭东北部霍龙门地区中侏罗世花岗岩——锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质与资源, 27(6): 522-530. doi: 10.3969/j.issn.1671-1947.2018.06.004 杨红章, 陈家富, 刘俊来, 刘博, 郜梦豪, 陈妙琦, 苏犁. 2019. 兴安地块东南缘晚石炭世侵入岩的锆石U-Pb年代学、地球化学特征及构造意义[J]. 地质学报, 93(9): 2226-224. doi: 10.3969/j.issn.0001-5717.2019.09.009 尹志刚, 宫兆民, 张跃龙, 韩宇, 王阳, 曹忠强, 李海娜, 李敏. 2018. 大兴安岭伊勒呼里山早白垩世碱长花岗岩年龄、地球化学特征及其地质意义[J]. 地质通报, 37(6): 1061-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806010.htm 张磊, 吕新彪, 刘阁, 陈俊, 陈超, 高奇, 刘洪. 2013. 兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J]. 中国地质, 40(3): 869-884. doi: 10.3969/j.issn.1000-3657.2013.03.018 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 张兴洲, 周建波, 迟效国, 王成文, 胡大千. 2008. 东北地区晚古生代构造-沉积特征与油气资源[J]. 吉林大学学报(地球科学版), 38(5): 719-725. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200805000.htm 张兴洲. 1992. 黑龙江岩系——古佳木斯地块加里东缝合带的证据[J], 长春地质学院学报, 22(s): 94-101. 张彦龙, 葛文春, 高妍, 陈井胜, 赵磊. 2010. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J]. 岩石学报, 26(4): 1059-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004006.htm 赵焕利, 刘旭光, 刘海洋, 朱春艳. 2011. 黑龙江多宝山古生代海盆闭合的岩石学证据[J]. 世界地质, 30(1): 18-27. doi: 10.3969/j.issn.1004-5589.2011.01.003 赵亮亮, 徐福忠, 张岩, 倪斌, 马晓辉. 2021. 牡丹江地区黑龙江杂岩锆石U-Pb年代学特征及地质意义[J]. 地质与资源, 30(4): 405-413. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202104001.htm 赵院冬, 赵君, 王奎良, 车继英, 吴大天, 许逢明, 李世超. 2013. 小兴安岭西北部晚石炭世造山后达音河岩体的特征及其地质意义[J]. 岩石矿物学杂志, 32(1): 63-72. doi: 10.3969/j.issn.1000-6524.2013.01.005 赵振华, 熊小林, 王强, 乔玉楼. 2008. 铌与钽的某些地球化学问题[J]. 地球化学, 37(4): 304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005 赵芝, 迟效国, 潘世语, 刘建峰, 孙巍, 胡兆初. 2010. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MSU-Pb年代学及其地质意义[J]. 岩石学报, 26(8): 2452-2464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008019.htm 周长勇, 吴福元, 葛文春, 孙德有, Abdel Rahman A A, 张吉衡, 程瑞玉. 2005. 大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J]. 岩石学报, 21(3): 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503017.htm -
期刊类型引用(2)
1. 孙砚泽,李世臻,刘卫彬,刘岩,柯昌炜,徐耀辉. 大兴安岭西缘贺斯格乌拉凹陷白垩系烃源岩生烃潜力与天然气成因. 地质通报. 2021(09): 1484-1492 . 百度学术
2. Shi-zhen Li,Wei-bin Liu,Dan-dan Wang,Wen-hao Zhang,Yan-hua Lin,Shu Tao,Yao-hui Xu. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology. China Geology. 2019(04): 439-457 . 必应学术
其他类型引用(0)