• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

二氧化碳羽流地热系统的碳封存经济分析

付雷, 马鑫, 刁玉杰, 郑博文, 郑长远, 刘廷, 邵炜

付雷, 马鑫, 刁玉杰, 郑博文, 郑长远, 刘廷, 邵炜. 二氧化碳羽流地热系统的碳封存经济分析[J]. 中国地质, 2022, 49(5): 1374-1384. DOI: 10.12029/gc20220502
引用本文: 付雷, 马鑫, 刁玉杰, 郑博文, 郑长远, 刘廷, 邵炜. 二氧化碳羽流地热系统的碳封存经济分析[J]. 中国地质, 2022, 49(5): 1374-1384. DOI: 10.12029/gc20220502
FU Lei, MA Xin, DIAO Yujie, ZHENG Bowen, ZHENG Changyuan, LIU Ting, SHAO Wei. Economic analysis of carbon storage in CO2 plume geothermal system[J]. GEOLOGY IN CHINA, 2022, 49(5): 1374-1384. DOI: 10.12029/gc20220502
Citation: FU Lei, MA Xin, DIAO Yujie, ZHENG Bowen, ZHENG Changyuan, LIU Ting, SHAO Wei. Economic analysis of carbon storage in CO2 plume geothermal system[J]. GEOLOGY IN CHINA, 2022, 49(5): 1374-1384. DOI: 10.12029/gc20220502

二氧化碳羽流地热系统的碳封存经济分析

基金项目: 

国家自然科学基金 42141009

中国地质调查局项目 DD20221818

详细信息
    作者简介:

    付雷,男,1986年生,高级工程师,从事地热地质调查与评价;E-mail:fulei@mail.cgs.gov.cn

    通讯作者:

    马鑫, 男, 1986年生, 硕士, 高级工程师, 主要从事水工环地质工作; E-mail: maxin@mail.cgs.gov.cn

  • 中图分类号: P314;X701

Economic analysis of carbon storage in CO2 plume geothermal system

Funds: 

the Natural Science Foundation of China 42141009

the project of China Geological Survey DD20221818

More Information
    Author Bio:

    FU Lei, male, born in 1986, senior engineer, engaged in geothermal geology survey and evaluation; Email: fulei@mail.cgs.gov.cn

    Corresponding author:

    MA Xin, male, born in 1986, master, senior engineer, engaged in hydrogeology, engineering and environmental geology; E-mail: maxin@mail.cgs.gov.cn

  • 摘要:
    研究目的 

    二氧化碳羽流地热系统(CPGS)在取热的同时可实现CO2地质封存,在碳达峰与碳中和背景下,CPGS碳封存的经济性是众多学者关注的要点。

    研究方法 

    以松辽盆地泉头组为例,采用数值模拟方法对比分析了注入压力、井间距与回注温度对热提取率的影响,在供暖情景下,计算了CPGS供暖效益与碳封存成本,并与常规水热型地热系统供暖效益进行了对比。

    研究结果 

    受携热介质转变与热突破影响,CPGS开采井温度呈现“降低-稳定-降低”的趋势,其中井间距对开采井温降影响显著,井间距越小开采井温降越明显;热提取率与回注压力呈现正相关性,与回注温度呈现负相关性,井间距对热提取率影响不显著;CPGS与常规水热型地热系统相比,采热量呈现“高-低-高”三个阶段,其中回注压力越小、回注温度与储层温度越接近,实现CPGS较水介质多采热能所需的时间越短。

    结论 

    仅考虑CO2价格与取热效益,供暖收益抵消部分碳封存成本后,井间距对CO2封存单位成本影响最为显著,井间距越小,CO2封存单位成本降低越迅速,在注采井间距300 m条件下,持续开采30 a后CO2封存单位成本可降至160元/t。

    创新点:对比分析CPGS与常规水热型地热系统供暖效益;揭示不同注采井间距、回注压力与回注温度条件对CPGS碳封存经济的影响。

    Abstract:

    This paper is the result of the geothermal geological survey engineering.

    Objective 

    The CO2- plume geothermal system (CPGS) can achieve geological CO2 storage during heat extraction. Under the background of carbon peaking and carbon neutralization, the economics of CPGS carbon storage attracts much attention.

    Methods 

    Taking the Quantou Formation in the Songliao Basin as example, the influence of injection pressure, well spacing and reinjection temperature on the heat extraction rate were analyzed by numerical simulation in this paper. In addition, the benefit of CPGS and the cost of carbon storage were calculated and compared with conventional hydrothermal geothermal systems.

    Results 

    Results show that the temperature of mining wells in CPGS exhibits a trend of "decrease-stabilization-decrease" due to the transformation of heat-carrying medium and thermal breakthrough. Typically, the well spacing has a significant impact on the temperature drop of the mining well. Smaller the well spacing contributes to larger temperature drop of the mining well. The heat extraction rate has a positive correlation with the reinjection pressure and a negative correlation with the reinjection temperature. The influence of well spacing on the heat extraction rate is limited. Compared with the conventional hydrothermal geothermal system, CPGS has three stages of heat recovery, namely, high, low and high stages successively. A low reinjection pressure and a close reinjection temperature with the reservoir temperature helps to shorten the time required for the CPGS to recover a similar heat energy with the water medium.

    Conclusions 

    Taking the price of CO2 and the benefits of heat extraction into account only, the well spacing has a dominating impact on the unit cost of CO2 storage after the heating revenue offsets part of the cost of carbon storage. Small well spacing contributes to quick decrease of the unit cost of CO2 storage. The unit cost of CO2 storage can be reduced to 160 yuan/ton after 30 years of continuous mining when the well spacing is 300 m.

  • 图  1   模型示意图

    Figure  1.   Schematic diagram of the model

    图  2   不同井间距开采井温降与总开采热能对比图

    Figure  2.   Comparison diagram of mining well temperature and total mining heat energy in different well spacing

    图  3   不同回注压力条件下开采井温降与总开采热能对比图

    Figure  3.   Comparison diagram of mining well temperature and total mining heat energy in different re-injection pressure

    图  4   不同回注温度条件下开采井温降与总开采热能对比图

    Figure  4.   Comparison diagram of mining well temperature and total mining heat energy in different re-injection temperature

    图  5   不同井间距条件下CPGS较水热多采热能对比图

    Figure  5.   Comparison diagram of CPGS and water medium heat collection in different well spacing

    图  6   不同回注压力条件下CPGS较水热多采热能对比图

    Figure  6.   Comparison diagram of CPGS and water medium heat collection in different re-injection pressure

    图  7   不同回注温度条件下CPGS较水热多采热能对比图

    Figure  7.   Comparison diagram of CPGS and water medium heat collection in different re-injection temperature

    图  8   不同井间距条件下CO2封存单位成本随时间变化曲线

    Figure  8.   CO2 storage unit cost versus time curve in different well spacing

    图  9   不同回注压力条件下CO2封存单位成本随时间变化曲线

    Figure  9.   CO2 storage unit cost versus time curve in different re-injection pressure

    图  10   不同回注温度条件下CO2封存单位成本随时间变化曲线

    Figure  10.   CO2 storage unit cost versus time curve in different re-injection temperature

    表  1   模拟储层水文地质参数(据封官宏等,2013)

    Table  1   Hydrogeological properties of the reservoir in simulation (after Feng Guanhong et al., 2013)

    下载: 导出CSV

    表  2   不同模拟方案设计

    Table  2   Different scenarios design for simulation

    下载: 导出CSV
  • Adams B M, Kuehn T H, Bielicki J M, Randolph J B, Saar M O. 2014. On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems[J]. Energy, 69: 409-418. doi: 10.1016/j.energy.2014.03.032

    Ahmadi P, Chapo Y A, Burgass R. 2021. Thermophysical properties of typical CCUS fluids: Experimental and modeling investigation of density[J]. Journal of Chemical & Engineering Data, 66(1): 116-129.

    Bai Jing, Xu Xingyou, Chen Shan, Liu Weibin, Liu Chang, Zhang Changsheng. 2020. Sedimentary characteristics and paleo- environment restoration of the first member of Qingshankou Formation in Qian'an area, Changling sag, Songliao Basin: A case study of Jiyeyou 1 Well[J]. Geology in China, 47(1): 220-235(in Chinese with English abstract).

    Bao Xinhua, Zhang Yu, Li Ye, Wu Yongdong, Ma Dan, Zhou Guanghui. 2017. Evaluation of development selection for enhanced geothermal system in Songliao basin[J]. Journal of Jilin University (Earth Science Edition), 47(2): 564-572(in Chinese with English abstract).

    Benjamin M Adams, Daniel Vogler, Thomas H Kuehn, Jeffrey M Bielicki, Nagasree Garapati, Martin O Saar. 2021. Heat depletion in sedimentary basins and its effect on the design and electric power output of CO2 plume geothermal (CPG) systems[J]. Renewable Energy, 172: 1393-1403. doi: 10.1016/j.renene.2020.11.145

    Benjamin M Adams, Thomas H Kuehn, Jeffrey M Bielicki, Jimmy B Randolph, Martin O Saar. 2015. A comparison of electric power output of CO2 plume geothermal (CPG) and brine geothermal systems for varying reservoir conditions[J]. Applied Energy, 140: 365-377. doi: 10.1016/j.apenergy.2014.11.043

    Buah E, Linnanen L, Wu H. 2021. Augmenting the communication and engagement toolkit for CO2 capture and storage projects[J]. International Journal of Greenhouse Gas Control, 107(6): 103269.

    Cai Bofeng, Li Qi, Lin Qianguo, Ma Jinfeng. 2020. China CO2 capture, utilization and storage (CCUS) report (2019)[R]. Chinese Academy of Environmental Planning(in Chinese).

    Cui G, Ren S, Rui Z, Justin E, Zhang L, Wang H, Yan J. 2018. The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system[J]. Applied Energy, 227: 49-63. doi: 10.1016/j.apenergy.2017.10.114

    Cui G, Ren Z, Zhang L, Zhuang Y, Wang Y, Gong Z, Su S. 2016. Effects of rock-fluid interaction and water back flow on heat mining efficiency of geothermal development via carbon dioxide injection[J]. Journal of Chemical Engineering of Chinese Universities, 30(5): 1043-1052(in Chinese with English abstract).

    Diao Yujie, Yang Yang, Li Xufeng, Hu Lisha, Zheng Changyuan, Ma Xin. 2021. Management on developing deep underground space for CO2 geological storage[J]. Proceedings of the CSEE, 41(4): 1267-1274(in Chinese with English abstract).

    Feng Guanhong, Li jiaqi, Xu Tianfu, Shi Yan. 2013. Effects of property of reservoir on heat extraction in CO2 plume geothermal system[J]. Renewable Energy Resources, 31(7): 85-92(in Chinese with English abstract).

    Fleming M R, Adams B M, Kuehn T H, Bielicki J M, Saar M O. 2020. Increased power generation due to exothermic water exsolution in CO2 plume geothermal (CPG) power plants[J]. Geothermics, 88: 101865.

    Garapati N, Randolph J B, Saar M O. 2015. Brine displacement by CO2, energy extraction rates, and lifespan of a CO2-limited CO2-Plume Geothermal (CPG) system with a horizontal production well[J]. Geothermics, 55(5): 182-194.

    Garapati N, Randolph J B, Valencia J L, Saar M O. 2014. CO2-plume geothermal (CPG) heat extraction in multi-layered geologic reservoirs[J]. Energy Procedia, 63: 7631-7643.

    Kang Xiaoqian, Feng Xuan, Hou Hesheng, Sun Chengcheng, Liu Qian, Yu Hailong. 2019. Carboniferous- Permian stratigraphic thickness in northern Songliao Basin: Evidence from deep reflection seismic data[J]. Geology in China, 46(5): 1116-1125(in Chinese with English abstract).

    Li Jingyan, Liu Zhongliang, Zhou Yu, Li Yanxia. 2019. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal, 70(1): 72-82(in Chinese with English abstract).

    Li Qi, Cai Bofeng, Chen Fan, Liu Guizhen, Liu Lancui. 2019. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 37(2): 16-24(in Chinese with English abstract).

    Li Qi, Wei Yani. 2013. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review, 31(27): 65-70(in Chinese with English abstract).

    Lu Ping, Bai Yong, Liu Weigang, Chen Xi, Zheng Huaan, Liu Jie, Chen Yongzhen, Gao Jianping. 2021. Optimization of favorable areas for carbon dioxide geological storage in Majiagou Formation in Ordos Basin[J]. Geological Review, 67(3): 816-827(in Chinese with English abstract).

    Mrityunjay Singh, Sri Kalyan Tangirala, Abhijit Chaudhuri. 2020. Potential of CO2 based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6: 1-32.

    Qiao Z, Cao Y, Yin Y, Zhao L, Si F. 2020a. Solvation structure of supercritical CO2 and brine mixture for CO2 plume geothermal applications: A molecular dynamics study[J]. The Journal of Supercritical Fluids, 159: 104783.

    Qiao Zongliang, Cao Yue, Li Peiyu, Wang Xingchao, Carlos E. Romero, Lehua Pan. 2020b. Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source[J]. Journal of Cleaner Production, 256: 120374.

    Qiao Z, Tang Y, Wang X, Pan C, Si F, Zhao L. 2019. Numerical simulation and predictive model of mining characteristics of CO2 plume geothermal system[J]. Journal of Southeast University(Natural Science Edition), 49(4): 764-772(in Chinese with English abstract).

    Qin Jishun, Li Yongliang, Wu Debin, Weng Hui, Wang Gaofeng. 2020. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 27(1): 20-28(in Chinese with English abstract).

    Randolph J B, Saar M O. 2011. Combining geothermal energy capture with geologic carbon dioxide sequestration[J]. Geophysical Research Letters, 38(10): L10401.

    Shi Yan, Feng Bo, Xu Tianfu, Wang Fugang, Feng Guanhong, Tian Hailong, Lei Hongwu. 2014. Water-Rock-Gas interaction of CO2-plume geothermal system in Quantou Formation of Songliao basin[J]. Journal of Jilin University: Earth Science Edition, 44(6): 1980-1987(in Chinese with English abstract).

    Stocker T, Plattner G K, Dahe Q. 2014. IPCC climate change 2013: The physical science basis-findings and lessons learned[C]//EGU General Assembly Conference. EGU General Assembly Conference Abstracts, 2-21.

    Sun Y Z, Xie L Z, He B, Gao C, Wang J. 2016. Effects of effective stress and temperature on permeability of sandstone from CO2-plume geothermal reservoir[J]. Journal of Rock Mechanics and Geotechnical Engineering, 8: 819-827.

    Tang Y, Qiao Z, Cao Y, Si F, Rubio-Maya C. 2020. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems[J]. Separation and Purification Technology, 248: 116999.

    Vulin D, Muhasilovi L, Arnaut M. 2020. Possibilities for CCUS in medium temperature geothermal reservoir [J]. Energy, 200: 117549.

    Wei Mingcong, Yang Bing, Xu Tianfu, Shi Yan, Feng Guanhong, Feng Bo. 2015. Effect of well spacing and reservor permeability on heat extraction in CO2 plume geothermal system: A case study of Songliao basin[J]. Geologic Science and Technology Information, 34(2): 194-199(in Chinese with English abstract).

    Yuan Xu, Lei Zhu, Daejun Chang, Michael Tsimplis, Chris Greig, Steven Wright. 2021. International chains of CO2 capture, utilization and storage (CCUS) in a carbon-neutral world[J]. Resources Conservation and Recycling, 167: 105433.

    Zhang Wei, Li Yilian, Zheng Yan, Jiang Ling, Qiu Gengbiao. 2008. CO2 storage capacity estimation in geological sequestration: Issusand research progress[J]. Advances in Earth Science, 23(10): 1061-1069(in Chinese with English abstract).

    Zhang Wei, Lü Peng. 2013. Density-driven convection in carbon dioxide geological storage: A review[J]. Hydrogeology & Engineering Geology, 40(2): 101-107(in Chinese with English abstract).

    白静, 徐兴友, 陈珊, 刘卫彬, 刘畅, 张昌盛. 2020. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复——以吉页油1井为例[J]. 中国地质, 47(1): 220-235. http://geochina.cgs.gov.cn/geochina/article/abstract/20200118?st=search
    鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 2017. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 42(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702021.htm
    蔡博峰, 李琦, 林千果, 马劲风. 2020. 中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R]. 生态环境部环境规划院, 1-4.
    崔国栋, 任韶然, 张亮, 庄园, 王延永, 宫智武, 苏帅杰. 2016. 二氧化碳羽流地热系统中地层水回流和岩石-流体作用对采热能力的影响[J]. 高校化学工程学报, 30(5): 1043-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201605010.htm
    刁玉杰, 杨扬, 李旭峰, 胡丽莎, 郑长远, 马鑫. 2021. CO2地质封存深部地下空间利用管理法规探讨[J]. 中国电机工程学报, 41(4): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202104011.htm
    封官宏, 李佳琦, 许天福, 石岩. 2013. 二氧化碳羽流地热系统中储层物性参数对热提取率的影响[J]. 可再生能源, 31(7): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY201307021.htm
    康晓倩, 冯晅, 侯贺晟, 孙成城, 刘乾, 俞海龙. 2019. 松辽盆地北部石炭—二叠纪地层厚度: 来自深反射地震的证据[J]. 中国地质, 46(5): 1116-1125. http://geochina.cgs.gov.cn/geochina/article/abstract/20190512?st=search
    李静岩, 刘中良, 周宇, 李艳霞. 2019. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 70(1): 72-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901009.htm
    李琦, 蔡博峰, 陈帆, 刘桂臻, 刘兰翠. 2019. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程, 37(2): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201902035.htm
    李琦, 魏亚妮. 2013. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报, 31(27): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201327023.htm
    路萍, 白勇, 刘伟刚, 陈曦, 郑化安, 刘杰, 陈永振, 高建平. 2021. 鄂尔多斯盆地马家沟组二氧化碳地质封存有利区优选[J]. 地质论评, 67(3): 816-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202103018.htm
    乔宗良, 汤有飞, 王兴超, 潘春健, 司风琪, 赵伶玲. 2019. CO2羽流地热系统开采特性数值模拟及预测模型[J]. 东南大学学报: 自然科学版, 49(4): 764-772. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201904021.htm
    秦积舜, 李永亮, 吴德斌, 翁慧, 王高峰. 2020. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 27(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001004.htm
    石岩, 冯波, 许天福, 王福刚, 封官宏, 田海龙, 雷宏武. 2014. 二氧化碳羽流地热系统水岩气相互作用: 以松辽盆地泉头组为例[J]. 吉林大学学报(地球科学版), 44(6): 1980-1987. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201406025.htm
    魏铭聪, 杨冰, 许天福, 石岩, 封官宏, 冯波. 2015. 二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响: 以松辽盆地为例[J]. 地质科技情报, 34(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502028.htm
    张炜, 李义连, 郑艳, 姜玲, 邱耿彪. 2008. 二氧化碳地质封存中的储存容量评估: 问题和研究进展[J]. 地球科学进展, 23(10): 1061-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200810009.htm
    张炜, 吕鹏. 2013. 二氧化碳地质封存中"对流混合"过程的研究进展[J]. 水文地质工程地质, 40(2): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302020.htm
图(10)  /  表(2)
计量
  • 文章访问数:  2182
  • HTML全文浏览量:  911
  • PDF下载量:  1867
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2022-03-13
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭