• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价

曹胜伟, 刘春雷, 李亚松, 李静, 郝奇琛, 高婕, 董岩, 陆晨明

曹胜伟, 刘春雷, 李亚松, 李静, 郝奇琛, 高婕, 董岩, 陆晨明. 福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价[J]. 中国地质, 2022, 49(5): 1481-1496. DOI: 10.12029/gc20220508
引用本文: 曹胜伟, 刘春雷, 李亚松, 李静, 郝奇琛, 高婕, 董岩, 陆晨明. 福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价[J]. 中国地质, 2022, 49(5): 1481-1496. DOI: 10.12029/gc20220508
CAO Shengwei, LIU Chunlei, LI Yasong, LI Jing, HAO Qichen, GAO Jie, DONG Yan, LU Chenming. Sources and ecological risk of heavy metals in the sediments of offshore area in Quanzhou Bay, Fujian Province[J]. GEOLOGY IN CHINA, 2022, 49(5): 1481-1496. DOI: 10.12029/gc20220508
Citation: CAO Shengwei, LIU Chunlei, LI Yasong, LI Jing, HAO Qichen, GAO Jie, DONG Yan, LU Chenming. Sources and ecological risk of heavy metals in the sediments of offshore area in Quanzhou Bay, Fujian Province[J]. GEOLOGY IN CHINA, 2022, 49(5): 1481-1496. DOI: 10.12029/gc20220508

福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价

基金项目: 

中国地质调查局项目 DD20190303

中央级科研院所基本科研业务费专项 SK202114

详细信息
    作者简介:

    曹胜伟,男,1993年生,硕士,助理研究员,主要从事海岸带环境和水文地球化学研究工作;E-mail:caoshengwei_hei@163.com

    通讯作者:

    刘春雷, 男, 1984年生, 硕士, 助理研究员, 主要从事水文地质和地热地质研究工作; E-mail: chunleiliu-dn@163.com

  • 中图分类号: X55;X826

Sources and ecological risk of heavy metals in the sediments of offshore area in Quanzhou Bay, Fujian Province

Funds: 

the project of China Geological Survey DD20190303

Basic Research Funds for National Research Institutes SK202114

More Information
    Author Bio:

    CAO Shengwei, male, born in 1993, master, assistant researcher, engaged in coastal environment and hydrogeochemistry; E-mail: caoshengwei_hei@163.com

    Corresponding author:

    LIU Chunlei, male, born in 1984, master, assistant researcher, engaged in hydrogeology and geothermic; E-mail: chunleiliu-dn@163.com

  • 摘要:
    研究目的 

    受重金属含量影响,泉州湾表层沉积物环境质量面临巨大生态风险,然而重金属含量影响因素及潜在来源研究相对薄弱。

    研究方法 

    通过采集泉州湾近岸海域表层沉积物样品,以元素含量及粒度分析归纳出重金属分布特征、富集程度为基础,使用Hakanson生态风险指数法识别湾内沉积物潜在生态风险程度,并进一步通过正定矩阵因子分解法及主成分分析,定量分析不同重金属主要来源。

    研究结果 

    在晋江与洛阳江交汇处出现沉积物粒度低值区,易于重金属富集,表层沉积物重金属富集程度为Hg>As>Cd>Pb>Zn>Cu>Cr>Ni。湾内沉积物整体处于中度生态风险状态,Cd对生态风险贡献程度最高(37.90%),其次为Hg(29.38%)。Cr与Ni主要源于母岩风化,Cu与Zn、Pb受母岩风化影响及矿山冶炼的共同影响,Cd与As分别主要源自近岸污水排放与燃料燃烧,而Hg的来源较为复杂。研究区表层重金属主要来源依次为矿山冶炼、母岩风化、污水排放以及燃料燃烧,贡献率依次为33.95%,31.16%,22.26%与12.21%。

    结论 

    陆域物质随地表径流的输送对泉州湾表层沉积物生态环境质量造成了巨大风险,未来需要特别加强对不同介质中Hg的归趋及环境行为研究。

    创新点:(1)基于沉积物粒度分析与GIS分析相结合的方法,分析泉州湾近岸海域表层沉积物重金属分布影响因素;(2)使用PMF等多元统计方法定量确定泉州湾近岸海域表层沉积物的主要来源,为中国东南沿海典型河口区沉积物环境质量研究提供方法上的参考依据。

    Abstract:

    This paper is the result of marine and environmental geological survey engineering.

    Objective 

    The environmental quality of surface sediments in Quanzhou Bay faces great ecological risks caused by heavy metals, but the researches focused on the influencing factors and potential sources were relatively weak.

    Methods 

    By collecting surface sediment samples in offshore area of Quanzhou Bay, the distribution characteristics and enrichment degree of heavy metals were summarized based on element and grain size analysis, and the potential ecological risk was assessed using Hakanson method in study area. Positive definite matrix factor analysis (PMF) and principal component analysis (PCA) were further used to apportion the sources of heavy metals contamination.

    Results 

    Grain size of surface sediments was low at the converging area of Jin river and Luoyang river, which were prone to enrich heavy metals. The order of surface sediments heavy metals enrichment factors was Hg > As > Cd > Pb > Zn > Cu > Cr > Ni. Overall ecological risk of surface sediments in Quanzhou Bay was moderate, and contribution of Cd to potential ecological risk was the highest (37.90%), followed by Hg (29.38%). Cr and Ni were mainly from rock weathering. Besides rock weathering, Cu, Zn and Pb were strongly affected by mining smelting. Cd and As were contributed by sewage disposal and fuel combustion, respectively. However, the sources of Hg were relatively complicated. Main sources of heavy metals in study area were mining smelting, rock weathering, sewage disposal and fuel combustion, and the contribution of them were 33.95%, 31.16%, 22.26% and 12.21%, respectively.

    Conclusions 

    The transport of land substances with surface water runoff was the main cause for the ecological risk of surface sediments in Quanzhou Bay, and furthermore it is necessary to strength the research on the fate and environmental behavior of Hg in different media in the future.

  • 储层流动单元是指“影响流体流动的、岩性和岩石物理性质在内部相似的、垂向上和横向上连续分布的储集带”(Hearn et al., 1984Ebanks, 1987)。近年来,国内外诸多学者(Amaefule et al., 1993熊琦华等,1994Ti et al., 1995穆龙新等,1996焦养泉等,1998李阳,2003陈程等,2003王京红等,2004Ehrenberg et al., 2005窦松江等,2008董凤娟等,2012于蒙等,2017刘鼎等,2018万琼华等,2019)进行了储层流动单元的研究。储层流动单元已经在高、中、低渗储层表征中得到普遍应用,但在特低渗储层研究中仍然很少涉及。以松辽盆地中央坳陷三肇凹陷升554断块下白垩统泉头组四段扶余油层特低渗储层为例,确定储层流动单元划分标准,划分流动单元类型,表征流动单元非均质性特征及流动单元发育主控因素,讨论流动单元油藏开发效果,以期为特低渗储层流动单元研究提供一定借鉴意义,为特低渗油藏开发提供一定参考依据。

    研究区升554断块位于松辽盆地中央坳陷三肇凹陷东北部(图 1)。在松辽盆地发展演化过程中,三肇凹陷内部保持相对稳定,继承性地发展成为深断陷和坳陷中心(迟元林等,2000),其西接大庆长垣,东临朝阳沟阶地,北连明水阶地、东北隆起,是松辽盆地主要烃源凹陷(殷进垠,2002)。

    图  1  研究区区域构造位置图
    1—研究区范围;2—一级构造单元;3—二级构造单元;4—松辽盆地边界;5—城市
    Figure  1.  Regional geological map showing structural location of studied area
    1- Studied area; 2- Primary building unit; 3- Secondary building unit; 4- Boundary of Songliao Basin; 5- City

    研究区自下而上发育有上侏罗统火石岭组、白垩系沙河子组、营城组、登娄库组、泉头组、青山口组、姚家组、嫩江组、四方台组、明水组以及古近系和新近系。从下白垩统泉头组沉积开始,研究区共经历了3次沉降和3次主要构造反转(陈昭年,2008)。从泉头组至嫩江组沉积晚期,研究区在拉张作用下稳定沉降,表现为稳定的坳陷沉积。

    泉头组四段扶余油层为研究区产油主要接替层位(刘宗堡等,2008),厚约200 m,是在青山口组一段底突然湖侵之前发育起来的陆相充填沉积建造(刘宗堡等,2009),其上覆青山口组暗色泥页岩为生油源岩(侯启军等,2009霍秋立等,2012白静等,2020)。沉积序列整体呈砂泥互层,序列底部为灰绿、灰黑色湖沼泥质沉积,泥岩水平层理发育,含介形虫、轮藻、叶肢介、双壳类等门类化石(叶得泉等,2002刘振文等,2006张智礼等,2014),是较好的标志层。

    归纳前人储层流动单元划分研究成果(熊伟等,2005宋子齐等,2007董凤娟等,2012刘鼎等,2018王伟等,2018徐铮等,2018),发现储层流动单元划分方法分为两类。一是数学方法为主的定量储层参数分析法,二是地质方法为主的定性分析法。定量储层参数分析法主要包括流动层带指标划分法、孔隙度-渗透率划分法、渗透率差异指标法、存储系统-储集系统划分法、概率神经网络(PNN)法、非均质综合指数(IRH)法、熵权TOPSIS法、聚类分析法、灰色系统理论等方法,定性分析法主要包括沉积相划分法、岩性-物性划分法、孔喉几何形状法等方法。

    储层流动单元划分可分为两步(吴胜和,1999),第一步确定连通砂体与渗流屏障的分布(万琼华等,2019),第二步确定连通体内部的渗流差异。渗流屏障主要有3种类型:泥质屏障、胶结带屏障和闭合型断层屏障(窦松江等,2008),其形成主要取决于沉积作用、成岩作用和构造作用,其中沉积作用影响泥质屏障的发育,成岩作用控制胶结带屏障的形成,而构造作用主要决定断层的开启与闭合程度,形成闭合型断层屏障。

    研究区扶余油层埋深大,以泥质胶结为主,泥质含量10%~20%,胶结类型以再生、接触-再生胶结为主,可形成泥质胶结带屏障。由图 2可知,扶余油层渗流屏障主要为(粉砂质)泥岩屏障,分布于河流相韵律层上部,表现为河道间、天然堤、决口扇的泥质沉积。自然伽马曲线(GR)和电阻率曲线(RMN)表现为靠近泥岩基线、低幅微齿特征。扶余油层渗流屏障也多分布于三角洲相韵律层下部分流间湾泥质沉积。

    图  2  扶余油层渗流屏障与连通体识别剖面示意图
    1—渗流屏障;2—连通体;3—泥岩;4—粉砂质泥岩;5—泥质粉砂岩;6—粉砂岩;7—细-粉砂岩;8—细砂岩;9—油浸;10—含油
    Figure  2.  Schematic diagram of seepage barriers and connected bodies identification profile of Fuyu oil layers
    1-Seepage barrier; 2-Inner connected sand; 3-Mudstone; 4-Silty mudstone; 5-Pelitic siltstone; 6-Siltstone; 7-Fine-siltstone; 8-Fine sandstone; 9-Oilimmersion; 10-Oiliness

    储层连通单元受控于稳定的泥岩、泥质隔夹层的分布(陈程等,2003),即连通体受控于流动单元渗流屏障的分布。由图 2可知,扶余油层连通体岩性主要为粉砂岩、细粉砂岩及细砂岩,主要分布于河流相韵律层下部,表现为河道砂质沉积。自然伽马曲线(GR)和电阻率曲线(RMN)表现为远离泥岩基线、高幅、钟形或箱形、底部突变、微齿特征。扶余油层连通体也多分布于三角洲相韵律层上部砂质沉积。

    优选影响储层渗流能力且反映储集能力的岩石物理参数有效孔隙度和渗透率(陈欢庆等,2011)作为划分流动单元类型的主控核心参数。有效孔隙度直接反映储层储集能力,而渗透率则是表征储层渗流能力的首选指标。根据测井解释报告(S53- F1、S532-F1和S104-21井)35个数据点,将声波时差与有效孔隙度进行拟合(图 3a)得到公式(1),将渗透率与有效孔隙度进行拟合(图 3b)得到公式(2)。

    图  3  扶余油层Φ-AC拟合交汇图(a)和K-Φ拟合交汇图(b)
    Figure  3.  Φ-AC fitting intersection diagram (a) and K-Φ fitting intersection diagram (b) of Fuyu oil layers

    (1)

    式中Φ—有效孔隙度,%;AC—声波时差,μs/m。

    (2)

    式中Φ—有效孔隙度,%;K—渗透率,10-3 μm2

    取心井有效孔隙度、渗透率为岩心分析数据,而非取心井则由测井曲线二次数字处理所得。利用康尼—卡曼关系式求出标准孔隙度指数、储层质量指数及流动带指数值(何更生,1994),三者皆是表征储层储集能力、渗流能力的重要参数。相关表达式如式(3)、式(4)、式(5)和式(6)所示。

    (3)

    式中Φz—标准孔隙度系数,无量纲;Φ—有效孔隙度,%。

    (4)

    式中RQI—储层质量指数,µm;Φ—有效孔隙度,%;K—渗透率,10-3 µm2

    (5)

    将式(5)等号两边取对数得:

    (6)

    式中FZI—流动带指数,µm;RQI—储层质量指数,µm;Φz—标准孔隙度系数,无量纲。

    由公式(6)可知,具有相同FZI值的样品点在RQIΦz双对数坐标系上呈直线关系,具有不同FZI值的样品点在RQIΦz双对数坐标系上呈相互平行的直线关系,即在RQIΦz的双对数坐标系上,位于FZI值为常数的直线上的样品点,属于同一流动单元,适用于流动单元的划分(王清辉等,2019)。扶余油层流动单元之间的ΦΦz、和RQI值差异较小(表 1),而KFZI值差异较大,尤以FZI值的差异最为显著,可精确反映储层非均质性特征,因此流动带指数法(FZI值)可作为流动单元的划分依据和标准。

    表  1  扶余油层流动单元属性参数表
    Table  1.  Attribute parametere of flow units of Fuyu oil layers
    下载: 导出CSV 
    | 显示表格

    将95个取心井数据点(S25、S53、S552、S554和S555井)投在RQI-Φz双对数关系图上(图 4a),扶余油层可划分为E类、G类和P类3种类型的流动单元。同样,在FZI值累计概率百分数图上(图 4b),数据点显示出明显的三段式,以FZI值0.5 µm和0.8 µm为界可将扶余油层划分出E类、G类和P类3种类型流动单元,且两者吻合很好。

    图  4  扶余油层储层流动单元类型划分图
    a—RQI-Φz双对数关系图;b—FZI值累计概率百分数图;1—E类流动单元;2—G类流动单元;3—P类流动单元
    Figure  4.  Division of flow unit type for Fuyu reservoir
    a-RQI-Φz double logarithmic relationship diagram; b- FZI value cumulative probability percentage diagram; 1- Type E flow unit; 2- Type G flow unit; 3- Type P flow unit

    表 1可知,Φ值介于5.7%~17.5%,表明扶余油层流动单元为低孔—特低孔储层。K值介于0.01~4.8×10-3 µm2,表明流动单元为特低渗储层。从E类至P类流动单元,KRQIFZI值逐渐减小,表明流动单元渗流能力逐渐减弱,储层非均质性较强。

    E类流动单元流动带指数FZI平均值为1.20 μm,K平均值为3.17×10-3 µm2RQI平均值为0.16 μm,具有相对较强的渗流能力;G类流动单元流动带指数FZI平均值为0.65 μm,K平均值为1.58×10-3 µm2RQI平均值为0.11 μm,渗流能力中等;P类流动单元流动带指数FZI值平均值为0.33 μm,K平均值为0.27× 10-3 µm2RQI平均为0.04 μm,渗流能力较差。

    以扶余油层主力层FⅠ5、FⅠ6和FⅠ7小层为例。在扶余油层主力层流动单元分布和油藏分布平面图(图 5)上,E类流动单元发育不良,主要为G类、P类流动单元分布,不同流动单元之间、流动单元与渗流屏障之间呈不规则带状、片状交错或相间分布,E类流动单元主要分布在西南构造高部位,正断层形成了渗流通道,不同位置又因断层上下盘错动形成泥岩渗流屏障。由流动单元分布和油藏分布剖面示意(图 6)可知,同一油井不同小层可发育不同类型的流动单元,同一小层不同油井可发育不同类型的流动单元。以上均表明主力层流动单元储层非均质性较强。

    图  5  扶余油层主力层流动单元分布和油藏分布平面图
    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—正断层;6—剖面;7—油层;8—差油层;9—油水同层;10—取心井;11—采油井;12—注水井
    Figure  5.  Plane of the main layers flow units showing distribution of reservoirs in Fuyu
    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Normal fault; 6- Profile; 7- Oil layer; 8- Poor oil layer; 9- Water within oil layer; 10- Cored well; 11- Oil production well; 12- Water injection well
    图  6  扶余油层主力层流动单元分布和油藏分布剖面图
    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—油层;6—差油层;7—油水同层;8—分层界线及层号
    Figure  6.  Profile showing distribution of the main layers flow units and reservoirs of Fuyu oil layers
    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Oil layer; 6- Poor oil layer; 7- Water within oil layer; 8- Oil layer boundary and number

    归纳前人“相控”流动单元方面的诸多研究,发现存在两种观点。一是各类流动单元类型与不同的沉积微相具有较好的对应关系(王志章等,2010),二是同一种流动单元往往对应多种沉积微相类型,同一种沉积微相类型也可能存在多种流动单元(于蒙等,2017)。

    松辽盆地中央坳陷扶余油层发育河流—浅水三角洲相(黄薇等,2013),三肇凹陷扶余油层发育大型浅水三角洲(朱筱敏等,2012),研究区扶余油层自下而上发育湖泊相、三角洲相和曲流河相(周路路,2013)。扶余油层主力层发育曲流河相,沉积微相较为单调,主要为河道、河道间及溢岸砂(图 7)。各类流动单元分布于河道、溢岸砂中,河道间形成渗流屏障。对比主力层沉积微相平面分布图(图 7)与流动单元分布和油藏分布平面图(图 5)可知,主力层的沉积微相总体上控制了流动单元分布形态及渗流边界,发育良好的P类、G类流动单元呈不规则片状、线状随机分布于河道、溢岸砂中。少量发育的E类流动单元则有规律地分布于河道中(图 7)。

    图  7  扶余油层主力层沉积微相平面分布图
    1—河道;2—溢岸砂;3—决口扇;4—天然堤;5—河道间;6—正断层;7—取心井;8—采油井;9—注水井;10—E类流动单元
    Figure  7.  4Plane of sedimentary microfacies in the main layers of Fuyu oil layers
    1- Channel; 2- Effusion sand; 3- Splay; 4- Natural levee; 5- Interchannel; 6- Normal fault; 7- Cored well; 8- Oil production well; 9- Water injection well; 10- Type E flow unit

    研究区发育的构造均为开启型正断层,继承性发育的正断层在泉头组沉积时期受稳定的拉张应力作用持续发育。根据主力层流动单元分布和油藏分布平面图(图 5)上西南部断层两侧S50-62井和S54-64井钻遇的流动单元实际发育情况,分析断层对流动单元发育的控制作用。如图 8所示,正断层下盘S50-62井钻遇FⅠ5、FⅠ7小层砂岩,上盘S54-64井钻遇FⅠ5、FⅠ7小层泥岩,断层作为渗流通道,在下盘砂岩中形成E类、P类流动单元,上盘泥岩形成渗流屏障。同样,两井均钻遇FⅠ6小层砂岩,上下盘分别形成G类、P类流动单元。因此,认为研究区开启型正断层控制着储层流动单元的发育和分布。考虑到断层上下盘不断错动,断层开启程度不断变化,上下盘砂、泥接触部位与面积不断变化,认为流动单元的空间分布状态也是动态变化的。

    图  8  扶余油层断层控制流动单元发育模式图
    Figure  8.  Pattern of fault controlling flow units development of Fuyu oil layers

    利用扶余油层流动单元划分标准,对扶余油层各主力层流动单元进行划分,取得很好划分效果(图 9)。由图 9可知,数据点表现出明显的三段式分布,划分出3种流动单元类型,且以G类、P类流动单元为主,E类流动单元较少。认为文中储层流动单元划分标准可为松辽盆地其他地区特低渗储层流动单元划分提供一定参考依据。

    图  9  扶余油层主力层FZI值累计概率百分数图
    1—FⅠ5小层;2—FⅠ6小层;3—FⅠ7小层
    Figure  9.  FZI value cumulative probability percentage of main layers of Fuyu oil layers
    1- FⅠ5 oil layer; 2- FⅠ6 oil layer; 3- FⅠ7 oil layer

    扶余油层油藏具有上生下储的特征(霍秋立等,1999邹才能等,2007),上覆青山口组的油源沿着继承性发育的开启型正断层向下“倒灌”、“注入式”垂向运移至扶余油层(迟元林等,2000刘宗堡等,2009张雷等,2010),并侧向运移赋存在特低渗砂质储层中(连承波等,2011),形成大面积分布的岩性油藏(谭保祥等,1995迟元林等,2000张顺等,2011黄薇等,2013)和构造-岩性油藏,以空间成因单砂体为控制因素形成的单一岩性圈闭为最基本的控油与聚油单元(孙雨等,2009孙雨等,2018),断层与砂体之间的空间配置关系则控制了油气的运移与圈闭。

    研究区扶余油层除主力层油层有效砂厚大、横向连续性较好,而其他小层或多为薄层或横向连续性差。特以主力层油藏为例,讨论储层流动单元油藏的分布及开发效果。

    主力层油藏电测解释为油层、差油层及油水同层(图 5)。由图 5可知,特低渗储层流动单元空间分布对油藏的空间分布控制有限,两者无明显的相关性,表现为油层、差油层及油水同层随机分布于E类至P类各类流动单元中。油藏分布受控于断层,主要沿着正断层两侧分布。

    扶余油层FⅠ5小层流动单元钻遇的S50-76、S46-70、S44-68和S52-60等井(图 5a图 10),注水开发见效(图 10),电测解释为油层。同样,FⅠ7小层流动单元钻遇的大部井,如S50-82、S44-64、S42-86、S48-74、S42-74、S40-82等(图 5c图 11),注水开发效果好(图 11),电测解释为油层。因此,对于特低渗储层而言,认为储层流动单元开发见效范围控制了油藏实际分布范围。

    图  10  扶余油层FⅠ5小层油井生产柱状图
    1—日产液;2—日产油;3—累产油
    Figure  10.  Oil wells production histogram of FI5 layer of Fuyu oil layers
    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production
    图  11  扶余油层FⅠ7小层油井生产柱状图
    1—日产液;2—日产油;3—累产油
    Figure  11.  Oil wells production histogram of FI7 layer of Fuyu oil layers
    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production

    由扶余油层FⅠ5小层油井生产柱状图(图 10)可知,从E类至P类特低渗储层流动单元,油井的日产油量、累产油量总体呈现出逐渐上升的趋势(个别井例外),这与高、中、低渗储层呈现逐渐下降的趋势截然不同。E类流动单元钻遇的3口井(S42- 82、S50-54、S50-62井)或有效砂体厚度(砂体射开厚度)小或紧靠泥岩渗流屏障(图 5),导致注水效果差,油井产量小;G类流动单元钻遇井虽射开厚度大但紧靠泥岩渗流屏障,导致开发效果一般;P类流动单元钻遇的几口井或射开厚度较大或紧靠正断层形成的渗流通道,因而注水效果好,油井产量高。

    由扶余油层FⅠ7小层油井生产柱状图(图 11)可知,注水见效的G类与P类储层流动单元,在相同的生产周期内,油井的日产油量、累产油量近乎相同,而注水开发不见效的E类至P类储层流动单元,油井的产量也近乎相同。可见,对于特低渗储层而言,不同类型的流动单元自身渗流能力的差异对油藏开发效果的影响已不明显。

    普遍认为,储层流动单元渗流能力越强,油藏注水开发效果越好(陈程等,2003石占中等,2003王长发等,2003张振红等,2005吴小斌等,2011李照永,2011),但研究区特低渗储层流动单元却无该趋势甚至表现出相反的趋势。考虑到扶余油层特低渗储层渗流能力极弱,且又为低孔—特低孔储层,认为流动单元自身的渗流能力对油藏开发的作用已经很小,而不同流动单元之间的渗流能力差异所引起油藏开发效果的不同也已不明显,油藏开发效果主要取决于砂体射开厚度、注水效果等开发因素以及砂体厚度、断层渗流通道、泥岩渗流屏障等地质因素。

    (1)扶余油层特低渗油气储层流动单元划分出E、G、P三种类型,其中E类FZI值大于0.8 μm,G类FZI值介于0.5~0.8 μm,P类FZI值小于0.5 μm。从E类至P类流动单元,渗流能力逐渐减小,储层非均质性较强。

    (2)扶余油层特低渗油气储层流动单元发育及分布受沉积相和断层构造双重控制。

    (3)在特低渗尺度内,油气储层流动单元本身渗流能力极弱,其自身的渗流能力对油藏开发效果的影响已经很小,而不同流动单元之间的渗流能力差异所引起油藏开发效果的不同也已不明显,油藏开发效果取决于砂体射开厚度、注水效果等开发因素以及砂体厚度、断层等地质因素。

  • 图  1   研究区范围及采样点示意图

    Figure  1.   Location of study area and distribution of the sampling sites

    图  2   泉州湾近岸海域表层沉积物平均粒径及不同粒级组分(黏土、粉砂、砂)百分含量分布图

    Figure  2.   Distribution of average grain size and percentage content of clay, silt and sand of surface sediments in the offshore area of Quanzhou Bay

    图  3   泉州湾近岸海域表层沉积物不同重金属富集程度

    Figure  3.   Enrichment factors of eight heavy metals of surface sediments in Quazhou Bay

    图  4   泉州湾近岸海域表层沉积物不同重金属元素含量分布图

    Figure  4.   Distribution of heavy metals of surface sediments in the offshore area of Quanzhou Bay

    图  5   泉州湾近岸海域表层沉积物典型元素富集程度分布图

    Figure  5.   Distribution of typical heavy metals enrichment factor of surface sediments in the offshore area of Quanzhou Bay

    图  6   不同元素对潜在生态风险指数贡献程度

    Figure  6.   Contribution of different heavy metals to potential ecological risk

    图  7   泉州湾近岸海域浅层沉积物生态风险指数分布图

    Figure  7.   Distribution of potential ecological index in the offshore area of Quanzhou Bay

    图  8   各重金属潜在来源PMF源解析模型计算结果

    Figure  8.   Potential sources of heavy metals determined by PMF

    表  1   各重金属背景值和毒性系数

    Table  1   Background contents and toxicity index of heavy metals

    下载: 导出CSV

    表  2   富集系数与潜在生态风险评价分级标准

    Table  2   Grading standard of enrichment factor and potential ecological risk index

    下载: 导出CSV

    表  3   泉州湾近岸海域粒度参数分布范围

    Table  3   Statistics of grain size in the offshore area of Quanzhou Bay

    下载: 导出CSV

    表  4   泉州湾表层沉积物重金属含量

    Table  4   Contents of heavy metals of surface sediments in Quanzhou Bay

    下载: 导出CSV

    表  5   泉州湾近岸海域元素含量及粒度参数相关性分析

    Table  5   Pearson correlation coefficients of different heavy metal contents and grain sizes parameters

    下载: 导出CSV

    表  6   潜在生态风险指数法评价结果描述性统计

    Table  6   Descriptive statistics of potential ecological risk index

    下载: 导出CSV

    表  7   不同来源贡献率PMF模型解析结果

    Table  7   Contribution of different potential sources calculated by PMF

    下载: 导出CSV

    表  8   泉州湾近岸海域表层沉积物重金属主成分分析结果

    Table  8   PCA of heavy metals in surficial sediments in the offshore area of Quanzhou Bay

    下载: 导出CSV
  • Belousova N I. 2006. Oxalate-soluble compounds of Al, Fe, and Si in soils of cold humid regions as a function of weathering[J]. Eurasian Soil Science, 39(1): 1-11. doi: 10.1134/S1064229306010017

    Chen Bin, Wang Jinkeng, Zhang Yusheng, Tang Sengming, Lin Jinghong, Zheng Fengwu, Zhang Jiwei. 2004. Impact of reclamation activities on marine environment in Quanzhou Bay[J]. Journal of Oceanography in Taiwan Strait, 23(2): 192-198 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8160.2004.02.010

    Chen Ming, Cai Qingyun, Xu Hui, Zhao Ling, Zhao Yonghong. 2015. Research progress of risk assessment of heavy metals pollution in water body sediments[J]. Ecology and Environment Sciences, (6): 1069-1074 (in Chinese with English abstract).

    Chen Nengwang, Wang Deli, Lu Ting, Wang Fenfang, Jiang Yan, Lin Guohui, Zhuang Mazhan. 2018. Manganese pollution in the Jiulong River watershed: Sources and transformation[J]. Acta Scientiae Circumstantiae, 38(8): 2955-2964 (in Chinese with English abstract).

    Cheng Xiaohui, Deng Jingsong. 2019. Comparation of pretreatment methods in determination of 12 metal elements in soil by inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 28(4): 115-118 (in Chinese with English abstract).

    Duan Xiaoyong, Yin Ping, Liu Jinqing, Zhang Daolai, Cao Ke, Gao Fei, Chen Xiaoying. 2016. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Luan River estuary: Distributions, sources and ecological risk assessments[J]. China Environmental Science, 36(4): 1198-1206 (in Chinese with English abstract).

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2002. Marine Sediment Quality[S]. 243-244, 8 (in Chinese).

    Guan Baocong, Lei Huanyan, Lin Binghuang, Liu Haoran, Shi Yuezhong, Lin Jianning. 2010. Elemental characteristics and geochemical significance of surface sediments in Quanzhou Bay[J]. Journal of Oceanography in Taiwan Strait, 29(1): 58-65 (in Chinese with English abstract).

    Hakanson L. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 14(8): 975-1001.

    Hao Wu, Ding Zhenhua, Liu Yang, Liu Jinling, Yan Haiyu, Pan Jiayong, Li Liuqiang, Lin Huina, Lin Guanghui, Lu Haoliang. 2011. Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China[J]. Journal of Environmental Sciences, 23(1): 14-21.

    Hu Yuanan, Liu Xueping, Bai Jinmei, Shih Kaimin, Zeng Eddy Y, Cheng Hefa. 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J]. Environmental Science and Pollution Research, 20(9): 6150-6159.

    Li Chaoxin, Liu Miaoguang, Liu Zhenxia, Hu Zejian, Bian Shuhua, Diao Shaobo. 2008. Sediment transport and Changes in scour and silting in the Quanzhou Bay[J]. Advances in Marine Science, (1): 26-34 (in Chinese with English abstract).

    Li Fu, Liu Yingnan, Guo Dianfan, Qi Xingtian, Zang Shuying, Ni Hongwei. 2019. Distribution and potential ecological risk assessment of heavy metals in the sediment of the Songjiang wetland in Harbin City[J]. Research of Environmental Sciences, 32(11): 1869-1878 (in Chinese with English abstract).

    Li Guihai. 2007. Environmental Geochemistry of Heavy Metals and Depositional Environment in Xiamen Seas[D]. Qingdao: China Ocean University, 1-107 (in Chinese with English abstract).

    Li Jun, Zou Shengzhang, Liang Yongping, Lin Yongsheng, Zhou Changsong, Zhao Yi. 2020. Metal distributions and human health risk assessments on waters in the Huixian Karst wetland, China[J]. Environmental Science, 41(11): 4948-4957 (in Chinese with English abstract).

    Li Yunhai, Chen Jian, Huang Caibin, Wang Aijun, Li Dongyi. 2010. Distribution patterns of heavy metals in surface sediments of the Quanzhou Bay and environmental quality assessment[J]. Environmental Science, 31(4): 931-938 (in Chinese with English abstract).

    Lin Chengqi, Chen Fenghua, Hu Gongren, Yu Ruilian, Huang Huabin. 2020. Source apportionment of heavy metals in surface sediments of the Jiulong River Estuary based on positive matrix factorization[J]. Earth and Environment, 48(4): 443-451 (in Chinese with English abstract).

    Liu Bingxing, Yu Ruilian, Hu Gongren, Zhang Liling. 2015. Distribution and transfer of heavy metals in the mangrove wetland of Quanzhou Bay estuary[J]. Chinese Journal of Ecology, 34(4): 1136-1142 (in Chinese with English abstract).

    Liu Chunlei, Zheng Jianhua, Li Zhenghong, Li Yasong, Hao Qichen, Li Jianfeng. 2021. Analysis on the situation and countermeasures of water resources supply and demand in the cities of small and medium-sized river basins along southeast coast of China -Taking Xiamen City as an example[J]. Journal of Groundwater Science and Engineering, 9(4): 350-358.

    Liu Kun, Sun Yongguang, Qi Yue, Wang Weiwei, Yuan Xiutang, Fu Yuanbin, Li Peiying. 2018. The spatial differentiation and spatial correlation analysis with TC and TN of grain size in intertidal sediments[J]. Marine Environmental Science, 37(1): 95-100, 150 (in Chinese with English abstract).

    Liu Shengran, Wang Tieyu, Yang Jie, Meng Jing, He Bo, Zhao Hui, Xiao Rongbo. 2019. Source apportionment methods of soil heavy metals in typical urban units: An empirical study[J]. Acta Ecologica Sinica, 39(4): 1278-1289 (in Chinese with English abstract).

    Liu Xiangqi, Song Lei, Wu Qilong, Li Guomin, Mao Xin. 2020. Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area[J]. Marine Geology & Quaternary Geology, 40(1): 198-209 (in Chinese with English abstract).

    Liu Yaci, Wu Lin, Shi Guowei, Cao Shengwei, Li Yasong. 2022. Characteristics and sources of microplastic pollution in the water and sediments of the Jinjiang River Basin, Fujian Province, China[J]. China Geology, 5: 429-438.

    Liu Yongqing. 1995. Study and application of the soil environmental background values in Fujian coastal zone[J]. Marine Environmental Science, (2): 68-73 (in Chinese with English abstract).

    Liu Yu. 2018. Spatial Temporal Distribution and Environmental Risk Assessment of Polybrominated Diphenyl Ethers in Sediments from Quanzhou Shanmei Reservoir and Quanzhou Bay[D]. Quanzhou: Huaqiao University, 1-157 (in Chinese with English abstract).

    Liu Zongcheng. 2013. Present situation and treatment suggestions of mining geological environment in Quanzhou City, Fujian Province[J]. Energy and Environment, (5): 80-81 (in Chinese with English abstract).

    Ma Rong, Zhang Bin, Zhou Xiaoni. 2020. The effects of climate change and groundwater exploitation on the spatial and temporal variations of heavy metal content in maize in the Luan River catchment of China[J]. Environmental Science and Pollution Research, 27(1): 1035-52.

    Meng Xi, Chang Fangqiang, Lin Congmou. 2014. Study on the evolution characteristics and control factors of scouring and silting in Quanzhou Bay[J]. Journal of Natural Disasters, 23(5): 185-191 (in Chinese with English abstract).

    Miao Xiongyi, Hao Yupei, Zhang, Fawang, Zou Shengzhang, Ye Siyuan, Xie Zhouqing. 2020. Correction to: Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: A traditional oil field in China[J]. Environmental Geochemistry and Health, 42(2): 709-709.

    Paatero P. 1997. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 37(1): 23-35.

    Pan Ke, Wang Wenxiong. 2012. Trace metal contamination in estuarine and coastal environments in China[J]. Science of the Total Environment, 421/422: 3-16.

    Quanzhou Ocean and Fisheries Bureau. 2011. Quanzhou Marine Environment Situation Bulletin[R]. Quanzhou Ocean and Fisheries Bureau, 1-27 (in Chinese).

    Quanzhou Ocean and Fisheries Bureau. 2018. Quanzhou marine environment situation Bulletin[R]. Quanzhou Ocean and Fisheries Bureau, 1-22 (in Chinese).

    Rao Qinghua, Li Jiabing, Hu Minjie, Xie Rongrong, Zhang Xiangyu, Qiu Yu. 2018. Effect of enrichment of nitrogen and sulfate load on N2O fluxes from tidal flat wetland in the subtropical estuary[J]. Acta Scientiae Circumstantiae, 38(5): 2045-2054 (in Chinese with English abstract).

    Soto-Jiménez M, Páez-Osuna F. 2001. Cd, Cu, Pb, and Zn in Lagoonal sediments from Mazatlán Harbor (SE Gulf of California): Bioavailability and geochemical fractioning[J]. B. Environ. Contam. Tox., 66(3): 350-6.

    Tan Fanglin, Ye Gongfu, Cui Lijuan, Zhang Lihua, Luo Meijuan, Sun Zhitong, Lin Jie, Luo Cailian, Le Tongchao, Huang Li, Lin Yongyuan. 2010. Site type classification of mongrove in Quanzhou Estuary wetlands[J]. Wetland Science, 8(4): 366-370 (in Chinese with English abstract).

    Tang Junjian, Chen Chuhan, Wen Shenghui. 2011. Numerical simulation of tidal current field of Quanzhou Bay sea crossing bridge[C]//Proceedings of the 15th China Offshore Engineering Symposium. Taiyuan, 978-985 (in Chinese with English abstract).

    Wang Aijun, Chen Jian, Li Dongyi, Zhuo Zhiqiang. 2007. Spatial variations of carbon and nitrogen in coastal wetland sediments of Quanzhou Bay in China[J]. Environmental Science, (10): 2361-2368 (in Chinese with English abstract).

    Wang Shuailong, Xu Xiangrong, Sun Yuxin, Liu Jinling, Li Huabin. 2013. Heavy metal pollution in coastal areas of South China: A review[J]. Marine Pollution Bulletin, 76(1): 7-15.

    Wang Wei, Gu Xiaoyuan, Zhao Hui, Ding Xigui, Ye Siyuan, Xiao Nan, Yu Jianfeng, Li Jinpeng. 2018. Distribution and environment assessment of heavy metals in sediments of the Zhifu Bay[J]. Marine Sciences, 42(7): 3-11 (in Chinese with English abstract).

    Wu Wei, Wu Ping, Yang Fang, Sun Danling, Zhang Dexing, Zhou, Yikai. 2018. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility[J]. Science of The Total Environment, 630: 53-61.

    Xia Peng, Meng Xianwei, Yin Ping, Cao Zhimin, Wang Xiangqin. 2011. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 159(1): 92-99.

    Xia Peng, Meng Xianwei, Feng Aiping, Yin Ping, Zhang Jun, Wang Xiangqin. 2012. Geochemical characteristics of heavy metals in coastal sediments from the northern Beibu Gulf (SW China): The background levels and recent contamination[J]. Environmental Earth Sciences, 66(5): 1337-44.

    Xie Wenping, Chen Zheng, Zhu Xinping, Zheng Guangming, Cai Zexian, Zhang Liang, Li Ziqing. 2020. Occurrence form and pollution evaluation of heavy metals in fish pond in Pearl River network area[J]. Environmental Science & Technology, 43(S1): 176-182 (in Chinese with English abstract).

    Xiong Shaobo, Jin Dongmin, Sun Kezhong, Zou Yisheng, Fan Xubang, Du Xiaogang. 1991. Some characteristics of deep structure of the Zhangzhou geothermal field and it's neighbourhood in the Fujian Province[J]. Acta Geophysica Sinica, (1): 55-63 (in Chinese with English abstract).

    Xu Jinglin, Cha Xuan. 2009. Soil erosion risk assessment based on the research of impact factors: Taking Anxi County as an example[J]. Journal of Geo-Information Science, 11(5): 577-584 (in Chinese with English abstract).

    Xu Lianghui, Li Jialin, Li Weifang, Zhao Si, Yuan Qixiang, Wang Mingyue, Yang Lei, Lu Xuezhu. 2014. Progress in impact of human activities on coastal resource and environment[J]. Journal of Nanjing Normal University (Natural Science Edition), 37(3): 124-131 (in Chinese with English abstract).

    Yang Xia, Peng Bo, Wu Yaqi, Zhang Kun, Kuang Xiaoliang, Wu Beijuan, Tan Changyin, Tu Xianglin. 2016. Geochemical study on heavy-metal contamination developed in river-bank sediments at the Xiangtan section of the Xiangjiang River, Hunan Province, China[J]. Geochimica, 45(1): 62-76 (in Chinese with English abstract).

    Yin Ping, Lin Liangjun, Chen Bin, Xiao Guoqiang, Cao Ke, Yang Jilong, Li Meina, Duan Xiaoyong, Qiu Jiandong, Hu Yunzhuang, Wang Lei, Sun Xiaoming. 2017. Coastal zone geo-resources and geo-environment in China[J]. Geology in China, 44(5): 842-856 (in Chinese with English abstract).

    You Huiming, Han Jianliang, Pan Dezhuo, Xie Huicheng, Le Tongchao, Ma Jianbin, Huang Sizhong, Tan Fanglin. 2019. Dynamic evaluation and driving forces of ecosystem services in Quanzhou Bay estuary wetland, China[J]. Chinese Journal of Applied Ecology, 30(12): 4286-4292 (in Chinese with English abstract).

    Yu Linsong, Liu Hongbo, Wan Fang, Hu Zunfang, Luo Huaidong, Zhang Xiuwen. 2021. Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River, North China[J]. Journal of Groundwater Science and Engineering, 9(2): 140-151.

    Yu Ruilian, Wang Li Juan, Hu GongRen, Zhao Yuanhui. 2008. Speciation and potential ecological risk of heavy metals in sediments from tidal reaches of the Jinjiang River[J]. Earth and Environment, (2): 113-118 (in Chinese with English abstract).

    Yu Ruilian. 2009. Environmental Geochemistry of Heavy Metals in the Intertidal Sediments from Quanzhou Bay, Fujian Province[D]. Changchun: Northeast Normal University, 57-58 (in Chinese with English abstract).

    Yu Ruilian, Hu Gongren, Zhao Jinxiu, Han Zhong. 2013. Distribution, transfer and stock of heavy metals in Kandelia candel mangrove situated in Quanzhou bay Wetland, southeast coast of China[J]. Environmental Chemistry, (1): 125-131 (in Chinese with English abstract).

    Yu Ruilian, Zhang Weifang, Hu Gongren, Zhang Chenchen, Wang Xiaoming. 2015. Pollution history and source analysis of heavy metals in sediments from Jinjiang River Estuary[J]. Research of Environmental Sciences, 28(6): 907-914 (in Chinese with English abstract).

    Zhang Qian. 2020. The Distribution and Ecological Risk Assessment of Heavy Metals and Rare Earth Elements in Soils from the Earth's Critical Zone Observation: A Study on Puding Area in Guizhou Province and Jiulongjiang River Catchment in Fujian Province, China[D]. China University of Geosciences(Beijing), 1-113 (in Chinese with English abstract).

    陈彬, 王金坑, 张玉生, 唐森铭, 林景宏, 郑凤武, 张继伟. 2004. 泉州湾围海工程对海洋环境的影响[J]. 台湾海峡, 23(2): 192-198. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX200402010.htm
    陈明, 蔡青云, 徐慧, 赵玲, 赵永红. 2015. 水体沉积物重金属污染风险评价研究进展[J]. 生态环境学报, 24(6): 1069-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201506024.htm
    陈能汪, 王德利, 鲁婷, 王芬芳, 姜艳, 林国辉, 庄马展. 2018. 九龙江流域地表水锰的污染来源和迁移转化机制[J]. 环境科学学报, 38(8): 2955-2964. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201808001.htm
    程小会, 邓敬颂. 2019. ICP-MS法测定土壤中12种金属元素时的样品前处理方法[J]. 化学分析计量, 28(4): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201904035.htm
    段晓勇, 印萍, 刘金庆, 张道来, 曹珂, 高飞, 陈小英. 2016. 滦河口表层沉积物中重金属和多环芳烃的分布、来源及风险评估[J]. 中国环境科学, 36(4): 1198-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201604041.htm
    官宝聪, 雷怀彦, 林炳煌, 柳浩然, 史跃中, 林建宁. 2010. 泉州湾表层沉积物元素特征及其地球化学意义[J]. 台湾海峡, 29(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX201001008.htm
    国家海洋局国家海洋环境监测中心. 2002. 海洋沉积物质量: GB 18668-2002[S].
    李朝新, 刘焱光, 刘振夏, 胡泽建, 边淑华, 刁少波. 2008. 泉州湾泥沙运移与冲淤变化[J]. 海洋科学进展, (1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH200801003.htm
    李富, 刘赢男, 郭殿凡, 齐兴田, 臧淑英, 倪红伟. 2019. 哈尔滨松江湿地重金属空间分布及潜在生态风险评价[J]. 环境科学研究, 32(11): 1869-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201911011.htm
    李桂海. 2007. 厦门海域现代沉积环境及重金属元素的环境地球化学研究[D]. 青岛: 中国海洋大学, 1-107.
    李军, 邹胜章, 梁永平, 林永生, 周长松, 赵一. 2020. 会仙岩溶湿地水体金属元素分布与健康风险评价[J]. 环境科学, 41(11): 4948-4957. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202011021.htm
    李云海, 陈坚, 黄财宾, 王爱军, 李东义. 2010. 泉州湾沉积物重金属分布特征及环境质量评价[J]. 环境科学, 31(4): 931-938. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201004016.htm
    林承奇, 陈枫桦, 胡恭任, 于瑞莲, 黄华斌. 2020. 基于PMF模型解析九龙江河口表层沉积物重金属来源[J]. 地球与环境, 48(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202004005.htm
    刘冰星, 于瑞莲, 胡恭任, 张丽玲. 2015. 泉州湾河口红树林湿地重金属的分布与迁移[J]. 生态学杂志, 34(4): 1136-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201504035.htm
    刘昆, 孙永光, 齐玥, 王伟伟, 袁秀堂, 付元宾, 李培英. 2018. 潮间带沉积物粒度空间分异及其与TC、TN的空间相关性分析[J]. 海洋环境科学, 37(1): 95-100, 150. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201801015.htm
    刘胜然, 王铁宇, 汤洁, 孟晶, 何博, 赵慧, 肖荣波. 2019. 典型城市单元的土壤重金属溯源方法与实证研究[J]. 生态学报, 39(4): 1278-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201904014.htm
    刘祥奇, 宋磊, 吴奇龙, 李国民, 毛欣. 2020. 基于粒度分布曲线的邻近传播聚类算法在沉积环境识别中的应用——以白洋淀地区为例[J]. 海洋地质与第四纪地质, 40(1): 198-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202001019.htm
    刘用清. 1995. 福建省海岸带土壤环境背景值研究及其应用[J]. 海洋环境科学, (2): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ502.010.htm
    刘豫. 2018. 泉州山美水库、泉州湾沉积物中多溴二苯醚的时空分布和环境风险评价[D]. 泉州: 华侨大学, 1-157.
    刘宗成. 2013. 福建省泉州市矿山开采地质环境现状与治理建议[J]. 能源与环境, (5): 80-81. https://www.cnki.com.cn/Article/CJFDTOTAL-FJNJ201305055.htm
    孟希, 常方强, 林从谋. 2014. 泉州湾冲淤演化特征及控制因素研究[J]. 自然灾害学报, 23(5): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201405023.htm
    泉州市海洋与渔业局. 2011.2011年泉州市海洋环境状况公报[R], 1-27.
    泉州市海洋与渔业局. 2018. 2018年泉州市海洋环境状况公报[R]. 1-22.
    饶清华, 李家兵, 胡敏杰, 谢蓉蓉, 张祥雨, 邱宇. 2018. 亚热带河口潮滩湿地N2O排放对氮硫增强输入的响应[J]. 环境科学学报, 38(5): 2045-2054. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201805041.htm
    谭芳林, 叶功富, 崔丽娟, 张立华, 罗美娟, 孙志同, 林捷, 罗彩莲, 乐通潮, 黄丽, 林永源. 2010. 泉州湾河口湿地红树林立地类型划分[J]. 湿地科学, 8(4): 366-370. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201004011.htm
    汤军健, 陈楚汉, 温生辉. 2011. 泉州湾跨海大桥潮流场数值模拟[C]. 第十五届中国海洋(岸)工程学术讨论会论文集, 太原. 978-985.
    王爱军, 陈坚, 李东义, 卓志强. 2007. 泉州湾海岸湿地沉积物C、N的空间变化[J]. 环境科学, (10): 2361-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200710038.htm
    王伟, 顾效源, 赵辉, 丁喜桂, 叶思源, 肖楠, 于剑峰, 李金鹏. 2018. 山东芝罘湾表层沉积物重金属含量与环境质量评价[J]. 海洋科学, 42(7): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201807001.htm
    谢文平, 陈政, 朱新平, 郑光明, 蔡泽贤, 张亮, 李子晴. 2020. 珠江河网区鱼塘重金属赋存形态及污染评价[J]. 环境科学与技术, 43(S1): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2020S1030.htm
    熊绍柏, 金东敏, 孙克忠, 邹以生, 樊叙邦, 杜小刚. 1991. 福建漳州地热田及其邻近地区的地壳深部构造特征[J]. 地球物理学报, (1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199101006.htm
    徐劲林, 查轩. 2009. 土壤侵蚀危险度的计算与影响因子分析——以福建安溪红壤水土流失区为例[J]. 地球信息科学学报, 11(5): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200905005.htm
    徐谅慧, 李加林, 李伟芳, 赵斯, 袁麒翔, 王明月, 杨磊, 卢雪珠. 2014. 人类活动对海岸带资源环境的影响研究综述[J]. 南京师大学报(自然科学版), 37(3): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSF201403024.htm
    杨霞, 彭渤, 吴雅霁, 张坤, 匡晓亮, 吴蓓娟, 谭长银, 涂湘林. 2016. 湘江湘潭段河岸沉积物重金属污染地球化学分析[J]. 地球化学, 45(1): 62-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201601005.htm
    印萍, 林良俊, 陈斌, 肖国强, 曹珂, 杨吉龙, 李梅娜, 段晓勇, 仇建东, 胡云壮, 王磊, 孙晓明. 2017. 中国海岸带地质资源与环境评价研究[J]. 中国地质, 44(5): 842-856. http://geochina.cgs.gov.cn/geochina/article/abstract/20170502?st=search
    游惠明, 韩建亮, 潘德灼, 谢会成, 乐通潮, 马键斌, 黄思忠, 谭芳林. 2019. 泉州湾河口湿地生态系统服务价值的动态评价及驱动力分析[J]. 应用生态学报, 30(12): 4286-4292. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201912033.htm
    于瑞莲, 王荔娟, 胡恭任, 赵元慧. 2008. 晋江感潮河段沉积物重金属赋存形态及潜在生态风险[J]. 地球与环境, (2): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200802003.htm
    于瑞莲. 2009. 泉州湾潮间带沉积物中重金属元素的环境地球化学研究[D]. 长春: 东北师范大学, 57-58.
    于瑞莲, 胡恭任, 赵金秀, 韩仲. 2013. 泉州湾河口湿地秋茄红树林中重金属的分布、迁移和储量[J]. 环境化学, (1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201301020.htm
    于瑞莲, 张伟芳, 胡恭任, 张晨晨, 王晓明. 2015. 晋江河口沉积物重金属污染历史与来源[J]. 环境科学研究, 28(6): 907-914. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201506010.htm
    张倩. 2020. 地球关键带土壤中重金属和稀土元素分布及生态风险评价[D]. 中国地质大学(北京), 2-3.
  • 期刊类型引用(5)

    1. 吴穹螈,王少鹏,张岚,翟上奇,常会江. 浅水三角洲储层流动单元划分. 长江大学学报(自然科学版). 2023(02): 84-95 . 百度学术
    2. 荆锡贵,李凤杰,张达,李宁,苗贺,丁锐. 松辽盆地腰南5井上白垩统嫩江组一段遗迹化石组合及其沉积环境. 中国地质. 2023(06): 1848-1856 . 本站查看
    3. 马永宁,魏龙杰,吴珍珍,何子琼,傅塬,郭艳琴. 靖安油田杨66井区延10储层非均质性及流动单元. 西安石油大学学报(自然科学版). 2022(04): 1-9 . 百度学术
    4. 王春伟,董佑桓,杨勇,杨向东,陈鑫. 辫状河油藏层内非均质性及其对剩余油分布的影响. 地质与资源. 2022(06): 770-775 . 百度学术
    5. 景涛涛,韩宇宁,石雅琨,马永宁,魏龙杰,王美霞,郭艳琴. 靖安油田Y66区延9_1储层流动单元研究. 河北地质大学学报. 2021(03): 32-36 . 百度学术

    其他类型引用(1)

图(8)  /  表(8)
计量
  • 文章访问数:  2788
  • HTML全文浏览量:  1286
  • PDF下载量:  1906
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-02-15
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-10-24

目录

/

返回文章
返回
x 关闭 永久关闭