• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力

马剑飞, 李向全, 张春潮, 付昌昌, 谢小国, 王晓刚, 李欣泽, 张登飞, 白占学, 王振兴

马剑飞,李向全,张春潮,付昌昌,谢小国,王晓刚,李欣泽,张登飞,白占学,王振兴. 2025. 青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力[J]. 中国地质, 52(1): 347−361. DOI: 10.12029/gc20220416004
引用本文: 马剑飞,李向全,张春潮,付昌昌,谢小国,王晓刚,李欣泽,张登飞,白占学,王振兴. 2025. 青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力[J]. 中国地质, 52(1): 347−361. DOI: 10.12029/gc20220416004
Ma Jianfei, Li Xiangquan, Zhang Chunchao, Fu Changchang, Xie Xiaoguo, Wang Xiaogang, Li Xinze, Zhang Dengfei, Bai Zhanxue, Wang Zhenxing. 2025. Recharge sources, model and development potential of typical tectonic karst groundwater in the eastern Qinghai−Xizang Plateau[J]. Geology in China, 52(1): 347−361. DOI: 10.12029/gc20220416004
Citation: Ma Jianfei, Li Xiangquan, Zhang Chunchao, Fu Changchang, Xie Xiaoguo, Wang Xiaogang, Li Xinze, Zhang Dengfei, Bai Zhanxue, Wang Zhenxing. 2025. Recharge sources, model and development potential of typical tectonic karst groundwater in the eastern Qinghai−Xizang Plateau[J]. Geology in China, 52(1): 347−361. DOI: 10.12029/gc20220416004

青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力

基金项目: 中国地质调查局项目(DD20211374、DD20221812、DD20230537)和中国地质科学院基本科研业务费项目(SK202205)资助。
详细信息
    作者简介:

    马剑飞,男,1987年生,副研究员,主要从事水文地质工程地质方面的研究工作;E-mail: majianfei@mail.cgs.gov.cn

  • 中图分类号: P641.8

Recharge sources, model and development potential of typical tectonic karst groundwater in the eastern Qinghai−Xizang Plateau

Funds: Supported by the projects of China Geological Survey (No. DD20211374, No. DD20221812, No.DD20230537), Chinese Academy of Geological Sciences (No. SK202205).
More Information
    Author Bio:

    MA Jianfei, male, born in 1987, associate researcher, engaged in research on hydrogeology and engineering geology; E-mail: majianfei@mail.cgs.gov.cn

  • 摘要:
    研究目的 

    青藏高原东部分布多处构造岩溶发育区,岩溶水文地质结构复杂,补给来源多样、水量丰富。开展岩溶水补给源的分析研究,总结高原构造岩溶循环规律,对指导岩溶水资源开发利用、生态保护和防灾减灾具有重要意义。

    研究方法 

    本文在现场调查、流量统测、水化学和稳定同位素分析的基础上,分析了青藏高原东部典型岩溶区地下水补给来源,探讨了补给来源和补给过程的影响因素,构建了构造岩溶地下水补给模式,并提出了开发利用建议。

    研究结果 

    青藏高原东部典型岩溶大泉主要补给源是大气降水,通过裂隙溶隙高位直接补给型、高位湖泊持续补给型、汇水洼地持续渗漏补给型、河水渗漏补给型等4种模式得到补给。

    结论 

    存在补给模式差异的原因在于青藏高原东部长期经受内外动力耦合作用,其中内动力控制因素包括岩溶形成演化历史、地质构造和岩性组合;外动力控制因素主要包括气象、地形地貌和冰川运动。根据岩溶大泉水质和水量特征,提出3种开发利用方式:第一种为水质为Ⅰ~Ⅲ类水的岩溶泉,可直接扩大开发利用程度;第二种为微咸水,可与其他水源混合后适当开发利用;第三种为咸水,可适当改造作为旅游开发使用。

    创新点:

    (1)识别了青藏高原东部典型构造岩溶大泉的补给来源,总结了岩溶水补给模式。(2)揭示了影响岩溶水补给条件的内外动力因素。(3)提出了3种岩溶水开发利用方式。

    Abstract:

    This paper is the result of hydrogeological survey engineering.

    Objective 

    There are many tectonic karst areas with complex karst hydrogeological structures, diverse recharge sources, and abundant groundwater in the eastern part of the Qinghai−Xizang Plateau. Analyses and research of the recharge sources and details about the controls on groundwater cycling in the tectonic karst on the plateau are important for guiding the development and utilization of karst water resources, protecting the ecology, and preventing and reducing disasters.

    Methods 

    Using information from field investigations, flow measurements, hydrochemistry and stable isotope analysis, we analyzed the groundwater recharge sources in the karst areas in the eastern part of the Qinghai−Xizang Plateau, considered the factors that influenced the recharge sources and recharge progress, and made recommendations for the development and utilization of the groundwater.

    Results 

    Atmospheric precipitation was the main recharge source of the main karst springs on the eastern Qinghai−Xizang Plateau. There were four main recharge modes, including direct recharge through high−level fissures, continuous recharge from high−level lakes, continuous seepage recharge in catchment depressions, and river seepage.

    Conclusions 

    The different recharge modes in the eastern Qinghai−Xizang Plateau developed over sustained time periods because of the coupling of internal factors, such as the history of the karst formation and its evolution, the geological structure, and the lithologic combination, and external factors, such as the meteorology, the landforms, and glacier movements. From our analysis of the characteristics of the water quality and quantity of the karst springs, we developed three categories for the development and utilization of the groundwater resource, namely karst springs with water quality in classes Ⅰ–Ⅲ, the development and utilization of which can be expanded; brackish water, which can be developed and utilized after mixing with other water; and salt water, which can be transformed and used for developing tourism.

    Highlights:

    (1) The recharge source of typical karst spring in the eastern Qinghai−Xizang Plateau is summarized and the recharge mode is established. (2) The internal and external dynamic factors affecting karst water recharge are revealed. (3) Three development and utilization methods of karst water are put forward.

  • 近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。

    在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。

    研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。

    图  1  区域构造位置图(a)、矿区地质简图(b)、勘探线剖面图(c)及萤石矿岩心(d)
    Figure  1.  Regional structure location map (a), brief geological diagram of ore district (b), prospecting line profile map (c) and cores specimen of fluorite deposit (d)

    在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。

    (1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。

    (2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。

    本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。

    1❶中国人民解放军〇〇九三一部队. 1980. 康定—宝兴地区区域水文地质普查报告(比例尺1∶500 000)[R].
  • 图  1   青藏高原东部构造岩溶分布图

    Figure  1.   Distribution map of tectonic karst in eastern Qinghai−Xizang Plateau

    图  2   岩溶泉δD与δ18O关系(GMWL—全球大气降水线;EQMWL—青藏高原东部大气降水线,引自李维杰等, 2018

    Figure  2.   Relationship between δD and δ18O (GMWL– Global Meteoric Water Line; EQMWL–Eastern Qinghai−Xizang Plateau Meteoric Water Line, after Li Weijie et al., 2018)

    图  3   鱼洞子泉(a)及补给循环过程概化示意图(b)

    Figure  3.   Yudongzi spring (a) and schematic diagram of supply process (b)

    图  4   清泉村岩溶泉(a)与补给循环过程概化示意图(b)(据马剑飞等,2022改)

    Figure  4.   Karst spring in Qingquan village (a) and schematic diagram of supply process (b) (modified from Ma Jianfei et al., 2022)

    图  5   火龙沟岩溶泉(a)与补给循环过程概化示意图(b)(据李向全等,2021修改)

    Figure  5.   Huolonggou karst spring (a) and schematic diagram of supply process (b) (modified from Li Xiangquan et al., 2021)

    图  6   根久泉(a)与亚日贡泉(b)

    Figure  6.   Photograph of Genjiu karst spring (a) and Yarigong karst spring (b)

    图  7   娘曲泉(a)及补给循环过程概化示意图(b)(据张春潮等,2021修改)

    Figure  7.   Niangqu karst spring (a) and schematic diagram of supply process (b) (modified from Zhang Chunchao et al., 2021)

    图  8   容贡泉(a)及补给循环过程概化示意图(b)

    Figure  8.   Ronggong karst spring (a) and schematic diagram of supply process (b)

    图  9   夏里温泉(a)及补给循环过程概化示意图(b)

    Figure  9.   Xiali thermal spring (a) and schematic diagram of supply process (b)

    图  10   瓢打泉(a)及补给循环过程概化示意图(b)

    Figure  10.   Piaoda karst spring (a) and schematic diagram of supply process (b)

    图  11   主要岩溶发育段年均降水量

    Figure  11.   Average annual precipitation of main karst development sections

    图  12   高原构造岩溶水补给模式示意图

    a—裂隙溶隙高位直接补给型;b—高位湖泊持续补给型;c—汇水洼地持续渗漏补给型;d—河水渗漏补给型(①大角度相交,②平行或小角度相交)

    Figure  12.   Schematic diagram of recharge model of tectonic structure karst water

    a–Direct recharge through fissure in high−level elevation; b–Continuous recharge by high-level-elevation lake; c–Continuous seepage recharge in catchment depression; d–River seepage recharge (①Intersectedon large angle, ②Parallel or intersectedon small angle)

    表  1   青藏高原东部主要碳酸盐岩地层

    Table  1   Main carbonate strata in the eastern Qinghai−Xizang Plateau

    区段 主要地质年代 主要碳酸盐岩地层
    天全—宝兴(Ⅰ) P、K 栖霞组(P1q)、茅口组(P1m)、大溪砾岩(K2E1d)、夹关组(K2j
    康定(Ⅱ) Z、S、D 水晶组(Z2s)、宝塔组(O3b)、大箐组(OSd)、石牛栏组(S1s)、通化组(St)、捧达组(D1-2pd)、养马坝组(D2y)、观雾山组(D2gw)、河心组(D2-3h)、雪宝顶组(DCx
    巴塘—白玉(Ⅲ) Є、S、D、P 小坝冲组(Є1-2xb)、额顶组(Є3e)、物洛吃普组(O2-3w)、格扎底组(S1g)、散责组(S2-3s)、雍忍组(S4y)、格绒组(D1g)、穷错组(D2q)、苍纳组(D2c)、塔利坡组(D3t)、赤丹潭组(P3c
    贡觉(Ⅳ) D、P、T 丁宗龙组(D2d)、卓戈洞组(D3z)、交嘎组(P2j)、波里拉组(T3b
    察雅(Ⅴ) D、T 卓戈洞组(D3z)、波里拉组(T3b
    夏里(Ⅵ) T、J 东达村组(T3ddc)、古竹同组(T3gz)、桑卡拉雍组(J2s)、甲丕拉组(T3j)、波里拉组(T3b
    波密(Ⅶ) Pt、D、C 唐古拉岩群(Pt2-3Nq)、松宗组(D2-3s)、诺错组(C1n
    下载: 导出CSV

    表  2   清泉村岩溶泉补给量计算

    Table  2   Calculation of karst spring recharge in Qingquan village

    计算端元 类型 ρ(Cl)/(mg/L) 计算结果
    积雪 积雪 6.01 P积雪=21.6%
    PM20 河水 1.05 P河水=78.4%
    PM02 泉水 2.12
    下载: 导出CSV

    表  3   根久岩溶泉补给来源占比计算

    Table  3   Calculation of recharge source proportion of Genjo karst spring

    计算端元 类型 δD/‰ δ18O/‰ 计算结果
    YRA40 湖水 −127 −16.6 P湖水=56.0%
    BTT42 泉水 −142 −18.9
    波密雪 积雪 −177 −24.1 P积雪=36.9%
    巴塘雨水 雨水 −79 −10.1 P雨水=7.1%
    下载: 导出CSV

    表  4   青藏高原东部典型岩溶大泉补给模式与影响因素

    Table  4   Recharge model and influencing factors of typical karst springs in the eastern Qinghai-Xizang Plateau

    名称 补给模式 影响因素
    岩溶演化历史 地质构造 地层岩性 地形地貌 气象 冰川
    鱼洞子泉 c 非主要 主要 非主要
    清泉村岩溶泉 a,d② 非主要 主要 非主要 非主要 非主要
    火龙沟岩溶泉 b 主要 主要 非主要 非主要 主要
    根久泉 d②,b 主要 主要 非主要 非主要 主要
    亚日贡泉 d②,b 主要 非主要
    纳曲排泄带 d① 主要 主要 非主要 非主要 非主要
    娘曲泉 d①,a 非主要 主要 非主要
    恩达泉 d①,a 非主要 主要 非主要 非主要
    容贡泉 b 主要 非主要 非主要 非主要
    夏里温泉 c, a 非主要 非主要 主要
    瓢打泉 a,d② 非主要 主要 主要 非主要 主要
      注:①—大角度相交;②—平行或小角度相交;~—非影响因素或成因不确定;a、b、c、d补给模式见图12
    下载: 导出CSV

    表  5   岩溶水资源量与水质评价结果

    Table  5   Resources and water quality evaluation results of main karst springs

    泉水名称岩溶区段岩溶大泉资源量/
    108 m3/a
    岩溶水总资源量/
    108 m3/a
    资源模数/
    104 m3·km−2·a−1
    水质评价结果超标项突出项
    鱼洞子泉天全—宝兴0.2920.4201.348Ⅲ类水/亚硝酸盐
    清泉村岩溶泉康定0.0530.0500.680Ⅱ类水//
    火龙沟岩溶泉巴塘—白玉0.3410.6500.311Ⅴ类水TDS、硫酸盐/
    亚日贡泉0.123Ⅰ类水//
    根久泉0.050Ⅱ类水//
    纳曲排泄带贡觉0.1180.1400.274Ⅰ类水//
    恩达泉察雅0.1090.2200.258Ⅴ类水TDS、硫酸盐/
    娘曲泉0.085Ⅴ类水TDS、硫酸盐/
    容贡泉夏里0.033**Ⅰ类水//
    瓢打泉波密0.086**Ⅴ类水TDS、硫酸盐/
      注:*为不掌握准确数据。
    下载: 导出CSV

    表  6   主要岩溶大泉开发利用现状

    Table  6   Utilization status of major karst springs

    泉水名称应用门类备注
    鱼洞子泉工业生产部分作为厂矿生产用水,大部分汇入河流
    清泉村岩溶泉生活用水农户生活用水
    火龙沟岩溶泉生活用水泉水未直接开发利用,汇入河流后下游建立水源地
    亚日贡泉未利用具有一定宗教属性
    根久泉生活用水修建水车使用
    纳曲排泄带生活用水泉水未直接开发利用,汇入河流后下游建立水源地。
    恩达泉农业用水部分引出供果园灌溉使用
    娘曲泉农业用水少部分由水渠引出作为娘曲村农业用水
    容贡泉未利用具有一定宗教属性
    瓢打泉未利用——
    下载: 导出CSV
  • [1]

    Brown G H. 2002. Glacier meltwater hydrochemistry[J]. Applied Geochemistry, 17(7): 855−883. doi: 10.1016/S0883-2927(01)00123-8

    [2]

    Castellazzi P, Burgess D, Rivera A, Huang J, Longuevergne L, Demuth M N. 2019. Glacial melt and potential impacts on water resources in the Canadian Rocky Mountains[J]. Water Resources Research, 55(12): 10191−10217.

    [3]

    Cui Zhijiu. 1979. Paleokarst in the Qinghai–Tibet Plateau[J]. Chinese Journal of Nature, (9): 24−25 (in Chinese).

    [4]

    Cui Zhijiu, Gao Quanzhou, Liu Gengnian, Pan Baotian, Chen Huailu. 1996a. Planation surface, paleokarst and uplift of Qinghai–Xizang Plateau[J]. Science in China (Series D), 26(4): 378−386 (in Chinese).

    [5]

    Cui Zhijiu, Gao Quanzhou, Liu Gengnian, Pan Baotian, Chen Huailu. 1996b. Planation level, karst age and initial height of Qinghai Xizang Plateau[J]. Chinese Science Bulletin, 15(41): 1402−1406 (in Chinese).

    [6]

    Cui Zhijiu, Li Dewen, Feng Jinliang, Liu Gengnian, Li Hongjiang. 2001. Overburden karst, weathered crust and karst (double layer) planation[J]. Science in China (Series D), 31(6): 510−519 (in Chinese).

    [7]

    Dausse A, Leonardi V, Jourde H. 2019. Hydraulic characterization and identification of flow–bearingstructures based on multi–scale investigations applied to the Lezkarst aquifer[J]. Journal of Hydrology: Regional Studies, 26: 100627. doi: 10.1016/j.ejrh.2019.100627

    [8]

    Deng Zhengrong, Wu Shuliang, Yang Yougang, Min Wen, Lei Shibing. 2012. Application of isotopes method on judging supplied source of confined groundwater in riverbed at the dam site of a hydropower station[J]. Resources Environment & Engineering, 26(5): 505−508 (in Chinese with English abstract).

    [9]

    Fu C C, Li X Q, Ma J F, Liu L X, Gao M, Bai Z X. 2018. A hydrochemistry and multi–isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin[J]. Applied Geochemistry, 98: 82−93. doi: 10.1016/j.apgeochem.2018.08.030

    [10]

    Gao Quanzhou, Cui Zhijiu, Liu Gengnian, Hong Yun, Wu Yongqiu, Zhang Yechun, Chen Huailu. 2000. The fission track ages of the cavernous recrystalline calcites in tibet plateau and their geomorphologic significance[J]. Marine Geology & Quaternary Geology, 20(3): 61−65 (in Chinese with English abstract

    [11]

    Gao Quanzhou, Tao Zhen, Cui Zhijiu, Liu Gengnian, Hong Yun. 2002. The nature, formation ageand genetic environment of the palaeokarst on the Qinghai–Xizang Plateau[J]. Acta Geographica Sinica, 57(3): 267−274 (in Chinese with English abstract).

    [12]

    Guo Changbao, Wu Ruian, Jiang Liangwen, Zhong Ning, Wang Yang, Wang Dong, Zhang Yongshuang, Yang Zhihua, Meng Wen, Li Xue, Liu Gui. 2021. Typical geohazards and engineering geological problems along the Ya'an–Linzhi section of the Sichuan–Tibet Railway, China[J]. Geoscience, 35(1): 1−17 (in Chinese with English abstract).

    [13]

    Jiang Zhongcheng, Qin Xiaoqun, Cao Jianhua, Jiang Xiaozhen, He Shiyi, Luo Weiqun. 2011. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 30(4): 364−367 (in Chinese with English abstract).

    [14]

    Jiang Zhongcheng, Zhang Jing, Huang Chao, Rong Yuebing, Wu Liangjun. 2019. Causes of formation and geo–scientific significance of karst gorge group in Xiangxi geopark[J]. Carsologica Sinica, 38(2): 269−275 (in Chinese with English abstract).

    [15]

    Kang Xiaobing, Yang Sifu, Guan Zhende, Zhang Wenfa, Xu Mo. 2021. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 40(3): 381−388 (in Chinese with English abstract) .

    [16]

    Li Mingyue, Sun Xuejun, Li Shengnan, Zhang Qianggong. 2020. Advances on inorganic hydrochemistry of glacial meltwater runoff in the Qinghai–Tibet Plateau and its surrounding areas[J]. Journal of Glaciology and Geocryology, 42(2): 562−574 (in Chinese with English abstract).

    [17]

    Li Weijie, Wang Jianli, Wang Jialu. 2018. Characteristics of the stable isotopes in precipitation and the source of water vapor in different terrain in the Southwest Region[J]. Resources and Environment in Yangtze Basin, 27(5): 1132−1142 (in Chinese with English abstract).

    [18]

    Li Xiangquan, Ma Jianfei, Zhang Chunchao, Wang Zhenxing, Fu Changchang, Bai Zhanxue. 2021. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan–Xizang Railway[J]. Hydrogeology & Engineering Geology, 48(5): 34−45 (in Chinese with English abstract) .

    [19]

    Luo Wenyi. 2019. Characteristics of water–thermal hazard and hydrogeological route seletion in typical section of Sichuan–Tibet railway [C]//Seminar on Construction Technology of Sichuan–Tibet Railway Project(in Chinese with English abstract).

    [20]

    Ma J F, Li X Q, Liu F, Fu CC, Zhang C C, Bai Z X, Wei S C. 2022. Application of hydrochemical and isotopic data to determine the origin and circulation conditions of karst groundwater in an alpine and gorge region in the Qinghai–Xizang Plateau: A case study of Genie Mountain[J]. Environmental Earth Sciences, 81: 291. doi: 10.1007/s12665-022-10414-9

    [21]

    Ma Jianfei, Fu Changchang, Zhang Chunchao, Bai Zhanxue. 2022. Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding[J]. Bulletin of Geological Science and Technology, 41(1): 288−299 (in Chinese with English abstract).

    [22]

    Ma Jianfei, Li Xiangquan, Zhang Chunchao, Fu Changchang, Bai Zhanxue, Wang Zhenxing. 2021. Transformation characteristics of the large–flow river and groundwater in the fault zone in the glacier–covered area of Bomi in Tibet[J]. Hydrogeology & Engineering Geology, 48(5): 23−33 (in Chinese with English abstract).

    [23]

    Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India–Eurasia collision[J]. Science, 189(4201): 419–426.

    [24]

    Pan Guitang, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Ren Fei, Peng Zhimin, Wang Jiaxuan. 2019. Recognition of the oceanic subduction–accretion zones from the orogenic belt in continents and its important scientific significance[J]. Earth Science, 44(5): 1544−1561 (in Chinese with English abstract).

    [25]

    Rivera A, Calderhead A I. 2022. Glacial melt in the Canadian rockies and potential effects on groundwater in the plains region[J]. Water, 14(5): 733. doi: 10.3390/w14050733

    [26]

    Wang Dujiang. 2021. Development characteristics of plateau karst and influences on the engineering in a tunnel area of southeast Tibet[J]. Tunnel Construction, 41(6): 996−1006 (in Chinese with English abstract).

    [27]

    Wang Fubao. 1991. Discussion on some problems of karst in Qinghai Tibet Plateau[J]. Mountain Research, 9(2): 65−72 (in Chinese).

    [28]

    Wang Z, Wang L J, Shen J M, Nie Z L, Cao L, Meng L Q. 2024. Groundwater recharge via precipitation in the Badain Jaran Desert, China[J]. Journal of Groundwater Science and Engineering, 12(1): 109−118. doi: 10.26599/JGSE.2024.9280009

    [29]

    Xia Jinwu, Zhu Meng. 2020. Study on tectonic characteristics and activity of middle section of Jinshajiang main fault zone[J]. Yangtze River, 51(5): 131−137 (in Chinese with English abstract).

    [30]

    Xu Mo, Mao Bangyan, Zhang Guangze, Kang Xiaobing, Qi Jihong, Li Xiao, Yi Lei, Yang Sifu. 2020. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qing–Tibet plateau, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 47(6): 724−732 (in Chinese with English abstract) .

    [31]

    Yang Zhihua, Wu Ruian, Guo Changbao, Zhang Yongshuang, Lan Hengxing, Ren Sanshao, Yan Yiqiu. 2022. Geo–hazard effects and typicallandslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 49(2): 355−368 (in Chinese with English abstract).

    [32]

    Zhang C C, Hou X W, Li X Q, Wang Z X, Gui C L, Zuo X F, Ma J F, Gao M. 2020. Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China[J]. Journal of Groundwater Science and Engineering, (30): 20−32.

    [33]

    Zhang Chunchao, Li Xiangquan, Ma Jianfei, Fu Changchang, Bai Zhanxue. 2021. Formation model of geothermal water in Chaya of Tibet: Perspective from hydrochemistry and stable isotopes[J]. Geoscience, 35(1): 199−208 (in Chinese with English abstract).

    [34]

    Zhang C C, Li X Q, Ma J F, Wang Z X, Hou X W. 2022. Stable isotope and hydrochemical evolution of shallow groundwater in mining area of the Changzhi Basin, northern China[J]. Environmental Earth Science, 81: 294. doi: 10.1007/s12665-022-10416-7

    [35]

    Zhang Dian, Shi Changxing. 2002. CO2 partial pressure, karst dissolution rate and karst micro–landforms on the Qinghai–Tibet Plateau[J]. Acta Geologica Sinica, 76(4): 566−570 (in Chinese with English abstract) .

    [36]

    Zhang Ying, Liu Jingtao, Zhou Shiyang, Liu Chunyan, Yang Mingnan, Zhang Yuxi. 2024. Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment[J]. Geology in China, 51(3): 1059−1073 (in Chinesewith English abstract).

    [37]

    Zhang Yongshuang, Guo Changbao, Li Xiangquan, Bi Junbo, Ma Jianfei, Liu Feng. 2021a. Key problems on hydro–engineering–environmental geology along the Sichuan–Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 48(5): 1−12 (in Chinese with English abstract).

    [38]

    Zhang Yongshuang, Du Guoliang, Guo Changbao, Li Xiangquan, Ren Sanshao, Wu Ruian. 2021b. Research on typical geomechanical model of high–position landslides on the Sichuan–Tibet traffic corridor[J]. Acta Geologica Sinica, 95(3): 605−617 (in Chinese with English abstract).

    [39]

    Zhang Yueqiao, Li Hailong. 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion–related orogenic system[J]. Geology in China, 43(6): 1829−1852 (in Chinese with English abstract).

    [40]

    Zhao L J, Yang Y, Cao J W, Wang Z, Luan S, Xia R Y. 2022. Applying a modified conduit flow process to understand conduit–matrix exchange of a karst aquifer[J]. China Geology, 5(1): 26−33.

    [41]

    Zhao Liangju, Ruan Yunfeng, Xiao Honglang, Zhou Maoxian, Cheng Guodong. 2014. Application of radioactive trituium isotope in studying water cycle of the Heihe river basin[J]. Quaternary Sciences, 34(5): 959−972 (in Chinese with English abstract).

    [42]

    Zhou Yinzhu, Ma Tao, Yuan Lei, Li Fucheng, Han Shuangbao, Zhou Jinlong, Li Yong. 2024. Hydrochemistry−isotope characteristics and qualityassessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663−675 (in Chinese with English abstract).

    [43] 崔之久. 1979. 青藏高原的古岩溶[J]. 自然杂志, (9): 24−25.
    [44] 崔之久, 高全洲, 刘耕年, 潘保田, 陈怀录. 1996a. 夷平面、古岩溶与青藏高原隆升[J]. 中国科学(D), 26(4): 378−386.
    [45] 崔之久, 高全洲, 刘耕年, 潘保田, 陈怀录. 1996b. 青藏高原夷平面与岩溶时代及其起始高度[J]. 科学通报, 15(41): 1402−1406.
    [46] 崔之久, 刘耕年, 李德文, 刘耕年, 李洪江. 2001. 覆盖型岩溶, 风化壳与岩溶(双层)夷平面[J]. 中国科学: 地球科学, 31(6): 510−519.
    [47] 邓争荣, 吴树良, 杨友刚, 闵文, 雷世兵. 2012. 同位素方法在判定某水电站坝址河床承压水补给源中的应用[J]. 资源环境与工程, 26(5): 505−508. doi: 10.3969/j.issn.1671-1211.2012.05.021
    [48] 高全洲, 崔之久, 刘耕年, 洪云, 伍永秋, 张叶春, 陈怀录. 2000. 青藏高原洞穴次生方解石的裂变径迹年代及地貌学意义[J]. 海洋地质与第四纪地质, 20(3): 61−65.
    [49] 高全洲, 陶贞, 崔之久, 刘耕年, 洪云. 2002. 青藏高原古岩溶的性质, 发育时代和环境特征[J]. 地理学报, 57(3): 267−274. doi: 10.3321/j.issn:0375-5444.2002.03.002
    [50] 郭长宝, 吴瑞安, 蒋良文, 钟宁, 王炀, 王栋, 张永双, 杨志华, 孟文, 李雪, 刘贵. 2021. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质, 35(1): 1−17.
    [51] 蒋忠诚, 覃小群, 曹建华, 蒋小珍, 何师意, 罗为群. 2011. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 30(4): 364−367. doi: 10.3969/j.issn.1001-4810.2011.04.002
    [52] 蒋忠诚, 张晶, 黄超, 容悦冰, 吴亮君. 2019. 湘西地质公园岩溶峡谷群成因及其地学意义[J]. 中国岩溶, 38(2): 269−275.
    [53] 康小兵, 杨四福, 管振德, 张文发, 许模. 2021. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 40(3): 381−388.
    [54] 李明月, 孙学军, 李胜楠, 张强弓. 2020. 青藏高原及其周边地区冰川融水径流无机水化学特征研究进展[J]. 冰川冻土, 42(2): 562−574.
    [55] 李维杰, 王建力, 王家录. 2018. 西南地区不同地形降水稳定同位素特征及其水汽来源[J]. 长江流域资源与环境. 27(5): 1132–1142.
    [56] 李向全, 马剑飞, 张春潮, 王振兴, 付昌昌, 白占学. 2021. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 48(5): 34−45.
    [57] 罗文艺. 2019. 川藏铁路水–热灾害特征及典型段落水文地质选线探析[C]//川藏铁路工程建造技术研讨会.
    [58] 马剑飞, 付昌昌, 张春潮, 白占学. 2022. 康定北部高原构造岩溶发育特征与地下水径流带识别[J]. 地质科技通报, 41(1): 288−299.
    [59] 马剑飞, 李向全, 张春潮, 付昌昌, 白占学, 王振兴. 2021. 西藏波密冰川覆盖区大型河流与断裂带地下水转化关系[J]. 水文地质工程地质. 48(5): 23–33.
    [60] 潘桂棠, 肖庆辉, 张克信, 尹福光, 任飞, 彭智敏, 王嘉轩. 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J]. 地球科学, 44(5): 1544−1561.
    [61] 王杜江. 2021. 藏东南某隧址区高原型岩溶发育特征及工程影响[J]. 隧道建设, 41(6): 996−1006. doi: 10.3973/j.issn.2096-4498.2021.06.012
    [62] 王富葆. 1991. 青藏高原喀斯特的若干问题[J]. 山地研究, 9(2): 65−72.
    [63] 夏金梧, 朱萌. 2020. 金沙江主断裂带中段构造特征与活动性研究[J]. 人民长江, 51(5): 131−137.
    [64] 许模, 毛邦燕, 张广泽, 康小兵, 漆继红, 李潇, 易磊, 杨四福. 2020. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报: 自然科学版, 47(6): 724−732.
    [65] 杨志华, 吴瑞安, 郭长宝, 张永双, 兰恒星, 任三绍, 闫怡秋. 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 49(2): 355−368. doi: 10.12029/gc20220201
    [66] 张春潮, 李向全, 马剑飞, 付昌昌, 白占学. 2021. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质, 35(1): 199−208.
    [67] 张英, 刘景涛, 周施阳, 刘春燕, 杨明楠, 张玉玺. 2024. 瓯江流域下游温州平原地下水化学演化特征、控制因素及对人体健康的影响[J]. 中国地质, 51(3): 1059−1073 doi: 10.12029/gc20230911002
    [68] 张永双, 郭长宝, 李向全, 毕俊擘, 马剑飞, 刘峰. 2021a. 川藏铁路廊道关键水工环地质问题: 现状与发展方向[J]. 水文地质工程地质, 48(5): 1−12.
    [69] 张永双, 杜国梁, 郭长宝, 李向全, 任三绍, 吴瑞安. 2021b. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 95(3): 605−617.
    [70] 张岳桥, 李海龙. 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系[J]. 中国地质, 43(6): 1829−1852. doi: 10.12029/gc20160601
    [71] 章典, 师长兴. 2002. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 76(4): 566−570. doi: 10.3321/j.issn:0001-5717.2002.04.013
    [72] 赵良菊, 阮云峰, 肖洪浪, 周茅先, 程国栋. 2014. 氚同位素在黑河流域水循环研究中的应用[J]. 第四纪研究, 34(5): 959−972. doi: 10.3969/j.issn.1001-7410.2014.05.06
    [73] 周殷竹, 马涛, 袁磊, 李甫成, 韩双宝, 周金龙, 李勇. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663−675. doi: 10.12029/gc20220401003
图(12)  /  表(6)
计量
  • 文章访问数:  2723
  • HTML全文浏览量:  698
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-06-01
  • 网络出版日期:  2025-01-08
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回
x 关闭 永久关闭