• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

辽东青城子矿集区白云金矿床煌斑岩的岩石成因:年代学、地球化学与Pb、Hf同位素约束

贾宏翔, 陈仁义, 庞振山, 林鲁军, 李安, 沙德铭, 薛建玲, 陈辉

贾宏翔, 陈仁义, 庞振山, 林鲁军, 李安, 沙德铭, 薛建玲, 陈辉. 辽东青城子矿集区白云金矿床煌斑岩的岩石成因:年代学、地球化学与Pb、Hf同位素约束[J]. 中国地质, 2022, 49(5): 1605-1623. DOI: 10.12029/gc20220516
引用本文: 贾宏翔, 陈仁义, 庞振山, 林鲁军, 李安, 沙德铭, 薛建玲, 陈辉. 辽东青城子矿集区白云金矿床煌斑岩的岩石成因:年代学、地球化学与Pb、Hf同位素约束[J]. 中国地质, 2022, 49(5): 1605-1623. DOI: 10.12029/gc20220516
JIA Hongxiang, CHEN Renyi, PANG Zhenshan, LIN Lujun, LI An, SHA Deming, XUE Jianling, CHEN Hui. Lamprophyre origin of the Baiyun gold deposit in Qingchengzi ore concentration area, eastern Liaoning Province: Constraints of geochronology, geochemistry and Pb、Hf isotopes[J]. GEOLOGY IN CHINA, 2022, 49(5): 1605-1623. DOI: 10.12029/gc20220516
Citation: JIA Hongxiang, CHEN Renyi, PANG Zhenshan, LIN Lujun, LI An, SHA Deming, XUE Jianling, CHEN Hui. Lamprophyre origin of the Baiyun gold deposit in Qingchengzi ore concentration area, eastern Liaoning Province: Constraints of geochronology, geochemistry and Pb、Hf isotopes[J]. GEOLOGY IN CHINA, 2022, 49(5): 1605-1623. DOI: 10.12029/gc20220516

辽东青城子矿集区白云金矿床煌斑岩的岩石成因:年代学、地球化学与Pb、Hf同位素约束

基金项目: 

中国地质调查局项目 DD20190570

中国地质调查局项目 DD20221795

国家重点研发计划项目“深地资源勘查开采” 2016YFC0600108

国家重点研发计划项目“深地资源勘查开采” 2017YFC0601506

国家自然科学基金 41802115

国家自然科学基金 42002102

详细信息
    作者简介:

    贾宏翔,男,1989年生,博士,助理研究员,主要从事矿床学及找矿预测研究;E-mail: cugbjiahongxiang@126.com

    通讯作者:

    陈仁义, 男, 1966年生, 研究员, 主要从事找矿预测及矿产资源勘查规划部署研究; E-mail: cgschenry@126.com

  • 中图分类号: P581;P618.51

Lamprophyre origin of the Baiyun gold deposit in Qingchengzi ore concentration area, eastern Liaoning Province: Constraints of geochronology, geochemistry and Pb、Hf isotopes

Funds: 

the project of China Geological Survey DD20190570

the project of China Geological Survey DD20221795

National Key Research and Development Program "Exploration and Exploitation of Deep Resources" 2016YFC0600108

National Key Research and Development Program "Exploration and Exploitation of Deep Resources" 2017YFC0601506

National Natural Science Foundation 41802115

National Natural Science Foundation 42002102

More Information
    Author Bio:

    JIA Hongxiang, male, born in 1989, doctor, research assistant, engaged in mineral deposit and ore prospecting research; E-mail: cugbjiahongxiang@126.com

    Corresponding author:

    CHEN Renyi, male, born in 1966, professor, engaged in ore prediction and mineral resources exploration planning and deployment research; E-mail: cgschenry@126.com

  • 摘要:
    研究目的 

    白云金矿是辽东地区代表性的大型金矿床之一,通过厘清矿区内基性脉岩的形成时代、成因及其构造背景,有助于深化对区域构造演化过程及矿床成因的认识。

    研究方法 

    本文基于矿床的野外地质特征,对与矿化有密切关系的煌斑岩开展了岩相学、年代学和地球化学研究。

    研究结果 

    煌斑岩LA-ICP-MS锆石U-Pb年龄为(126.81±0.65)Ma,表明形成于早白垩世。岩石地球化学结果显示,煌斑岩属于碱性系列、钾玄质岩石,具有富镁(MgO=3.63%~4.07%,Mg#=54~60)、富钾(K2O/Na2O=1.26~3.47)、富碱(K2O+Na2O=4.41%~5.23%)的特征;富集大离子亲石元素(Rb、Th、U)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti)和重稀土元素,具有典型的与俯冲有关的弧岩浆岩特征。同位素地球化学结果显示,煌斑岩富集放射性Pb同位素;锆石176Hf/177Hf为0.282117~0.282471,具有负的εHf(t)值(-20.80~-7.81),指示岩浆源区为受俯冲熔体/流体交代的富集岩石圈地幔。

    结论 

    结合区域大地构造背景,白垩纪时,由于古太平洋板块俯冲后撤产生伸展拉张环境,软流圈地幔物质的上涌可能促使EMII型富集地幔的部分熔融而形成基性岩浆,并沿郯庐深大断裂带及其次一级断裂上侵形成白云矿区煌斑岩。因此,本区早白垩世基性岩浆活动是对该时期华北克拉通东部岩石圈减薄的响应。

    创新点:探讨了与矿化有关的煌斑岩的源区性质、成因及构造意义;完善了青城子矿集区早白垩世基性岩浆活动年代学格架;为研究区域成岩成矿地球动力学背景和白云金矿成因提供了新的依据

    Abstract:

    This paper is the result of the mineral exploration engineering.

    Objective 

    The Baiyun gold deposit, located in the eastern margin of the North China Craton, is one of the typical gold deposits in the Qingchengzi ore concentration area of Fengcheng City, Liaoning Province. By clarifying the formation age, genesis and tectonic background of the mafic dikes in the mining area, it is beneficial to deepen the understanding of the regional tectonic evolution process and the genesis of the deposit.

    Methods 

    Based on the field geological characteristics of the deposit, the lamprophyres closely related to mineralization, have been studied in terms of petrography, chronology and geochemistry in this paper.

    Results 

    LA-ICP-MS zircon U-Pb data reveals that the lamprophyre formed at (126.81±0.65) Ma, indicating that it developed in the Early Cretaceous. Petrogeochemical characteristics show that the lamprophyres belong to alkali series and potassium hypostatic rocks, which are rich in magnesium (MgO=3.63%-4.07%, Mg# =54-60), potassium (K2O/Na2O=1.26-3.47) and alkali (K2O + Na2O= 4.41%-5.23%). The lamprophyres are enriched in large ion lithophile elements (Rb, Th, U) and light rare earth elements, but depleted in high field strength elements (Nb, Ta, Ti) and heavy rare earth elements, and exhibit typical arc magmatic features associated with subduction. Isotopic geochemical characteristics demonstrate that the lamprophyres have a high concentration of radioactive Pb isotopes. The initial 176Hf/177Hf value of zircon is 0.282117-0.282471, with negative εHf(t) values (-20.80--7.81), suggesting that the magma source is the enriched lithospheric mantle influenced by subducted melt/fluid metasomatism.

    Conclusions 

    Integrated with the regional tectonic setting, the bottom of the lithospheric mantle was eroded by the heat of the asthenosphere mantle during the Cretaceous period due to the extensional environment caused by the subduction and rollback of the Paleo-Pacific plate, which resulted in partial melting and the formation of the Early Cretaceous mafic magma. The lamprophyres with arc characteristics in the Baiyun mining area may have formed along the Tanlu fault zone and its secondary faults. Therefore, the Early Cretaceous mafic magmatism in this region represents a response to the lithosphere thinning in the eastern North China Craton.

  • 致谢: 野外工作得到了辽宁招金白云黄金矿业有限公司工程师们的支持和帮助,实验测试工作得到了中国地质大学(武汉)的赵葵东教授、中国地质科学院矿产资源研究所的侯可军研究员、核工业北京地质研究院的刘牧老师的支持和帮助,文章修改过程中得到了两位匿名审稿人及编辑提出的宝贵意见,在此一并表示感谢。
  • 图  1   辽东地区大地构造简图(a)和辽东青城子矿集区地质简图及白云金矿位置(b)

    (图 1a据骆辉和李俊建, 2002修改; 图 1b据辽宁省有色地质局103队, 2019修改)
    1—大石桥组; 2—盖县组; 3—第四系; 4—古元古代花岗岩; 5—三叠纪花岗岩; 6—辉长岩; 7—煌斑岩; 8—闪长岩; 9—花岗斑岩; 10—石英斑岩; 11—伟晶岩; 12—金矿体; 13—断裂; 14—向斜/倒转向斜; 15—背斜/倒转背斜; 16—金(银)矿床; 17—铅锌矿床

    Figure  1.   Simplified geotectonic map of eastern Liaoning Province (a), simplified geological map of Qingchengzi ore-concentrated area, showing the location of the Baiyun gold deposit (b)

    (Fig. 1a is modified from Luo and Li, 2002; Fig. 1b is modified from Liaoning Nonferrous Geology Bureau 103 Liaoning Nonferrous Geology Bureau 103 Team, 2019)
    1- Dashiqiao Formation; 2- Gaixian Formation; 3- Quaternary; 4- Paleoproterozoic granite; 5- Triassic granite; 6- Gabbro; 7- Lamprophyre; 8-Diorite; 9-Granite porphyry; 10-Quartz porphyry; 11-Pegmatite; 12-Gold orebody; 13-Fault; 14-Syncline/inverted syncline; 15-Anticline/ inverted anticline; 16-Au(-Ag) deposits; 17-Pb-Zn deposits

    图  2   白云金矿二道沟矿段320 m中段的煌斑岩穿切矿体(a),煌斑岩手标本(b)以及岩相学(c)特征

    Hbl—角闪石; Pl—斜长石; Px—辉石; 红色五角星代表采样点

    Figure  2.   Photographs of the lamprophyre crosscutting the orebodies in the elevation of 320 m in the Erdaogou mining section (a), hand specimen (b), and photomicrographs (c) showing some key geological features of the lamprophyre in the Baiyun gold deposit

    Hbl-Hornblende; Pl-Plagioclase; Px-Pyroxene; The red pentacle represents the sampling point

    图  3   白云金矿煌斑岩的锆石CL图像特征以及U-Pb定年、Hf同位素测试点位

    Figure  3.   Cathodoluminescence images of zircons of the lamprophyre in the Baiyun gold deposit, with their U-Pb age data and corresponding Hf isotope analysis spots

    图  4   白云金矿煌斑岩的锆石U-Pb谐和年龄曲线(a)和加权平均年龄(b)

    Figure  4.   LA-ICP-MS zircon U-Pb Concordia (a) and weighted average age (b) diagram of the lamprophyre in the Baiyun gold deposit

    图  5   白云金矿煌斑岩的SiO2-(Na2O+K2O) 图解(a)和SiO2-K2O图解(b)

    (图 5a据Le Bas et al., 1986; 碱性和亚碱性系列的分界线据Irvine and Baragar, 1971; 图 5b据Rock, 1987

    Figure  5.   Diagrams of SiO2-(Na2O+K2O) (a) and SiO2-K2O (b) for the lamprophyres in the Baiyun gold deposit

    (Fig. 5a is after Le Bas et al., 1986, and the dividing line between basic and subbasic series is after Irvine and Baragar, 1971; Fig. 5b is after Rock, 1987)

    图  6   白云金矿煌斑岩的球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化数值引自Sun and McDonough, 1989; OIB: 洋岛玄武岩; E-MORB: 富集型洋中脊玄武岩; N-MORB: 正常型洋中脊玄武岩)

    Figure  6.   Chondrite-normalized rare earth element (REE) distribution pattern (a) and primitive mantle-normalized spider diagram (b) for the lamprophyres in the Baiyun gold deposit

    (Normalizing values are from Sun and McDonough, 1989; OIB: Oceanic island basalt; E-MORB: Enriched mid-oceanic ridge basalt; N-MORB: Normal mid-oceanic ridge basalt)

    图  7   白云金矿煌斑岩中锆石的εHf(t)值(a)和二阶段模式年龄(tDM2)(b)的频率直方图

    Figure  7.   The εHf(t) values (a) and two-stage model ages (tDM2) (b) frequency histograms of the zircons in the lamprophyre in the Baiyun gold deposit

    图  8   白云金矿煌斑岩的Nb-Nb/U图解(a)和206Pb/204Pb-207Pb/204Pb图解(b)

    (图 8a据姜耀辉等, 2006; 图 8b据Zindler and Hart, 1986; DMM—亏损地幔端元; MORB—洋中脊玄武岩; OIB—洋岛玄武岩; EMI—I型富集地幔; EMII—II型富集地幔; BSE—全硅酸盐地球; NHRL—北半球参考线)

    Figure  8.   Diagrams of Nb-Nb/U (a), and 206Pb/204Pb-207Pb/204Pb (b) for the lamprophyres in the Baiyun gold deposit

    (Fig 8a. is after Jiang et al., 2006; Fig 8b is after Zindler and Hart, 1986; DMM-Depleted mantle end member; MORB-Mid-oceanic ridge basalt; OIB-Oceanic island basalt; EMI-I-type enriched mantle; EMII-II-type enriched mantle; BSE-Bulk silicate earth; NHRL-Northern Hemisphere reference line)

    图  9   白云金矿煌斑岩的U-Pb年龄(t)-εHf(t)图解

    (DM—亏损地幔; CHUR—球粒陨石均一源储; CC—大陆地壳)

    Figure  9.   Diagram of U-Pb age(t)-εHf(t) for the lamprophyres in the Baiyun gold deposit

    (DM-Depleted mantle; CHUR-Chondrite uniform reservoir; CC-Continental crust)

    图  10   白云金矿煌斑岩的La/Yb-Dy/Yb图解(据Miller et al., 1999

    Figure  10.   Diagram of La/Yb-Dy/Yb for the lamprophyres in the Baiyun gold deposit (after Miller et al., 1999)

    图  11   白云金矿煌斑岩的构造环境判别图解

    (底图据Müller et al., 1992修改; WIP—板内环境; Arc-related—岛弧环境; PAP—后碰撞弧; CAP—大陆弧)

    Figure  11.   Diagrams of tectonic setting discrimination for the lamprophyres in the Baiyun gold deposit

    (modified after Müller et al., 1992; WIP-Within-plate; Arc-related-island arc related settings; PAP-Post collisional arc; CAP-Continental arc)

    表  1   白云金矿煌斑岩的锆石LA-ICP-MS U-Pb定年结果

    Table  1   Zircon LA-ICP-MS U-Pb dating results of the lamprophyre in the Baiyun gold deposit

    下载: 导出CSV

    表  2   白云金矿煌斑岩的主量元素(%)、稀土和微量元素(10-6)化学分析结果

    Table  2   Major (%), rare earth and trace element (10-6) data of the lamprophyres in the Baiyun gold deposit

    下载: 导出CSV

    表  3   白云金矿煌斑岩的全岩Pb同位素分析结果

    Table  3   Whole rock Pb isotope analysis results of the lamprophyres in the Baiyun gold deposit

    下载: 导出CSV

    表  4   白云金矿煌斑岩的锆石微区原位Hf同位素分析结果

    Table  4   Results of zircon in situ Hf isotopic compositions of the lamprophyre in the Baiyun gold deposit

    下载: 导出CSV
  • Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the Mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 132(4): 390-404.

    Chai Fengmei, Parat A, Zhang Zhaochong, Mao Jingwen, Dong Lianhui, Muhtar Z R. 2007. Geochemistry of the lamprophyre dykes in the SW margin of the Tarim Block and their source region[J]. Geological Review, 53(1): 11-21 (in Chinese with English abstract).

    Dai Junzhi. 2005. Characteristics of Ore-forming Fluids and Discussion on the Genesis of Au, Ag Deposits in Qingchengzi region, Liaoning Province[D]. Changchun: Jilin University (in Chinese with English abstract).

    Davies G R, Stolz A J, Mahotkin I L, Nowell G M, Pearson D G. 2006. Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites[J]. Journal of Petrology, 47(6): 1119-1146.

    Duan Xiaoxia, Liu Jianming, Wang Yongbin, Zhou Lingli, Li Yonggui, Li Bin, Zhang Zhuang, Zhang Zuolun. 2012. Geochronology, geochemistry and geological significance of Late Triassic magmatism in Qingchengzi orefield, Liaoning[J]. Acta Petrologica Sinica, 28(2): 595-606 (in Chinese with English abstract).

    Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province[J]. Lithos, 48: 237-262. doi: 10.1016/S0024-4937(99)00031-6

    Gao Jianfeng, Lu Jianjun, Lai Mingyuan, Lin Yuping, Pu Wei. 2003. Analysis of trace elements in rock samples using HR-ICPMS[J]. Journal of Nanjing University (Natural Sciences), 39(6): 844-850 (in Chinese with English abstract).

    Griffin W L, Pearson N J, Belousova E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle, LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002 Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61: 237-269.

    Hao Libo, Zhao Xin, Zhao Yuyan. 2017. Stable isotope characteristics and ore genesis of the Baiyun gold deposit, Liaoning Province[J]. Journal of Jilin University (Earth Science Edition), 47(2): 442-451 (in Chinese with English abstract).

    Hart S R. 1989. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies[J]. Earth and Planetary Science Letters, 90(3): 273-296.

    He Wenyan, Mo Xuanxue, Yu Xuehui, Dong Guochen, He Zhonghua, Huang Xiongfei, Li Xiaowei, Jiang Lili. 2014. Genesis and geodynamic settings of lamprophyres from Beiya, western Yunnan: Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes[J]. Acta Petrologica Sinica, 30(11): 3287-3300 (in Chinese with English abstract).

    Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 79(1/2): 33-45.

    Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.

    Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).

    Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523-548.

    Jia Liqiong, Mo Xuanxue, Dong Guochen, Xu Wenyi, Wang Liang, Guo Xiaodong, Wang Zhihua, Wei Shaogang. 2013. Genesis of lamprophyres from Machangqing, western Yunnan: Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes[J]. Acta Petrologica Sinica, 29(4): 1247-1260 (in Chinese with English abstract).

    Jiang Yaohui, Jiang Shaoyong, Zhao Kuidong, Ni Pei, Ling Hongfei, Liu Dunyi. 2005a. SHRIMP zircon U-Pb ages of lamprophyres in the Liaodong Peninsula and its restriction on the beginning time of lithospheric thinning in eastern China[J]. Chinese Science Bulletin, 50(19): 2161-2168 (in Chinese).

    Jiang Y H, Ling H F, Jiang S Y, Fan H R, Shen W Z, Ni P. 2005b. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg potassic quenched enclaves at Xiangshan, Southeast China[J]. Journal of Petrology, 46(6): 1121-1154.

    Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, Dai Baozhang. 2006a. Petrogenesis of Cu-bearing porphyry associated with continent-continent collisional setting: Evidence from the Yulong porphyry Cu ore-belt, east Tibet[J]. Acta Petrologica Sinica, 22(3): 697-706 (in Chinese with English abstract).

    Jiang Y H, Jiang S Y, Zhao K D, Ling H F. 2006b. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting[J]. Geological Magazine, 143(4): 457-474.

    Jiang Y H, Jiang S Y, Dai B Z, Liao S Y, Zhao K D, Ling H F. 2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China: Implications for a continental arc to rifting[J]. Lithos, 107(3/4): 185-204.

    Jiang Y H, Jiang S Y, Ling H F, Ni P. 2010. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China[J]. Mineralogy and Petrology, 100(3/4): 127-151.

    Jiang Yaohui, Wang Guochang. 2016. Petrogenesis and geodynamics of Late Mesozoic granitoids in SE China: Tectonic model involving repeated slab-advance-retreat of the Paleo-Pacific Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1073-1081 (in Chinese with English abstract).

    Johnson K T M. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures[J]. Contributions to Mineralogy and Petrology, 133(1/2): 60-68.

    Kinny P D, Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon[J]. Reviews in Mineralogy and Geochemistry, 53(1): 327-341.

    Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 27(3): 745-750.

    Li Dedong, Wang Yuwang, Zhou Guochao, Shi Yu, Xie Hongjing. 2016. Preliminary analysis of the relationship between dikes and gold mineralization in Baiyun gold deposit, Liaoning[J]. Mineral Exploration, 7(1): 113-119 (in Chinese with English abstract).

    Liang Yayun. 2017. Petrogenesis of the Early Cretaceous Mafic Dikes and Metallogenic Dynamics in Jiaodong Peninsula[D]. Beijing: China University of Geosciences (Beijing), 1-150 (in Chinese with English abstract).

    Liaoning Nonferrous Geology Bureau 103 Team. 2019. Report of Sub-Projects of Deep Resource Survey in the Baiyun Area, Liaoning Province[R]. 1-166 (in Chinese).

    Liu Guoping, Ai Yongfu. 2000. Studies on the mineralization age of Baiyun gold deposit in Liaoning[J]. Acta Petrologica Sinica, 16(4): 627-632 (in Chinese with English abstract).

    Liu Guoping, Ai Yongfu, Deng Yanchang, Zhou Guangxue. 2001. Metallogenic environment and prospecting evaluation of gold and silver deposits in Qingchengzi ore field[J]. Geology in China, 28(1): 40-45 (in Chinese with English abstract).

    Liu J, Liu F X, Li S H, Lai C K. 2019. Formation of the Baiyun gold deposit, Liaodong gold province, NE China: Constraints from zircon U-Pb age, fluid inclusion, and C-H-O-Pb-He isotopes[J]. Ore Geology Reviews, 104: 686-706.

    Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.

    Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546.

    Ludwig K R. 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 4: 1-70.

    Luo Hui, Li Junjian. 2002. Geological features of Au, Ag, Pb, Zn, Cu and Co ore deposits and its forming conditions in the eastern region of Liaoning Province, China[J]. Progress in Precambrian Research, 25(3/4): 240-245 (in Chinese with English abstract).

    Luo Y, Sun M, Zhao G C, Li S Z, Xu P, Ye K, Xia X P. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 134(3/4): 349-371.

    Ma C Q, Li Z C, Ehlers C, Yang K G, Wang R J. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China[J]. Lithos, 45(1/4): 431-456.

    Ma L, Jiang S Y, Hofman A W, Dai B Z, Hou M L, Zhao K D, Chen L H, Li J W, Jiang Y H. 2014a. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?[J]. Geochimica et Cosmochimica Acta, 124: 250-271.

    Ma L, Jiang S Y, Hou M L, Dai B A, Jiang Y H, Yang T, Zhao K D, Pu W, Zhu Z Y, Xu B. 2014b. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North China Craton[J]. Gondwana Research, 25(2): 859-872.

    Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China[J]. Geological Society, London, Special Publications, 76(1): 71-81.

    Menzies M, Xu Y, Zhang H, Fan W. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton[J]. Lithos, 96: 1-21.

    Miller C, Schuster R, Klötzli U, Frank W, Purtschellr F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 40(90): 1399-1424.

    Müller D, Rock N M S, Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study[J]. Mineralogy and Petrology, 46: 259-289.

    Nelson D R, McCulloch M, Sun S S. 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes[J]. Geochimica et Cosmochimica Acta, 50(2): 231-245.

    Nelson D R. 1992. Isotopic characteristics of potassic rocks, evidence for the involvement of subducted sediments in magma genesis[J]. Lithos, 28: 403-420.

    Nowell G M, Pearson D G, Bell D R, Carlson R W, Smith C B, Kempton P D, Noble S R. 2004. Hf isotope systematics of kimberlites and their megacrysts: New constraints on their source regions[J]. Journal of Petrology, 45(8): 1583-1612.

    Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3/4): 325-394.

    Rock N M S. 1977. The nature and origin of lamprophyres: Some definitions, distinctions, and derivations[J]. Earth-Science Reviews, 13(2): 123-169.

    Rock N M S. 1987. The nature and origin of lamprophyres: An overview[J]. In: Fitton JG and Upton BGJ (eds. ). Alkaline Igneous Rocks. Geological Society, London, Special Publications, 30(1): 191-226.

    Rock N M S, Bowes D R, Wright A E. 1991. Lamprophyres[M]. Glasgow: Blackie, 1-285.

    Rogers G, Hawkesworth C J. 1989. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge[J]. Earth and Planetary Science Letters, 91(3/4): 271-285.

    Song M C, Ding Z J, Zhang J J, Song Y X, Bo J W, Wang Y Q, Liu H B, Li S Y, Li J, Li R X, Wang B, Liu X D, Zhang L L, Dong L L, Li J, He C Y. 2021. Geology and mineralization of the Sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula, China: A review[J]. China Geology, 4(4): 686-719.

    Song Yunhong, Hao Libo, Yang Fengchao, Zhao Dongfang. 2015. Zircon SHRIMP U-Pb age and geochemistry of the Triassic Dixiongshan rock mass in Liaodong Peninsula: geological significance[J]. Geology and Resources, 24(5): 444-452 (in Chinese with English abstract).

    Song Yingxin, Song Mingchun, Sun Weiqing, Ma Xiaodong, Li Dapeng. 2018. Metallogenic epoch and regional crust evolution in the Jiaodong gold deposit, Shandong Province: Evidence from SHRIMP zircon U-Pb ages of mafic dykes[J]. Geological Bulletin of China, 37(5): 908-919 (in Chinese with English abstract).

    Stern R J. 2002. Subduction zones[J]. Reviews of Geophysics, 40(4): 1-38.

    Sun G T, Zeng Q D, Li T Y, Li A, Wang E Y, Xiang C S, Wang Y B, Chen P W, Yu B. 2019. Ore genesis of the Baiyun gold deposit in Liaoning province, NE China: constraints from fluid inclusions and zircon U-Pb ages[J]. Arabian Journal of Geosciences, 12: 299.

    Sun G T, Zeng Q D, Wang Y B, Li B, Chen P W. 2020. Geochronology and geochemistry of Mesozoic dykes in the Qingchengzi ore field, Liaoning Province, China: Magmatic evolution and implications for ore genesis[J]. Geological Journal, 55(8): 5745-5763.

    Sun S S, McDonough W S. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.

    Tarney J, Jones C E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models[J]. Journal of the Geological Society, 151(5): 855-868.

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1-312.

    Thirlwall M F, Upton B G J, Jenkins G. 1994. Interaction between continental lithosphere and Iceland plume-Sr-Nd-Pb isotope geochemistry of Tertiary basalts, NE Greenland[J]. Journal of Petrology, 35(3): 839-879.

    Wang Huichu, Lu Songnian, Zhao Fengqing, Zhong Changting. 2005. The Paleoproterozoic geological records in North China craton and their tectonic significance[J]. Geological Survey and Research, 28(3): 129-143 (in Chinese with English abstract).

    Wang Tao, Zheng Yadong, Zhang Jinjiang, Wang Xinshe, Zeng Lingshen, Tong Ying. 2007. Some problems in the study of Mesozoic extensional structure in the North China craton and its significance for the study of lithospheric thinning[J]. Geological Bulletin of China, 26(9): 1154-1166 (in Chinese with English abstract).

    Wang Yuwang, Xie Hongjing, Li Dedong, Shi Yu, Liu Fuxing, Sun Guoqiang, Sun Qiming, Zhou Guochao. 2017. Prospecting prediction of ore concentration area exemplified by Qingchengzi Pb-Zn-Au-Ag ore concentration area, eastern Liaoning Province[J]. Mineral Deposits, 36(1): 1-24 (in Chinese with English abstract).

    Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233(1/2): 103-119.

    Wu Fuyuan, Yang Jinhui, Liu Xiaoming. 2005b. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, northeast China[J]. Geological Journal of China Universities, 11(3): 305-317 (in Chinese with English abstract).

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).

    Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective[J]. Science China: Earth Sciences, 44: 2358-2372 (in Chinese with English abstract).

    Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26: 747-757.

    Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China[J]. Journal of Asian Earth Science, 145: 233-259.

    Yang Fengchao, Song Yunhong, Hao Libo, Chai Peng. 2015. Late Jurassic SHRIMP U-Pb age and Hf isotopic characteristics of granite from the Sanjiazi area in Liaodong and their geological significance[J]. Acta Geologica Sinica, 89(10): 1773-1782 (in Chinese with English abstract).

    Yang J H, Chung S L, Zhai M G, Zhou X F. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle[J]. Lithos, 73(3/4): 145-160.

    Yang J H, Sun J F, Chen F K, Wilde S A, Wu F Y. 2007a. Sources and petrogenesis of Late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern north China Craton[J]. Journal of Petrology, 48(10): 1973-1997.

    Yang J H, Wu F Y, Wilde S A, Liu X M. 2007b. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton[J]. Chemical Geology, 242(1/2): 155-175.

    Yang W, Li S G. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton[J]. Lithos, 102(1/2): 88-117.

    Yu G, Chen J F, Xue C J, Chen Y C, Chen F K, Du X Y. 2009. Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China[J]. Ore Geology Reviews, 35(3/4): 367-382.

    Zeng Qingdong, Chen Renyi, Yang Jinhui, Sun Guotao, Yu Bing, Wang Yongbin, Chen Peiwen. 2019. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province[J]. Acta Petrologica Sinica, 5(7): 1939-1963 (in Chinese with English abstract).

    Zhang Peng, Chen Dong, Zhao Yan, Kou Linlin, Yang Hongzhi, Wang Xjin, Sha Deming. 2016a. Zircon U-Pb geochronology, geochemical characteristics and its geological significance of lamprophyres in Zhenzigou Pb-Zn deposit, Liaodong[J]. The Chinese Journal of Nonferrous Metals, 26(3): 636-647 (in Chinese with English abstract).

    Zhang Peng, Li Bin, Li Jie, Chai Peng, Wang Xijin, Sha Deming, Shi Jianmin. 2016b. Re-Os isotopic dating and its geological implication of gold bearing pyrite from the Baiyun gold deposit in Liaodong Rift[J]. Geotectonica et Metallogenia, 40(4): 731-738 (in Chinese with English abstract).

    Zhang Peng, Zhao Yan, Kou Linlin, Yang Hongzhi. 2016c. Zircon U-Pb dating and its geological significance of lamprophyres from Qingchengzi orefield, Liaodong[J]. Journal of Northeastern University (Natural Science), 37(7): 1056-1060 (in Chinese with English abstract).

    Zhao Yan, Yang Hongzhi, Yang Fengchao, Zhang Peng, Gu Yuchao, Xu Jia. 2020. Genesis of the typical gold deposits in Qingchengzi orefield, Liaodong Peninsula: Evidences from S-D-O isotopes[J]. Geology and Resources, 29(1): 21-28 (in Chinese with English abstract).

    Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q L, Liu X M. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen[J]. Chemical Geology, 328: 70-88.

    Zheng Yongfei, Wu Fuyuan. 2009. Growth and reworking of cratonic lithosphere[J]. Chinese Science Bulletin, 54: 1945-1949 (in Chinese).

    Zheng Yongfei, Xu Zheng, Zhao Zifu, Dai Liqun. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere[J]. Science China: Earth Sciences, 48(4): 379-414 (in Chinese).

    Zhou Guochao, Wang Yuwang, Li Dedong, Shi Yu, Xie Hongjing. 2017. LA-ICP-MS Zircon U-Pb dating of dykes from the Baiyun gold deposit in eastern Liaoning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 620-627 (in Chinese with English abstract).

    Zhu Rixiang, Zheng Tianyu. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics[J]. Chinese Science Bulletin, 54: 1950-1961 (in Chinese).

    Zhu R X, Zhang H F, Zhu G, Meng Q R, Fan H R, Yang J H, Wu F Y, Zhang Z Y, Zheng T Y. 2017. Craton destruction and related resources[J]. International Journal of Earth Sciences, 106(7): 2233-2257.

    Zindler A, Hart S R. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14(1): 493-571.

    柴凤梅, 帕拉提·阿布都卡迪尔, 张招崇, 毛景文, 董连慧, 木合塔尔·扎日. 2007. 塔里木板块西南缘钾质煌斑岩地球化学及源区特征[J]. 地质论评, 53(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200701002.htm
    代军治. 2005. 辽宁青城子地区金、银矿床成矿流体特征及成因探讨[D]. 长春: 吉林大学, 1-106.
    段晓侠, 刘建明, 王永彬, 周伶俐, 李永贵, 李斌, 张壮, 张作伦. 2012. 辽宁青城子铅锌多金属矿田晚三叠世岩浆岩年代学、地球化学及地质意义[J]. 岩石学报, 28(2): 595-606.
    高剑峰, 陆建军, 赖鸣远, 林雨萍, 濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析[J]. 南京大学学报(自然科学版), 39(6): 844-850. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200306013.htm
    和文言, 莫宣学, 喻学惠, 董国臣, 和中华, 黄雄飞, 李小伟, 姜丽莉. 2014. 滇西北衙煌斑岩的岩石成因及动力学背景: 年代学、地球化学及Sr-Nd-Pb-Hf同位素约束[J]. 岩石学报, 30(11): 3287-3300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411014.htm
    郝立波, 赵昕, 赵玉岩. 2017. 辽宁白云金矿床稳定同位素地球化学特征及矿床成因[J]. 吉林大学学报(地球科学版), 47(2): 442-451. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702011.htm
    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
    贾丽琼, 莫宣学, 董国臣, 徐文艺, 王梁, 郭晓东, 王治华, 韦少港. 2013. 滇西马厂箐煌斑岩成因: 地球化学、年代学及Sr-Nd-Pb-Hf同位素约束[J]. 岩石学报, 29(4): 1247-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304012.htm
    姜耀辉, 蒋少涌, 赵葵东, 倪培, 凌洪飞, 刘敦一. 2005. 辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约[J]. 科学通报, 50(19): 2161-2168. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200519016.htm
    姜耀辉, 蒋少涌, 凌洪飞, 戴宝章. 2006. 陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J]. 岩石学报, 22(3): 697-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603019.htm
    姜耀辉, 王国昌. 2016. 中国东南部晚中生代花岗岩成因与深部动力学机制——古太平洋板块反复俯冲-后退模式[J]. 矿物岩石地球化学通报, 35(6): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201606003.htm
    李德东, 王玉往, 周国超, 石煜, 解洪晶. 2016. 辽宁白云金矿区岩脉与成矿作用浅谈[J]. 矿产勘查, 7(1): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201601013.htm
    李德东, 王玉往, 王伟, 邱金柱, 李生辉, 张志超, 周国超. 2020. 辽宁青城子地区煌斑岩与找矿预测[J]. 地质找矿论丛, 35(3): 301-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202003006.htm
    梁亚运. 2017. 胶东早白垩世基性脉岩岩石成因与成矿动力学驱动[D]. 北京: 中国地质大学(北京), 1-150.
    辽宁省有色地质局103队. 2019. 辽宁省白云地区深部资源调查子项目成果报告[R]. 1-166.
    刘国平, 艾永富. 2000. 辽宁白云金矿床成矿时代探讨[J]. 岩石学报, 16(4): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004026.htm
    刘国平, 艾永富, 邓延昌, 周广学. 2001. 青城子矿田金银矿床成矿环境和找矿评价[J]. 中国地质, 28(1): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200101009.htm
    骆辉, 李俊建. 2002. 辽东裂谷Au、Ag、Pb、Zn、Cu、Co金属矿床地质特征和成矿条件[J]. 前寒武纪研究进展, 25(3/4): 240-245. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ2002Z1023.htm
    宋英昕, 宋明春, 孙伟清, 马晓东, 李大鹏. 2018. 胶东金矿成矿时代及区域地壳演化——基性脉岩的SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质通报, 37(5): 908-919. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201805013.htm
    宋运红, 郝立波, 杨凤超, 赵东芳. 2015. 辽东三叠纪弟兄山岩体SHRIMP U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 24(5): 444-452. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201505009.htm
    王惠初, 陆松年, 赵风清, 钟长汀. 2005. 华北克拉通古元古代地质记录及其构造意义[J]. 地质调查与研究, 28(3): 129-143. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200503000.htm
    王涛, 郑亚东, 张进江, 王新社, 曾令森, 童英. 2007. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J]. 地质通报, 26(9): 1154-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200709018.htm
    王玉往, 解洪晶, 李德东, 石煜, 刘福兴, 孙国强, 孙启明, 周国超. 2017. 矿集区找矿预测研究——以辽东青城子铅锌-金-银矿集区为例[J]. 矿床地质, 36(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201701001.htm
    吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 11(3): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503003.htm
    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
    吴福元, 徐义刚, 朱日祥, 张国伟. 2014. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 44: 2358-2372. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201411002.htm
    杨凤超, 宋运红, 郝立波, 柴鹏. 2015. 辽东三家子地区晚侏罗世花岗岩SHRIMP U-Pb年龄、Hf同位素特征及地质意义[J]. 地质学报, 89(10): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201510005.htm
    曾庆栋, 陈仁义, 杨进辉, 孙国涛, 俞炳, 王永彬, 陈沛文. 2019. 辽东地区金矿床类型、成矿特征及找矿潜力[J]. 岩石学报, 35(7): 1939-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907001.htm
    张朋, 陈冬, 赵岩, 寇林林, 杨宏智, 王希今, 沙德铭. 2016a. 辽东榛子沟铅锌矿煌斑岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 中国有色金属学报, 26(3): 636-647. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201603020.htm
    张朋, 李斌, 李杰, 柴鹏, 王希今, 沙德铭, 时建民. 2016b. 辽东裂谷白云金矿载金黄铁矿Re-Os定年及其地质意义[J]. 大地构造与成矿学, 40(4): 731-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604008.htm
    张朋, 赵岩, 寇林林, 杨宏智. 2016c. 辽东青城子矿田煌斑岩锆石U-Pb年龄及其地质意义[J]. 东北大学学报(自然科学版), 37(7): 1056-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201607030.htm
    赵岩, 杨宏智, 杨凤超, 张朋, 顾玉超, 胥嘉. 2020. 辽东半岛青城子矿田典型金矿成因: 来自硫、氢、氧同位素的证据[J]. 地质与资源, 29(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202001003.htm
    郑永飞, 吴福元. 2009. 克拉通岩石圈的生长和再造[J]. 科学通报, 54: 1945-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914002.htm
    郑永飞, 徐峥, 赵子福, 戴立群. 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 48(4): 379-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804002.htm
    周国超, 王玉往, 李德东, 石煜, 解洪晶. 2017. 辽东白云金矿区脉岩锆石的U-Pb年代学研究[J]. 矿物岩石地球化学通报, 36(4): 620-627. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201704020.htm
    朱日祥, 郑天愉. 2009. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报, 54: 1950-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914003.htm
图(11)  /  表(4)
计量
  • 文章访问数:  1922
  • HTML全文浏览量:  962
  • PDF下载量:  1895
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2022-09-27
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭