• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

内蒙古包头某铁矿尾矿库生态修复的植物优选研究

杨伟龙, 白宇明, 李永利, 胡浩远, 杜鑫

杨伟龙, 白宇明, 李永利, 胡浩远, 杜鑫. 内蒙古包头某铁矿尾矿库生态修复的植物优选研究[J]. 中国地质, 2022, 49(3): 683-694. DOI: 10.12029/gc20220301
引用本文: 杨伟龙, 白宇明, 李永利, 胡浩远, 杜鑫. 内蒙古包头某铁矿尾矿库生态修复的植物优选研究[J]. 中国地质, 2022, 49(3): 683-694. DOI: 10.12029/gc20220301
YANG Weilong, BAI Yuming, LI Yongli, HU Haoyuan, DU Xin. Plant optimal screening for contaminated soil remediation in an iron mining tailing of Baotou, Inner Mongolia[J]. GEOLOGY IN CHINA, 2022, 49(3): 683-694. DOI: 10.12029/gc20220301
Citation: YANG Weilong, BAI Yuming, LI Yongli, HU Haoyuan, DU Xin. Plant optimal screening for contaminated soil remediation in an iron mining tailing of Baotou, Inner Mongolia[J]. GEOLOGY IN CHINA, 2022, 49(3): 683-694. DOI: 10.12029/gc20220301

内蒙古包头某铁矿尾矿库生态修复的植物优选研究

基金项目: 

中国地质调查局项目 DD2020077

详细信息
    作者简介:

    杨伟龙, 男, 1986年生, 硕士, 工程师, 主要从事生态地质环境调查与研究; E-mail: eco_restoration@126.com

  • 中图分类号: X171.1

Plant optimal screening for contaminated soil remediation in an iron mining tailing of Baotou, Inner Mongolia

Funds: 

the project of China Geological Survey DD2020077

More Information
    Author Bio:

    YANG Weilong, male, born in 1986, master, engineer, mainly engaged in ecological environment investigation and research; E-mail: eco_restoration@126.com

  • 摘要:
    研究目的 

    植物修复技术因其具有绿色、经济、环保的特点,在矿山生态修复中应用广泛,而调查和筛选矿山周边适应本地生境的植物物种是进行植物生态修复的关键环节。

    研究方法 

    通过野外调查取样和室内分析测试相结合的方法,对内蒙古包头某废弃铁矿尾矿库及周边11种优势植物的重金属含量、重金属迁移富集能力及其上覆土壤重金属特征进行分析研究,以期筛选优良修复植物,为矿区生态修复提供科学依据。

    研究结果 

    该废弃铁矿尾矿库及周边土壤Fe、Mn、Cu、Pb、Zn、Cr、Cd、F含量均远超过河套平原土壤背景值,地累积指数显示污染等级为2~7级,污染程度从轻—中度污染到极强度污染。植物地下部分各元素含量总体上高于地上部分,除Cu外各植物重金属含量大多超出了正常值范围。

    结论 

    沙蒿和独行菜具有富集型植物特征,玉米、狗尾草、虎尾草和拂子茅属于根部囤积型,碱蓬、灰条菜、苍耳、新疆杨和红柳符合规避型植物特征。可根据植物对重金属的吸收和富集特点,科学合理地选择适宜的植物进行矿区受污染土壤植物修复。

    创新点: 研究了废弃铁尾矿库及周边11种优势植物的重金属特征;揭示了优势植物对重金属的吸收机制。

    Abstract:

    This paper is the result of geological environment survey engineering.

    Objective 

    Phytoremediation technology has been widely used in mine ecological restoration because of its characteristics of green, economic and environmental protection. The investigation and screening of plant species adapted to local habitats around mines is the key link of plant ecological restoration.

    Methods 

    By the method of soil sampling for investigation and laboratory analysis, this work analyzed 11 dominant plants in the abandoned tailing and the surrounding of Baotou, Inner Mongolia. Test the contents of heavy metals, the enrichment and translocation of heavy metals and the contents of heavy metals of the plant root soil, in order to screen fine restoration plants and provide scientific basis for ecological restoration in mining area.

    Results 

    The results showed that the mean contents of Fe, Mn, Cu, Pb, Zn, Cr, Cd, F much higher than the background value of soil in Hetao Plain, geoaccumulation index revealed the pollution level is 2-7, levels of pollution range from mild to moderate pollution to extremely intense pollution. Heavy metal content in plants shows that the content of each element in the underground part of plants is generally higher than that in the aboveground part, the content of heavy metals in most plants exceeded the normal range except for Cu.

    Conclusions 

    Artemisia desertorum and Lepidium apetalum are belong to accumulators, Zea mays, Setaria viridis, Chloris virgata and Calamagrostis epigeios which absorbed a large amount of heavy metals but mainly held in the roots, Suaeda glauca, Chenopodium album, Xanthium sibiricum, Populus alba and Salix microstachya are belong to excluder. According to the absorption and enrichment characteristics of heavy metals in plants, aim to provide reference for the establishment of artificial phytoremediation system in mining areas and the selection of appropriate plant species for the remediation of heavy metal polluted soil in mining areas.

  • 通过实施2020年四川省自然资源厅省政府性投资地质勘查项目,对沐川地区上二叠统宣威组底部泥岩中赋存的稀有、稀土、稀散元素进行调查评价,了解“三稀”元素含量与找矿前景,希望在“三稀”找矿方面取得突破性进展,为乌蒙山贫困地区脱贫提供技术服务和支撑产业规划、扶贫开发提供资源保障。

    主要采用了1∶10000地质填图、1∶500矿化带剖面测量、探槽工程、钻探工程、采样与测试分析等方法,对上二叠统宣威组底部的富镓泥岩进行了初步研究。

    沐川地区位于扬子陆块西缘(图 1a),峨眉山大火成岩省中带(图 1b)。研究区位于五指山背斜核部,其核部地层为上二叠统峨眉山玄武岩(P3e),两翼向两侧依次出露上二叠统宣威组(P3x)、三叠系(T)、侏罗系(J)等(图 1c)。镓矿层产出于峨眉山玄武岩组(P3e)顶部、宣威组(P3x)底部的紫红色铁质泥岩、灰白色铝质泥岩、浅灰绿色泥岩、灰色泥岩、浅灰绿色泥岩及深灰色炭质泥岩中,呈层状分布,层位稳定(图 1d);找矿标志:峨眉山玄武岩组与宣威组(P3x)的平行不整合界线之上,具“成矿界面”特征,颜色上有明显的紫红色、灰白色、灰色及深灰色等,特别是具有特征的紫红色,宏观上易识别;根据地球化学图解判别显示,其成矿物质来源有可能来源于峨眉山玄武岩及峨眉山地幔柱演化末期喷发的火山灰。

    图  1  沐川地区构造位置图(a),峨眉山玄武岩分布简图(b),区域地质简图(c)及镓矿层产出层位示意图(d)
    Figure  1.  Structural location map of Muchuan area(a), Simplified geological map showing distribution of the Emeishan basalts(b), Regional geological map of Muchuan area(c) and Schematic diagram of gallium ore occurrence horizon(d)

    采集钻孔岩心1/2切分样品,送样至自然资源部成都矿产资源监督检测中心采用电感耦合等离子体质谱仪(ICP-MS)进行测试分析,结果显示ZK01钻孔镓(Ga)平均品位104 μg/g,矿层厚度6.27 m;ZK02钻孔镓(Ga)平均品位68.1 μg/g,矿层厚度8.67 m;ZK03钻孔镓(Ga)平均品位55.3 μg/g,矿层厚度13.87 m;三个工程的镓(Ga)平均品位为75.8 μg/g,平均厚度9.60 m。可以看出,沐川地区宣威组底部的泥岩中镓(Ga)品位较高,厚度较大,达到了中国现行的Ga矿资源工业指标要求(30 μg/g)。

    经初步估算沐川地区镓(Ga)资源量可达数万吨到数十万吨,有望找到超大型镓矿床(>2000 t) 的潜力。沐川地区峨眉山玄武岩分布面积较广,为镓的富集成矿提供了丰富的物源。经地质填图及工程取样显示,宣威组底部富镓泥岩层厚度大,分布面积广泛,镓元素含量较高,具有巨大的找矿潜力。研究宣威组底部“三稀”元素成矿特征有助于中国在战略性关键矿产找矿方面取得重大突破,对地方国民经济发展具有重要意义。

    本文为四川省自然资源厅2020年省政府性投资地质勘查项目(DZ20 2002)和四川省自然资源厅科技项目(kj-2022-6)资助成果。

  • 图  1   研究区位置及采样分布图

    Figure  1.   Location of study area and distribution of sampling sites

    图  2   采集的部分植物样品

    a—碱蓬;b—灰条菜;c—玉米;d—拂子茅;e—红柳;f—苍耳;g—狗尾草;h—独行菜

    Figure  2.   Partial plant samples collected

    a-Suaeda glauca; b-Chenopodium album; c-Zea mays; d-Calamagrostis epigeios; e-Salix microstachya; f-Xanthium sibiricum; g-Setaria viridis; h-Lepidium apetalum

    图  3   植物地上和地下部分富集系数

    Figure  3.   Accumulation index of aboveground and underground parts of plants

    表  1   样品检测方法和仪器

    Table  1   Sample detection method and instruments

    下载: 导出CSV

    表  2   地累积指数分级标准

    Table  2   Grading standard of geo-accumulation index

    下载: 导出CSV

    表  3   土壤中元素含量统计描述(μg/g,pH无量纲)

    Table  3   Descriptive statistics of elements in soil

    下载: 导出CSV

    表  4   土壤重金属污染地累计指数特征

    Table  4   Features of Geo-accumulation index of heavy metals in soil

    下载: 导出CSV

    表  5   植物不同部位重金属含量(μg/g)

    Table  5   Heavy metal content in different parts of plants

    下载: 导出CSV

    表  6   植物不同部位重金属富集系数

    Table  6   Heavy metal enrichment index in different parts of plants

    下载: 导出CSV

    表  7   不同植物重金属转移系数

    Table  7   Transfer coefficients of heavy metals in different plants

    下载: 导出CSV
  • Abdugheni Abliz, Tashpolat Tiyip, Umut Halik, Shi Qingdong, Nigara Tashpolat, Tayierjiang Aishan, Aerzuna Abulimiti. 2017. Heavy metal accumulation and its transfer characteristics of four plant species under the effect of opened coal mine[J]. Arid Land Geography, 40(6): 1207-1217(in Chinese with English abstract).

    Abdul R Memon, Peter Schr-der. 2009. Implications of metal accumulation mechanisms to phytoremediation[J]. Environmental Science and Pollution Research, 16(2): 162-175. doi: 10.1007/s11356-008-0079-z

    Bai Zhongke, Fu Meichen, Zhao Zhongqiu. 2006. On soil environmental problems in mining area[J]. Chinese Journal of Ecology, (5): 1122-1125(in Chinese with English abstract).

    Clare L S Wiseman, Fathi Zereini, Wilhelm Püttmann. 2013. Traffic-related trace element fate and uptake by plants Cultivated in roadside soils in Toronto, Canada[J]. Science of the Total Environment, 442: 86-95. doi: 10.1016/j.scitotenv.2012.10.051

    Fan Ting, Ye Wenling, Chen Haiyan, Lu Hongjuan, Zhang Yinghui, Li Dingxin, Tang Ziyang, Ma Youhua. 2013. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 22(10): 1727-1736(in Chinese with English abstract).

    Förstner U, Müller G. 1981. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, Man's influence and environmental impact[J]. GeoJournal, 5(5): 417-432. doi: 10.1007/BF02484715

    Ghosh M, Singh S P. 2005. A comparative study of cadmium phytoextraction by accumulator and weed species[J]. Environmental Pollution, 133(2): 365-371. doi: 10.1016/j.envpol.2004.05.015

    Gupta S, Nayek S, Saha R N. 2008. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory[J]. Environmental Geology, 55(4): 731-739. doi: 10.1007/s00254-007-1025-y

    Hajar E W I, Sulaiman A Z B, Sakinah A M M. 2014. Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia Rebaudiana Plant[J]. Procedia Environmental Sciences, 20(20): 386-393.

    Hazrat Ali, Ezzat Khan, Muhammad Anwar Sajad. 2013. Phytoremediation of heavy metals Concepts and applications[J]. Chemosphere, 91(7): 33-52.

    He Dong, Qiu Bo, Peng Jinhui, Peng Liang, Hu Lingxue, Hu Yao. 2013. Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailings in Xiashuiwan of Hunan Province[J]. Environmental Science, 34(9): 3595-3600(in Chinese with English abstract).

    He Yuanrong, Zhu Jianjun, Fu Wenjie, Yu Deqing. 2010. Methods of spatial database construction for diggings eco-compensation valuation about land resource destruction[J]. Remote Sensing Technology and Application, 25(1): 57-62(in Chinese with English abstract).

    Lei Mei, Yue Qingling, Chen Tongbin, Huang Zechun, Liao Xiaoyong, Liu Yingru, Zheng Guodi, Chang Qingrui. 2005. Heavy metal concentrations in soils and plants around Shizhuyuan mining area of Hunan Province[J]. Acta Ecologica Sinica, (5): 1146-1151(in Chinese with English abstract)

    Li Jiangxia, Zhang Jun, Huang Fusen, Ge Gaofei. 2016. Heavy Metal contamination of soil and its accumulation in tolerant plants in copper mine Tongling area[J]. Chinese Journal of Soil Science, 47(3): 719-724(in Chinese with English abstract).

    Liu Weitao, Zhang Yinlong, Chen Zhemin, Zhou Qixing, Luo Hongyan. 2008. Cadmium and zinc absorption and distribution invarious tree species in a mining area[J]. Chinese Journal of Applied Ecology, (4): 752-756(in Chinese with English abstract).

    Liu Ruiping, Xu Youning, Zhang Jianghua, Wang Wenke, Rafaey M Elwardany. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3(3): 402-410.

    Lu Jin, Zhao Xingqing, Huang Jian, Wang Min. 2019. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling[J]. Environmental Chemistry, 38(1): 78-86(in Chinese with English abstract).

    Marek Vaculík, Cornelia Konlechner, Ingrid Langer, Wolfram Adlassnig, Markus Puschenreiter, Alexander Lux, Marie-Theres Hauser. 2012. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities[J]. Environmental Pollution, 163: 117-126. doi: 10.1016/j.envpol.2011.12.031

    Memon A R, Schroder P. 2009. Implications of metal accumulation mechanisms to phytoremediation[J]. Environmental Science and Pollution Research, 16(2): 162-175. doi: 10.1007/s11356-008-0079-z

    Mir Md Abdus Salam, Erik Kaipiainen, Muhammad Mohsin, Aki Villa, Suvi Kuittinen, Pertti Pulkkinen, Paavo Pelkonen, Lauri Meht-talo, Ari Pappinen. 2016. Effects of contaminated soil on the growth performance of young Salix and the potential for phytoremediation of heavy metals[J]. Journal of Environmental Management, 183: 467-477. doi: 10.1016/j.jenvman.2016.08.082

    Muller G. 1969. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 2: 108-118.

    Reng Zhisheng, Liu Shuhua. 2013. Research progress on remediation of heavy metal contaminated soil[J]. Bulletin of the Chinese Ceramic Society, 22(10): 1727-1736(in Chinese with English abstract).

    Rufus L Chaney, Minnie Malik, Yin M Li, Sally L Brown, Eric P Brewer, J Scott Angle. 1997. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 8(3): 279-284. doi: 10.1016/S0958-1669(97)80004-3

    Shui Xinfang, Zhao Yuanyi, Wang Qiang. 2021. Progress and prospect of remediation technology of heavy-metal-contaminated soil in mines[J]. Geological Review, 67(3): 752-766(in Chinese with English abstract).

    Wang Xikuan, Huang Zengfang, Su Meixia, Li Shibao, Wang Zhong, Zhao Suozhi, Zhang Qing. 2007. Characteristics of reference and background values of soils in Hetao Area[J]. Rock and Mineral Analysis, (4): 287-292(in Chinese with English abstract).

    Wang Xikuan, Huang Zengfang, Zhao Suozhi, Su Meixia, Li Shibao, Zhang Qing, Wang Zhong. 2007. A preliminary study on soil salification and arseniasis-fluorosis in hetao area[J]. Rock and Mineral Analysis, (4): 328-330(in Chinese with English abstract).

    Wang Xingli, Wang Chenye, Wu xiaochen, Wang Jingbo, Mu Xiaodong, Yang Xiaoshu, Hu Xiaofei, Gao Jing. 2019. Research progress in remediation technology of heavy metal contaminated soil[J]. Chemistry & Bioengineering, 36(2): 1-7, 11(in Chinese with English abstract).

    Xiao Zuoyi, Zhao Xin, Meng Qingxue, Xu Xin, Du Weiqi, Ma Fei, Zheng Chunli. 2020. Health risk assessment and source analysis of heavy metal pollution in the soil of a tailings dam in inner mongolia[J]. Nonferrous Metals Engineering, 10(12): 135-142(in Chinese with English abstract).

    Xing Dan, Liu Hongyan, Yu Pingping, Wu Longhua. 2012. The plant community distribution and migration characteristics of heavy metals in tolerance dominant species in leadzinc mine areas in Northwestern Guizhou Province[J]. Acta Ecologica Sinica, 32(3): 796-804(in Chinese with English abstract). doi: 10.5846/stxb201106220925

    Xiong Yunwu, Tang Biao, Lin Xiaoyan, Pei Donghui, Ren Zhong, Gong Yalong, Yang Sheng xiang, Xu Jianxin, Zhao Liang. 2016. Soil heavy metals content and dominant plants absorption characteristics in Xiangxi manganese mining area[J]. Journal of Journal Anhui Agricultural, Sciences, 44(8): 84-87, 95(in Chinese with English abstract).

    Yang Shengxiang, Tian Qijian, Liang Shichu, Zhou Yaoyu. 2012. Bioaccumulation of heavy metals by the dominant plants growing in Huayuan manganese and lead/zinc mineland, Xiangxi[J]. Environmental Science, 33(6): 2038-2045(in Chinese with English abstract).

    Zhang Hongling, Sun Li'na, Sun Tieheng, Chen Lifang. 2012. Substrate amelioration and vegetation reconstruction in ecological remediation of abandoned mines: Research advances[J]. Chinese Journal of Ecology, 31(2): 460-467(in Chinese with English abstract).

    Zhang Lianke, Li Haipeng, Huang Xuemin, Li Yumei, Jiao Kunling, Sun Peng, Wang Weida. 2016. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou[J]. Environmental Science, 37(3): 1139-1146(in Chinese with English abstract).

    Zhang Lifeng, Liu Jiemin, Zhang Yiming. 2019. Distribution characteristics of rare earth elements in plants and soils from the Bayan Obo Mining Area[J]. Rock and Mineral Analysis, 38(5): 556-564(in Chinese with English abstract).

    Zhang Long, Zhang Yunxia, Song Bo, Wu Yong, Zhou Ziyang. 2020. Potential of accumulation and application of dominant plants in Lanping Lead-zinc Mine, Yunnan Province[J]. Environmental Science, 41(9): 4210-4217(in Chinese with English abstract).

    Zhang Yin, Zhao Xin, Zhang Shenghu, Qi Dan, Ma Honglu, Zhang Qin, Lu Jiangang. 2021. Research progress of bamboo species in phytoremediation of heavy metal contaminated soil[J]. Journal of Ecology and Rural Environment, 37(1): 30-38(in Chinese with English abstract).

    Zhao Yuhong, Jing Jiuwang, Wang Xiangtao, Yue Haimei, Niu Xinyu, Fang Jiangping. 2016. Study on heavy metals bioaccumulation characteristics and tolerance of pioneer study on heavy metals bioaccumulation characteristics and tolerance of pioneer plants from central Tibet Mining Area[J]. Acta Agrestia Sinica, 24(3): 598-603(in Chinese with English abstract).

    Zheng Guoqiang, Fang Xiangjing, Zhang Hongjiang, Wang Wei. 2009. Heavy metal pollution and vegetation restoration in gejiu tin deposit in Yunnan Province[J]. Bulletin of Soil and Water Conservation, 29(6): 208-212, 231(in Chinese with English abstract).

    Zhu Guangxu, Xiao Huayun, Guo Qingjun, Zhang Zhongyi, Yang Xi, Kong Jing. 2017. Subcellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area[J]. Environmental Science, 38(7): 3054-3060(in Chinese with English abstract).

    阿不都艾尼·阿不里, 塔西甫拉提·特依拜, 玉米提·哈力克, 师庆东, 尼格拉·塔西甫拉提, 塔依尔江·艾山, 阿尔祖娜·阿布力米提. 2017. 露天煤矿周围的四种植被重金属富集和转移特征分析[J]. 干旱区地理, 40(6): 1207-1217.
    白中科, 付梅臣, 赵中秋. 2006. 论矿区土壤环境问题[J]. 生态环境, (5): 1122-1125. doi: 10.3969/j.issn.1674-5906.2006.05.046
    樊霆, 叶文玲, 陈海燕, 鲁洪娟, 张颖慧, 李定心, 唐子阳, 马友华. 2013. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 22(10): 1727-1736. doi: 10.3969/j.issn.1674-5906.2013.10.015
    何东, 邱波, 彭尽晖, 彭亮, 胡凌雪, 胡瑶. 2013. 湖南下水湾铅锌尾矿库优势植物重金属含量及富集特征[J]. 环境科学, 34(9): 3595-3600. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201309041.htm
    何原荣, 朱建军, 傅文杰, 余德清. 2010. 矿区土地资源破坏生态补偿评估空间数据库构建方法[J]. 遥感技术与应用, 25(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201001010.htm
    雷梅, 岳庆玲, 陈同斌, 黄泽春, 廖晓勇, 刘颖茹, 郑国砥, 常庆瑞. 2005. 湖南柿竹园矿区土壤重金属含量及植物吸收特征[J]. 生态学报, (5): 1146-1151. doi: 10.3321/j.issn:1000-0933.2005.05.029
    李江遐, 张军, 黄伏森, 葛高飞. 2016. 铜矿区土壤重金属污染与耐性植物累积特征[J]. 土壤通报, 47(3): 719-724. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603032.htm
    刘维涛, 张银龙, 陈喆敏, 周启星, 罗红艳. 2008. 矿区绿化树木对镉和锌的吸收与分布[J]. 应用生态学报, (4): 752-756. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200804010.htm
    陆金, 赵兴青, 黄健, 王敏. 2019. 铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征[J]. 环境化学, 38(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201901008.htm
    任志盛, 刘数华. 2021. 重金属污染土壤修复研究进展[J]. 硅酸盐通报, 40(6): 2042-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202106034.htm
    水新芳, 赵元艺, 王强. 2021. 矿山重金属污染土壤修复技术进展及展望[J]. 地质论评, 67(3): 752-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202103014.htm
    王喜宽, 黄增芳, 苏美霞, 李世宝, 王忠, 赵锁志, 张青. 2007. 河套地区土壤基准值及背景值特征[J]. 岩矿测试, (4): 287-292. doi: 10.3969/j.issn.0254-5357.2007.04.008
    王喜宽, 黄增芳, 赵锁志, 苏美霞, 李世宝, 张青, 王忠. 2007. 河套地区盐碱化和砷氟中毒问题探讨[J]. 岩矿测试, (4): 328-330. doi: 10.3969/j.issn.0254-5357.2007.04.017
    王兴利, 王晨野, 吴晓晨, 王晶博, 穆晓东, 杨晓姝, 胡小飞, 高静. 2019. 重金属污染土壤修复技术研究进展[J]. 化学与生物工程, 36(2): 1-7, 11. doi: 10.3969/j.issn.1672-5425.2019.02.001
    肖作义, 赵鑫, 孟庆学, 许欣, 杜伟旗, 马飞, 郑春丽. 2020. 内蒙古某尾矿库土壤重金属污染健康风险评价与来源解析[J]. 有色金属工程, 10(12): 135-142. doi: 10.3969/j.issn.2095-1744.2020.12.019
    邢丹, 刘鸿雁, 于萍萍, 吴龙华. 2012. 黔西北铅锌矿区植物群落分布及其对重金属的迁移特征[J]. 生态学报, 32(3): 796-804. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201203016.htm
    熊云武, 唐彪, 林晓燕, 裴东辉, 任重, 龚亚龙, 杨胜香, 许建新, 赵亮. 2016. 湘西锰矿区土壤重金属含量及优势植物吸收特征[J]. 安徽农业科学, 44(8): 84-87, 95. doi: 10.3969/j.issn.0517-6611.2016.08.030
    杨胜香, 田启建, 梁士楚, 周耀渝, 邹慧成. 2012. 湘西花垣矿区主要植物种类及优势植物重金属蓄积特征[J]. 环境科学, 33(6): 2038-2045. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201206045.htm
    张鸿龄, 孙丽娜, 孙铁珩, 陈丽芳. 2012. 矿山废弃地生态修复过程中基质改良与植被重建研究进展[J]. 生态学杂志, 31(2): 460-467. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201202035.htm
    张立锋, 刘杰民, 张翼明. 2019. 白云鄂博矿区土壤和植物中稀土元素的分布特征[J]. 岩矿测试, 38(5): 556-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201905013.htm
    张连科, 李海鹏, 黄学敏, 李玉梅, 焦坤灵, 孙鹏, 王维大. 2016. 包头某铝厂周边土壤重金属的空间分布及来源解析[J]. 环境科学, 37(3): 1139-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201603049.htm
    张龙, 张云霞, 宋波, 吴勇, 周子阳. 2020. 云南兰坪铅锌矿区优势植物重金属富集特性及应用潜力[J]. 环境科学, 41(9): 4210-4217. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009039.htm
    张颖, 赵欣, 张圣虎, 漆丹, 马红璐, 张芹, 陆建刚. 2021. 竹类植物修复重金属污染土壤的研究进展[J]. 生态与农村环境学报, 37(1): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202101004.htm
    赵玉红, 敬久旺, 王向涛, 岳海梅, 牛歆雨, 方江平. 2016. 藏中矿区先锋植物重金属积累特征及耐性研究[J]. 草地学报, 24(3): 598-603. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201603017.htm
    郑国强, 方向京, 张洪江, 王伟. 2009. 云南省个旧锡矿区重金属污染评价及植被恢复初探[J]. 水土保持通报, 29(6): 208-212, 231. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200906047.htm
    朱光旭, 肖化云, 郭庆军, 张忠义, 杨曦, 孔静. 2017. 铅锌尾矿污染区3种菊科植物体内重金属的亚细胞分布和化学形态特征[J]. 环境科学, 38(7): 3054-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201707050.htm
图(3)  /  表(7)
计量
  • 文章访问数:  1899
  • HTML全文浏览量:  854
  • PDF下载量:  3138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2022-05-17
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-06-24

目录

/

返回文章
返回
x 关闭 永久关闭