Sedimentary characteristics of the northern continental slope of the Danube Canyon in the northwest of the Black Sea and its relation with paleoclimate changes
-
摘要:研究目的
在末次冰期,全球气候变化以千年尺度的快速、大幅度温度波动旋回为特征,这种波动变化在两极冰芯、深海沉积、中国黄土和洞穴石笋等诸多地质样品中均有记录。黑海位于北大西洋与东亚季风区过渡带,具有极有代表性的沉积记录。本文旨在通过对黑海沉积序列的研究,建立起其区域环境变化与北大西洋及东亚季风气候域气候变化的联系。
研究方法研究对取自黑海西北部罗马尼亚陆坡区多瑙河峡谷北侧GAS-CS12钻孔的长22.0 m的岩芯样品,进行了粒度、矿物成分、主量元素、有机碳、总氮及碳氮同位素等分析。
研究结果揭示出该段岩芯沉积于末次冰期中后期“Neoeuxine”湖相阶段,可划分为5个沉积单元,对应于北大西洋H4、H3、H1气候变化事件、末次冰盛期(LGM)及Bolling-Allerod气候变暖事件。
结论建立起了其沉积序列及区域环境变化与北大西洋及东亚季风气候域气候变化的联系,印证了末次冰期千年尺度的气候变化事件在北大西洋、东亚季风区及两者过渡带上具有高度的一致性。
创新点:建立了黑海西北沉积序列与区域环境变化的关系;补充了北大西洋与东亚季风区两者过渡带上气候波动事件的可靠时标。
Abstract:This paper is the result of environmental geological survey engineering.
ObjectiveIn the last glacial period, global climate was characterized by rapid, large-scale temperature cycles on a millennial scale. Such climate changes could be recorded in many geological materials such as ice cores, deep-sea sediments, Chinese loess, and cave stalagmites. The Black Sea is located in the transition zone between the North Atlantic and East Asian monsoon regions and has formed representative sedimentary records. This article is aimed at establishing the connections between the regional environmental changes of the Black Sea and the climate changes in the North Atlantic and East Asian monsoon area through the study of the sedimentary sequences of the Black Sea.
MethodsIn this study, a 22.0 m core sample taken from Core GAS-CS12 in the northern slope of the Danube Canyon in the northwest of the Black Sea was analyzed for particle size, mineral composition, major elements, organic carbon, total nitrogen, and carbon and nitrogen isotopes.
ResultsIt was revealed that the core sediments of this section were deposited in the"Neoeuxine"lacustrine stage in the middle and late period of the last glacial period, and can be divided into 5 sedimentary units, corresponding to H4, H3, and H1 climate change events in the North Atlantic, the Last Glacial Maximum (LGM), and Bolling- Allerod climate warming event.
ConclusionsThe connections between the sedimentary sequences and regional environmental changes of the Black Sea with the climate changes in the North Atlantic and East Asian monsoon area were established and this paper also confirmed that the millennium-scale climate changes of the last glacial period were highly consistent in the North Atlantic, East Asian monsoon area and their transition zones.
-
致谢: 感谢法国国家海洋开发研究院为本研究提供样品及岩芯资料;同时也感谢法国国家海洋开发研究院允许我们发表这些研究成果。
-
图 1 GAS-CS12站位及古多瑙河流域位置(改自Popescu, 2004)
Figure 1. Location of core GAS-CS12 and paleo-Danube River (modified from Popescu, 2004)
图 10 有机质来源示意图(据Meyers, 1994; Gearing et al., 1984; Boutton, 1991)
Figure 10. Sources of organic matter (after Meyers, 1994; Gearing et al., 1984; Boutton, 1991)
图 11 格陵兰冰芯、中国石笋、黄土等气候记录对比
a—黑海GAS-CS12孔沉积物平均粒径;b—黑海GAS-CS12孔δ13Corg;c—格陵兰冰芯NGRIP δ18O(Svensson et al., 2006);d—65ºN太阳辐射(Berger et al., 1991);e—葫芦洞石笋δ18O记录(Wang et al., 2008);f—永兴洞石笋δ18O记录(Chen et al., 2016);g—甘孜黄土磁化率χfd (Hu et al., 2015);h—洛川黄土磁化率χfd (Hu et al., 2015)
Figure 11. A comparison of Greenland Ice Core, Chinese stalagmite and Loess records
a-The average particle size of the core GAS-CS12 sediment from Black Sea; b-δ13Corg of the core GAS-CS12 from Black Sea; c-Greenland Ice Core NGRIP δ18O records (Svensson et al., 2006); d-65ºN insolation (Berger et al., 1991); e-Stalagmite δ18O records from Hulu Caves (Wang et al., 2008); f-Stalagmite δ18O records from Yongxing Caves (Chen et al., 2016); g-Magnetic susceptibility χfd of Ganzi Loess (Hu et al., 2015); h-Magnetic susceptibility χfd of Luochuan Loess (Hu et al., 2015)
表 1 GAS-CS12孔沉积物粒度参数统计
Table 1 Statistics of grain size parameters of the core GAS-CS12
表 2 GAS-CS12孔沉积物主量元素含量(%)
Table 2 The concentrations of major elements(%)of the core GAS-CS12
表 3 样品14C测年结果
Table 3 14C dating results of the samples selected
-
Alley R B. 2007. Wally was right: Predictive ability of the North Atlantic "Conveyor Belt" hypothesis for abrupt climate change[J]. Earth & Planetary Sciences, 35(1): 241-272.
Anders S, Andersen K K, Bigler M, Clausen H B, Dahl-Jensen D, Davies S M, Johnsen S J, Muscheler R, Rasmussen S O, Röthlisberger R, Steffensen J P, Vinther B M. 2006. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: Comparison to other records[J]. Quaternary Science Reviews, 25(23/24): 3258-3267.
Atanassova J, Bozilova E. 1992. Palynological investigation of marine sediments from the western sector of the Black Sea[J]. Oceanology, 1: 97-103.
Augley J, Huxham M, Fernandes T F, Lyndon A R, Bury S. 2007. Carbon stable isotopes in estuarine sediments and their utility as migration markers for nursery studies in the Firth of Forth and Forth Estuary Scotland[J]. Estuarine, Coastal and Shelf Science, 72(4): 648-656. doi: 10.1016/j.ecss.2006.11.024
Badertscher S, Fleitmann D, Cheng H, Edwards R L, Göktürk O M, Zumbühl A, Leuenberger M, Tüysüz O. 2011. Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea[J]. Nature Geoscience, 4: 236-239. doi: 10.1038/ngeo1106
Bahr A, Lamy F, Arz H W, Kuhlmann H, Wefer G. 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea[J]. Marine Geology, 214: 309-322. doi: 10.1016/j.margeo.2004.11.013
Bahr A, Lamy F, Arzb H, Kuhlmann H, Wefer G. 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea[J]. Marine Geology, 214: 309-322. doi: 10.1016/j.margeo.2004.11.013
Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million of years[J]. Quaternary Science Reviews, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
Bond G, Broecker W, Johnson S, McManus J. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 365(6442): 143-147. doi: 10.1038/365143a0
Böttcher M E, Voss M, Schulz-Bull D, Schneider R, Leipe T, Knöller K. 2010. Environmental changes in the Pearl River Estuary (China) as reflected by light stable isotopes and organic contaminants[J]. Journal of Marine Systems, 82: 43-53. doi: 10.1016/j.jmarsys.2010.02.004
Boutton T W. 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments[J]. Carbon Isotopes Techniques, 173-185.
Boyle E A. 2000. Is ocean thermohaline circulation linked to abrupt stadial/interstadial transitions[J]. Quaternary Science Reviews, 19(1-5): 255-272. doi: 10.1016/S0277-3791(99)00065-7
Bronk R C. 2009. Bayesian analysis of radiocarbon dates[J]. Radiocarbon, 51(1): 337-360. doi: 10.1017/S0033822200033865
Chen M T, Wang C H, Huang C Y, Wang P, Wang L, Sarnthein M. 1999. A late Quaternary planktonic foraminifer faunal record of rapid climatic changes from the South China Sea[J]. Marine Geology, 156: 85-108. doi: 10.1016/S0025-3227(98)00174-1
Chen S, Wang Y, Cheng H, Edwards R L, Wang X F, Kong X G, Liu D B. 2016. Strong coupling of Asian Monsoon and Antarctic climates on suborbital timescales[J]. Scientific Reports, 6: 32995. doi: 10.1038/srep32995
Chmura G L, Aharon P. 1995. Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime[J]. Journal of Coastal Research, 11(1): 124-135.
Clark P U, Webb R S, Keigwin L D. 1999. Mechanisms of global climate change at millennial time scales[J]. Geophysical Monograph Series, 112: 394.
Constantinescu A M, Toucanne S, Dennielou B, Jorry S J, Mulder T, Lericolais G. 2015. Evolution of the Danube Deep-Sea Fan since the Last Glacial Maximum: New insights into Black Sea water-level fluctuations[J]. Marine Geology, 367: 50-68. doi: 10.1016/j.margeo.2015.05.007
Contreras S, Werne J P, Araneda A, Urrutia R, Conejero C A. 2018. Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes[J]. Science of the Total Environment, 630: 878-888. doi: 10.1016/j.scitotenv.2018.02.225
Dansgaard W, Johnsen S J, Clausen H B, Dahl-Jensen D, Gundestrup N S, Hammer C U, Hvidberg C S, Steffensen J P, Sveinbjörnsdottir A E, Jouzel J, Bond G. 1993. Evidence for general instability of past climate from a 250 kyr ice-core record[J]. Nature, 364: 218-220. doi: 10.1038/364218a0
Dekov V M, Darakchieva V Y, Billström K, Garbe-Schönberg C D, Kamenov G D, Gallinari M, Dimitrov L, Ragueneau O, Kooijman E. 2019. Element enrichment and provenance of the detrital component in Holocene sediments from the western Black Sea[J]. Oceanologia, 1-25.
Folk R L, Andrews P B, Lewis D W. 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand journal of geology and geophysics, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211
Freslon N, Bayon G, Toucanne S, Bermell S, Bollinger C, Chéron S, Etoubleau J, Germain Y, Khripounoff A, Ponzevera E, Rouget M L. 2014. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 140: 177-198. doi: 10.1016/j.gca.2014.05.016
Gearing G N, Gearing P L, Rudnick D T, Requejo A G, Hutchins M J. 1984. Isotope variability of organic carbon in a phytoplankton based temperate estuary[J]. Geochimica et Cosmochimica Acta, 48(5): 1089-1098. doi: 10.1016/0016-7037(84)90199-6
Heinrich H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9
Hu P X, Liu Q S, Heslop D, Roberts A P, Jin C S. 2015. Soil moisture balance and magnetic enhancement in loess-paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 409: 120-132. doi: 10.1016/j.epsl.2014.10.035
IPCC. 2007. Climate Change the Physical Science Basis[C]. AGU Fall Meeting Abstracts: 123-124.
Kasse C, Bohncke S J P, Vandenberghr J, Gábris G. 2010. Fluvial style changes during the last glacial-interglacial transition in the middle Tisza Valley (Hungary)[J]. Proceedings of the Geologists Association, 121(2): 180-194. doi: 10.1016/j.pgeola.2010.02.005
Kennedy H, Gacia E, Kennedy D P, Papadimitriou S, Duarte C M. 2004. Organic carbon sources to SE Asian coastal sediments. [J]. Estuarine, Coastal and Shelf Science, 60(1): 59-68. doi: 10.1016/j.ecss.2003.11.019
Ku H W, Chen Y G, Chan P S, Liu H C, Lin C C. 2007. Paleo-environmental evolution as revealed by analysis of organic carbon and nitrogen: A case of coastal Taipei Basin in Northern Taiwan[J]. Geochemical Journal, 41: 111-120. doi: 10.2343/geochemj.41.111
Lericolais G, Bourget J, Popescu I, Jermannaud P, Mulder T, Jorry S, Panin N, 2013. Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin[J]. Global and Planetary Change, 103: 232-247. doi: 10.1016/j.gloplacha.2012.05.002
Li Yan, Yu Hongjun, Yi Liang, Su Qiao, Hu Ke, Xu Xingyong, Wang Jian. 2014. Grain- size characteristics and its sedimentary significance of coastal sediments of the borehole Lz908 in the south Bohai Sea (the Laizhou Bay), China[J]. Marine Sciences, 38(5): 107-133 (in Chinese with English abstract).
Liu Dongsheng. 1997. Quaternary Environment[M]. Beijing: Science Press, 193-231 (in Chinese).
Liu Jianguo, Li Anchun, Xu Zhaokai. 2006. Grain size characteristics of sediments in Bohai Bay during Holocene[J]. Marine Sciences, 30(3): 60-65 (in Chinese with English abstract).
Major C, Ryan W B F, Lericolais G, Hajdas I. 2002. Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition[J]. Marine Geology, 190(1/2): 19-34.
McManus J. 1988. Grain size determination and interpretation[J]. Techniques in sedimentology, 63-85.
Ménot G, Bard E. 2012. A precise search for drastic temperature shifts of the past 40, 000 years in southeastern Europe[J]. Paleoceanography and Paleoclimatology, 27(2): 2210.
Meyers P A, Lallier-vergés E. 1999. Lacustrine sedimentary organic matter Records of Late Quaternary Paleoclimates[J]. Journal of Paleolimnology, 21: 345-372. doi: 10.1023/A:1008073732192
Özsoy E, Ünlüata Ü. 1997. Oceanography of the Black Sea: A review of some recent results[J]. Earth-Science Reviews, 42(4): 231-272. doi: 10.1016/S0012-8252(97)81859-4
Pang Jiangli, Huang Chunchang. 2000. Correlation between climate change of ice- core on Qianghai- Xizang Plateau and Loess-Palaeosol sequence, marine isotope stage[J]. Plateau Meteorology, 19(4): 504-511 (in Chinese with English abstract).
Panina N, Jipab D. 2002. Danube River sediment input and its interaction with the North-western Black Sea[J]. Estuarine, Coastal and Shelf Science, 54: 551-562. doi: 10.1006/ecss.2000.0664
Peterson B J, Howarth R W, Garritt R H. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs[J]. Science, 227: 1361-1363. doi: 10.1126/science.227.4692.1361
Popescu I, Lericolais G, Panin N, Normand A, Dinu C, Drezen E. 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes[J]. Marine Geology, 206: 249-265. doi: 10.1016/j.margeo.2004.03.003
Popescu I, Lericolais G, Panin N, Wong H K, Droz L. 2001. Late Quaternary channel avulsions on the Danube deep-sea fan, Black Sea[J]. Marine Geology, 179(1/2): 25-37.
Raynaud D, Barnola J M, Chappellaz J, Blunier T, Indermühle A, Stauffer B. 2000. The ice record of greenhouse gases: A view in the context of future changes[J]. Quaternary Science Reviews, 19(1-5): 9-17. doi: 10.1016/S0277-3791(99)00082-7
Rinterknecht V R, Clark P U, Raisbeck G M, Yiou F, Bitinas A, Brook E J, Marks L, Zelcs V, Lunkka J P, Pavlovskaya I E, Piotrowski J A, Raukas A. 2006. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet[J]. Science, 311(5766): 1449-1452. doi: 10.1126/science.1120702
Robinson A G, Spadini G, Cloetingh S. 1995. Stratigraphic evolution of the Black Sea: Inferences from basin modelling[J]. Marine and Petroleum Geology, 12(8): 821-836. doi: 10.1016/0264-8172(95)98850-5
Ross D A, Degens E T. 1974. Recent sediments of the Black Sea[J]. AAPG, 183-199.
Rostek F, Bard E. 2013. Hydrological changes in eastern Europe during the last 40000 yr inferred from biomarkers in Black Sea sediments[J]. Quaternary Research, 80: 502-509. doi: 10.1016/j.yqres.2013.07.003
Ryan W B F. 2003. Catastrophic flooding of the Black Sea[J]. Annual Review of Earth and Planetary Sciences, 31(1): 525-554. doi: 10.1146/annurev.earth.31.100901.141249
Schubert C J, Calvert S E. 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: Implications for nutrient utilization and organic matter composition[J]. Deep Sea Research Part I: Oceanographic Research Papers, 48(3): 789-810. doi: 10.1016/S0967-0637(00)00069-8
Shcherbakov F A, Babak Y V. 1979. Stratigraphic subdivision of the Neoeuxinian deposits in the Black Sea[J]. Oceanology, 19: 298-300.
Shimkus K M, Komarov A V, Grakova I V. 1978. Stratigraphy of the upper Quaternary deep sea sediments in the Black Sea[J]. Oceanology, 17: 443-446.
Shopov V L, Chochov S, Georgiev V. 1986. Lithostratigraphy of Upper Quaternary sediments from the northwestern Black Sea shelf between the parallels of the Cape Emine and Danube River mouth[J]. Geologica Balcanica, 16(6): 99-112.
Sidorchuk A Y, Panin A V, Borisova O K. 2011. Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum-Late Glacial time[J]. Geological Society of America, 473: 1-26.
Soulet G, Ménot G, Lericolais G, Bard E. 2011. A revised calendar age for the last reconnection of the Black Sea to the global ocean[J]. Quaternary Science Reviews, 30(9-10): 1019-1026. doi: 10.1016/j.quascirev.2011.03.001
Spencer D W, Brewer P G, Sachs P L. 1972. Aspects of the distribution and trace element composition of suspended matter in the Black Sea[J]. Geochimica et Cosmochimica Acta, 36(1): 71-86. doi: 10.1016/0016-7037(72)90121-4
Stow D A V, Piper D J W. 1984. Deep-water fine-grained sediments: facies models[J]. Geological Society London Special Publications, 15(1): 611-645. doi: 10.1144/GSL.SP.1984.015.01.38
Sun Donghuai, An Yisheng, Liu Dongsheng, Wu Xihao. 1996. Evolution of the summer monsoon climate pattern over the Loess Plateau in the past 150 ka[J]. Earth Sciences: Science in China, 26(5): 417-422 (in Chinese).
Sun Jun, Lu Yue, Yang Huiliang, Chu Hongxian, Qi Jianghao, Liu Changchun, Li Panfeng, Dou Zhenya. 2019. Grain-size distribution patterns of the core sediments from BHS01 of Bohai strait and their environmental implication[J]. Marine Geology Frontiers, 35(8): 11-19 (in Chinese with English abstract).
Sun Y, Clemens S C, Morrill C, Lin X P, Wang X L, An Z S. 2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 5(1): 46-49.
Svendsen J I. 2004. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews, 23: 1229-1271. doi: 10.1016/j.quascirev.2003.12.008
Toucanne S, Soulet G, Freslon N, Jacinto R S, Dennielou B, Zaragosi S, Eynaud F, Bourillet J F, Bayon G. 2015. Millenial- scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate[J]. Quaternary Science Reviews, 123: 113-133. doi: 10.1016/j.quascirev.2015.06.010
Tudryn A, Leroy S, Toucanne S, Gibert-Brunet E, Tucholka P, Lavrushin Y A, Dufaure O, Miska S, Bayon G. 2016. The Ponto-Caspian basin as a final trap for southeastern Scandinavian Ice-Sheet meltwater[J]. Quaternary Science Reviews, 148: 29-43. doi: 10.1016/j.quascirev.2016.06.019
Velichko A A, Catto N, Drenova A N, Klimanov V A, Kremenetski K V, Nechaev V P. 2002. Climate changes in East Europe and Siberia at the Late glacial-holocene transition[J]. Quaternary International, 91(1): 75-99. doi: 10.1016/S1040-6182(01)00104-5
Wang Dejie, Fan Daidu, Li Congxian. 2003. Influence of different pretreatments on size analysis and its implication[J]. Journal of Tongji University, 31(3): 314-318 (in Chinese with English abstract).
Wang Shaowu, Xie Zhihui. 2002. Climate variability at millennial time scales[J]. Earth Science Frontiers, 9(1): 143-153 (in Chinese with English abstract).
Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 451: 1090-1093. doi: 10.1038/nature06692
Wang Yongjin, Hai Cheng, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high- resolution absolute- dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 294: 2345-2348. doi: 10.1126/science.1064618
Wegwerth A, Kaiser J, Dellwig O, Shumilovskikh L S, Nowaczyk N R, Arz H W. 2016. Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea "Lake"[J]. Quaternary Science Reviews, 135: 41-53. doi: 10.1016/j.quascirev.2016.01.016
Wentworth C K, Chester K. 1922. A Scale of Grade and Class Terms for Clastic Sediments[J]. The Journal of Geology, 30(5): 377-392. doi: 10.1086/622910
Wohlfahrth B, Lacourse T, Bennike O, Subetto D, P Tarasov, I Demidov, Filimonova L, Sapelko T. 2007. Climatic and environmental changes in northwestern Russia between 15, 000 and 8000 cal yr BP: A review[J]. Quaternary Science Reviews, 26(13-14): 1871-1883. doi: 10.1016/j.quascirev.2007.04.005
Yanchilina A G, Ryan W B F, McManus J F, Dimitrov P, Dimitrov D, Slavova K, Filipova-Marinova M. 2017. Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea's shelf and subsequent substantial salinification in the early Holocene[J]. Marine Geology, 383: 14-34. doi: 10.1016/j.margeo.2016.11.001
Yue Baojing, Liu Jinqing, Liu Jian, Liao Jing, Zhang Junqiang. 2019. Grain size distribution and its environmental change of core YRD-1101in the western margin of the modern Bohai Sea since the latest Pleistocene[J]. Geology in China (in Chinese with English abstract).
Zhang Baofang. 2015. Grain Size Distribution and Sedimentary Environment Evolution in Northern South China Sea Slope[D]. Qingdao: Ocean University of China (in Chinese with English abstract).
Zhang Jian, Li Rihui, Wang Zhongbo, Zhang Xunhua, Huang Long, Sun Rongtao. 2016. Grain size characteristics of surface sediments in the east Bohai Sea and the northern Yellow Sea and their implications for environments[J]. Marine Geology and Quaternary Geology, 36(5): 1-12 (in Chinese with English abstract).
Zhang R, Delworth T L. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. Journal of Climate, 18: 1853-1860. doi: 10.1175/JCLI3460.1
李琰, 于洪军, 易亮, 苏乔, 胡克, 徐兴永, 王建. 2014. 渤海南部Lz908孔海陆交互沉积的粒度特征及其对沉积环境的指示[J]. 海洋科学, 38(5): 107-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201405016.htm 刘东生. 1997. 第四纪环境[M]. 北京: 科学出版社, 193-231. 刘建国, 李安春, 徐兆凯. 2006. 全新世以来渤海湾沉积物的粒度特征[J]. 海洋科学, 30(3): 60-65. doi: 10.3969/j.issn.1000-3096.2006.03.013 庞奖励, 黄春长. 2000. 青藏高原冰芯记录与黄土堆积和深海沉积记录之对比[J]. 高原气象, 19(4): 504-511. doi: 10.3321/j.issn:1000-0534.2000.04.012 孙东怀, 安芷生, 刘东生, 吴锡浩. 1996. 最近150 ka黄土高原夏季风气候格局的演化[J]. 地球科学: 中国科学, 26(5): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199605005.htm 孙军, 路月, 杨慧良, 褚宏宪, 祁江豪, 刘长春, 李攀峰, 窦振亚. 2019. 渤海海峡BSH01孔海陆交互相沉积物粒度特征及沉积环境分析[J]. 海洋地质前沿, 35(8): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201908002.htm 王德杰, 范代读, 李从先. 2003. 不同预处理对沉积物粒度分析结果的影响[J]. 同济大学学报, 31(3): 314-318. doi: 10.3321/j.issn:0253-374X.2003.03.014 -
期刊类型引用(16)
1. 牛文治,何付兵,沙春梅,张悦泽,刘振华. 北京平原区南苑—通县断裂南西段结构特征和活动性. 科学技术与工程. 2024(18): 7552-7562 . 百度学术
2. 赵勇,李瑞杰,杨誉博,王纯君,杨吉龙,王强,李莉. 上新世以来北京平原NBT1孔记录的地层沉积及构造指示. 地质学报. 2023(02): 553-564 . 百度学术
3. 田苗壮,赵龙,崔文君,郭高轩,刘贺,孙爱华,王新惠,陈航,吴盼. 南水北调背景下地下水位上升对地面沉降控制与影响——以北京潮白河地下水系统为例. 中国地质. 2023(03): 872-886 . 本站查看
4. 卫蕾华,贺为民. 河南平原濮阳市BK1钻孔第四纪地层划分和环境演化. 地层学杂志. 2023(02): 191-200 . 百度学术
5. 代鹏,邓晓红,王盛栋,张全. 永定河冲积平原南部第四纪年代地层划分及沉积速率特征. 地质通报. 2022(Z1): 253-261 . 百度学术
6. 白凌燕,张磊,张悦泽,张晓亮,王凯,何付兵. 后沙峪凹陷第四纪高精度地层格架及地质意义. 科学技术与工程. 2022(18): 7780-7788 . 百度学术
7. 田苗壮,罗勇,崔文君,雷坤超,田芳,杨艳. 南水北调背景下北京地面沉降发展变化特征. 上海国土资源. 2022(04): 44-49 . 百度学术
8. 赵勇. 冲-洪积平原1∶5万区域地质调查技术方法探索. 中国地质调查. 2021(01): 60-70 . 百度学术
9. 王超群,贾丽云,胡道功,马秀敏,顾静超,丁莹莹,曹新文,夏蒙蒙,吴环环. 海南岛北部马袅—铺前断裂东段活动性与地壳稳定性评价. 中国地质. 2021(02): 618-631 . 本站查看
10. 周永恒,杨肖肖,丰成君,张鹏,孟静,谭成轩,邓亚虹,宋焱勋,王继明. 北京平原区黄庄—高丽营断裂(房山—涞水段)第四纪活动特征的浅层综合探测证据. 地球学报. 2021(05): 677-689 . 百度学术
11. 李瑞杰,魏波,赵勇. 北京庞各庄幅1:50000区域地质调查数据集. 中国地质. 2021(S2): 90-99 . 本站查看
12. 卫蕾华,贺为民,张洋,宋晓鹏,张峰,刘露洋,杨杰. 驻马店市第四纪地层研究. 地层学杂志. 2020(02): 191-199 . 百度学术
13. 陈圆圆,卜令,专少鹏,杨瑞,赵华平,季虹,陈超,陈宏强. 河北省1:50000沙流河幅第四系钻孔数据库. 中国地质. 2020(S1): 125-147 . 本站查看
14. 何付兵,崔玉斌,刘振华,栾英波,牛文治,王凯,马学利. 北京平谷马坊ZK09钻孔新生代地层格架及其地质意义. 科学技术与工程. 2020(25): 10151-10159 . 百度学术
15. 李巧灵,雷晓东,李晨,冉伟彦,杨全合,何祎. 微动测深法探测厚覆盖层结构——以北京城市副中心为例. 地球物理学进展. 2019(04): 1635-1643 . 百度学术
16. 田苗壮,王荣,赵龙,罗勇,王新惠,孔祥如,齐鸣欢,沙特. 高密度电法在北京宋庄地裂缝中的应用. 上海国土资源. 2017(03): 90-93 . 百度学术
其他类型引用(4)