• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

辽东凤凰山正长花岗岩SHRIMP U-Pb年龄、地球化学特征与陆内伸展作用

宋运红, 杨凤超, 郝立波, 闫国磊, 赵东芳, 张哲寰

宋运红, 杨凤超, 郝立波, 闫国磊, 赵东芳, 张哲寰. 辽东凤凰山正长花岗岩SHRIMP U-Pb年龄、地球化学特征与陆内伸展作用[J]. 中国地质, 2022, 49(5): 1687-1698. DOI: 10.12029/gc20220521
引用本文: 宋运红, 杨凤超, 郝立波, 闫国磊, 赵东芳, 张哲寰. 辽东凤凰山正长花岗岩SHRIMP U-Pb年龄、地球化学特征与陆内伸展作用[J]. 中国地质, 2022, 49(5): 1687-1698. DOI: 10.12029/gc20220521
SONG Yunhong, YANG Fengchao, HAO Libo, YAN Guolei, ZHAO Dongfang, ZHANG Zhehuan. SHRIMP U-Pb age, geochemical characteristics and its introcontinental extension of Fenghuangshan syenogranite in the east Liaoning[J]. GEOLOGY IN CHINA, 2022, 49(5): 1687-1698. DOI: 10.12029/gc20220521
Citation: SONG Yunhong, YANG Fengchao, HAO Libo, YAN Guolei, ZHAO Dongfang, ZHANG Zhehuan. SHRIMP U-Pb age, geochemical characteristics and its introcontinental extension of Fenghuangshan syenogranite in the east Liaoning[J]. GEOLOGY IN CHINA, 2022, 49(5): 1687-1698. DOI: 10.12029/gc20220521

辽东凤凰山正长花岗岩SHRIMP U-Pb年龄、地球化学特征与陆内伸展作用

基金项目: 

中国地质调查局项目 DD20221779

中国地质调查局项目 DD20190520

详细信息
    作者简介:

    宋运红,女,1983年生, 硕士,高级工程师,地球化学专业, 主要从事地球化学调查及研究工作; E-mail:yunhong408@163.com

  • 中图分类号: P588.121;P597.3

SHRIMP U-Pb age, geochemical characteristics and its introcontinental extension of Fenghuangshan syenogranite in the east Liaoning

Funds: 

the project of China Geological Survey DD20221779

the project of China Geological Survey DD20190520

More Information
    Author Bio:

    SONG Yunhong, female, born in 1983, senior engineer, mainly engaged in geochemical investigation and research work; E-mail: yunhong408@163.com

  • 摘要:
    研究目的 

    辽宁丹东地区发育着一期A型花岗岩,因其特殊的成因演化,特定的构造背景及其重要的地球动力学意义而备受关注。

    研究方法 

    本文通过对辽宁丹东凤凰山岩体SHRIMP锆石U-Pb年代学、岩石地球化学特征的分析,探讨了该岩体形成时代、岩石成因及地球动力学背景。

    研究结果 

    辽东凤凰山黑云母正长花岗岩锆石U-Pb年龄分别为(122.3±1.7)Ma、(125.0±1.7)Ma、(122±2)Ma,代表岩浆结晶年龄,凤凰山正长花岗岩侵位时代属于早白垩世。地球化学分析结果显示,SiO2含量为65.65%~73.62%,K2O为3.52%~5.76%,Na2O为3.64%~4.26%,Al2O3为13.4%~15.49%,A/CNK值1.02~1.46,属铝过饱和型。碱度率AR在2.71~5.13,基本在铝质A型花岗岩AR值范围内,FeOt/MgO比值为4.69~18.05,表现为A型花岗岩的A1和A2过渡类型。Rb/Nb比值为6.02~8.64,明显高于大陆壳的Rb/Nb比值2.2~4.7,说明陆壳物质对岩体成岩影响较大,从而导致Rb的含量增加。相对富集大离子亲石元素Rb、Th,Zr、Hf,亏损Sr、P、Ba、Ti、Nb。稀土总量较高,轻重稀土之间的分馏不明显,Eu具明显的负异常。

    结论 

    综上,凤凰山正长花岗岩可能产生于陆内剪切相关的伸展环境,应为自中侏罗世开始由板块俯冲引起的东亚大陆边缘构造过程的响应。

    创新点:辽宁丹东地区凤凰山黑云母正长花岗岩属于早白垩世A型花岗岩,综合分析认为该花岗岩可能产生于陆内剪切相关的伸展环境,应为自中侏罗世开始由板块俯冲引起的东亚大陆边缘构造过程的响应。

    Abstract:

    This paper is the result of the geological survey engineering.

    Objective 

    Aperiod of A-type granite is developed in Dandong, Liaoning Province, which has been widely concerned because of its special genetic evolution, specific tectonic setting and important geodynamic significance.

    Methods 

    In this paper, the SHRIMP zircon U-Pb chronology and petrogeochemical characteristics of the Fenghuangshan pluton in Dandong, Liaoning Province, were analyzed to explore the formation age, petrogenesis and geodynamic background of the pluton.

    Results 

    The zircon U-Pb ages of the biotite syenogranite in Fenghuangshan, Liaodong are (122.3±1.7) Ma, (125.0±1.7) Ma and (122±2) Ma, representing that the magma of the biotite syenogranite in Fenghuangshan crystallized and intruded in the Early Cretaceous. Geochemical analysis shows that the SiO2 content is 65.65%-73.62%, whereas that of K2O and Na2O is 3.52%-5.76% and 3.64%-4.26%, respectively. They also contain 13.4%~15.49% of Al2O3, with A/CNK ratio of 1.02-1.46, indicative of their peraluminous nature. The alkalinity rate (AR) ranges from 2.71 to 5.13, and this range is within the AR of aluminous A-type granites. Its FeOt/MgO ranges from 4.69 to 18.05, which shows the A1 and A2 transition types of A-type granites. The Rb/Nb ranges from 6.02 to 8.64, which display a higher level than that of the continental crust of 2.2-4.7. This implies that continental crust components, which lead to an increase in Rb content, had a significant influence on its formation. The biotite syenogranites are relatively enriched in large ion lithophileelements Rb, Th, Zr, Hf, and depleted in Sr, P, Ba, Ti, Nb. The total content of rare earth elements is high, the fractionation between light and heavy rare earth elements is not obvious, and Eu has obvious negative anomalies.

    Conclusions 

    In summary, Fenghuangshan pluton might have been produced in stretching environment related to intracontinental shearing, which ought to be a response to the tectonization of the East Asia continental margins caused by the subduction of plates starting from the Middle Jurassic.

  • 储层流动单元是指“影响流体流动的、岩性和岩石物理性质在内部相似的、垂向上和横向上连续分布的储集带”(Hearn et al., 1984Ebanks, 1987)。近年来,国内外诸多学者(Amaefule et al., 1993熊琦华等,1994Ti et al., 1995穆龙新等,1996焦养泉等,1998李阳,2003陈程等,2003王京红等,2004Ehrenberg et al., 2005窦松江等,2008董凤娟等,2012于蒙等,2017刘鼎等,2018万琼华等,2019)进行了储层流动单元的研究。储层流动单元已经在高、中、低渗储层表征中得到普遍应用,但在特低渗储层研究中仍然很少涉及。以松辽盆地中央坳陷三肇凹陷升554断块下白垩统泉头组四段扶余油层特低渗储层为例,确定储层流动单元划分标准,划分流动单元类型,表征流动单元非均质性特征及流动单元发育主控因素,讨论流动单元油藏开发效果,以期为特低渗储层流动单元研究提供一定借鉴意义,为特低渗油藏开发提供一定参考依据。

    研究区升554断块位于松辽盆地中央坳陷三肇凹陷东北部(图 1)。在松辽盆地发展演化过程中,三肇凹陷内部保持相对稳定,继承性地发展成为深断陷和坳陷中心(迟元林等,2000),其西接大庆长垣,东临朝阳沟阶地,北连明水阶地、东北隆起,是松辽盆地主要烃源凹陷(殷进垠,2002)。

    图  1  研究区区域构造位置图
    1—研究区范围;2—一级构造单元;3—二级构造单元;4—松辽盆地边界;5—城市
    Figure  1.  Regional geological map showing structural location of studied area
    1- Studied area; 2- Primary building unit; 3- Secondary building unit; 4- Boundary of Songliao Basin; 5- City

    研究区自下而上发育有上侏罗统火石岭组、白垩系沙河子组、营城组、登娄库组、泉头组、青山口组、姚家组、嫩江组、四方台组、明水组以及古近系和新近系。从下白垩统泉头组沉积开始,研究区共经历了3次沉降和3次主要构造反转(陈昭年,2008)。从泉头组至嫩江组沉积晚期,研究区在拉张作用下稳定沉降,表现为稳定的坳陷沉积。

    泉头组四段扶余油层为研究区产油主要接替层位(刘宗堡等,2008),厚约200 m,是在青山口组一段底突然湖侵之前发育起来的陆相充填沉积建造(刘宗堡等,2009),其上覆青山口组暗色泥页岩为生油源岩(侯启军等,2009霍秋立等,2012白静等,2020)。沉积序列整体呈砂泥互层,序列底部为灰绿、灰黑色湖沼泥质沉积,泥岩水平层理发育,含介形虫、轮藻、叶肢介、双壳类等门类化石(叶得泉等,2002刘振文等,2006张智礼等,2014),是较好的标志层。

    归纳前人储层流动单元划分研究成果(熊伟等,2005宋子齐等,2007董凤娟等,2012刘鼎等,2018王伟等,2018徐铮等,2018),发现储层流动单元划分方法分为两类。一是数学方法为主的定量储层参数分析法,二是地质方法为主的定性分析法。定量储层参数分析法主要包括流动层带指标划分法、孔隙度-渗透率划分法、渗透率差异指标法、存储系统-储集系统划分法、概率神经网络(PNN)法、非均质综合指数(IRH)法、熵权TOPSIS法、聚类分析法、灰色系统理论等方法,定性分析法主要包括沉积相划分法、岩性-物性划分法、孔喉几何形状法等方法。

    储层流动单元划分可分为两步(吴胜和,1999),第一步确定连通砂体与渗流屏障的分布(万琼华等,2019),第二步确定连通体内部的渗流差异。渗流屏障主要有3种类型:泥质屏障、胶结带屏障和闭合型断层屏障(窦松江等,2008),其形成主要取决于沉积作用、成岩作用和构造作用,其中沉积作用影响泥质屏障的发育,成岩作用控制胶结带屏障的形成,而构造作用主要决定断层的开启与闭合程度,形成闭合型断层屏障。

    研究区扶余油层埋深大,以泥质胶结为主,泥质含量10%~20%,胶结类型以再生、接触-再生胶结为主,可形成泥质胶结带屏障。由图 2可知,扶余油层渗流屏障主要为(粉砂质)泥岩屏障,分布于河流相韵律层上部,表现为河道间、天然堤、决口扇的泥质沉积。自然伽马曲线(GR)和电阻率曲线(RMN)表现为靠近泥岩基线、低幅微齿特征。扶余油层渗流屏障也多分布于三角洲相韵律层下部分流间湾泥质沉积。

    图  2  扶余油层渗流屏障与连通体识别剖面示意图
    1—渗流屏障;2—连通体;3—泥岩;4—粉砂质泥岩;5—泥质粉砂岩;6—粉砂岩;7—细-粉砂岩;8—细砂岩;9—油浸;10—含油
    Figure  2.  Schematic diagram of seepage barriers and connected bodies identification profile of Fuyu oil layers
    1-Seepage barrier; 2-Inner connected sand; 3-Mudstone; 4-Silty mudstone; 5-Pelitic siltstone; 6-Siltstone; 7-Fine-siltstone; 8-Fine sandstone; 9-Oilimmersion; 10-Oiliness

    储层连通单元受控于稳定的泥岩、泥质隔夹层的分布(陈程等,2003),即连通体受控于流动单元渗流屏障的分布。由图 2可知,扶余油层连通体岩性主要为粉砂岩、细粉砂岩及细砂岩,主要分布于河流相韵律层下部,表现为河道砂质沉积。自然伽马曲线(GR)和电阻率曲线(RMN)表现为远离泥岩基线、高幅、钟形或箱形、底部突变、微齿特征。扶余油层连通体也多分布于三角洲相韵律层上部砂质沉积。

    优选影响储层渗流能力且反映储集能力的岩石物理参数有效孔隙度和渗透率(陈欢庆等,2011)作为划分流动单元类型的主控核心参数。有效孔隙度直接反映储层储集能力,而渗透率则是表征储层渗流能力的首选指标。根据测井解释报告(S53- F1、S532-F1和S104-21井)35个数据点,将声波时差与有效孔隙度进行拟合(图 3a)得到公式(1),将渗透率与有效孔隙度进行拟合(图 3b)得到公式(2)。

    图  3  扶余油层Φ-AC拟合交汇图(a)和K-Φ拟合交汇图(b)
    Figure  3.  Φ-AC fitting intersection diagram (a) and K-Φ fitting intersection diagram (b) of Fuyu oil layers

    (1)

    式中Φ—有效孔隙度,%;AC—声波时差,μs/m。

    (2)

    式中Φ—有效孔隙度,%;K—渗透率,10-3 μm2

    取心井有效孔隙度、渗透率为岩心分析数据,而非取心井则由测井曲线二次数字处理所得。利用康尼—卡曼关系式求出标准孔隙度指数、储层质量指数及流动带指数值(何更生,1994),三者皆是表征储层储集能力、渗流能力的重要参数。相关表达式如式(3)、式(4)、式(5)和式(6)所示。

    (3)

    式中Φz—标准孔隙度系数,无量纲;Φ—有效孔隙度,%。

    (4)

    式中RQI—储层质量指数,µm;Φ—有效孔隙度,%;K—渗透率,10-3 µm2

    (5)

    将式(5)等号两边取对数得:

    (6)

    式中FZI—流动带指数,µm;RQI—储层质量指数,µm;Φz—标准孔隙度系数,无量纲。

    由公式(6)可知,具有相同FZI值的样品点在RQIΦz双对数坐标系上呈直线关系,具有不同FZI值的样品点在RQIΦz双对数坐标系上呈相互平行的直线关系,即在RQIΦz的双对数坐标系上,位于FZI值为常数的直线上的样品点,属于同一流动单元,适用于流动单元的划分(王清辉等,2019)。扶余油层流动单元之间的ΦΦz、和RQI值差异较小(表 1),而KFZI值差异较大,尤以FZI值的差异最为显著,可精确反映储层非均质性特征,因此流动带指数法(FZI值)可作为流动单元的划分依据和标准。

    表  1  扶余油层流动单元属性参数表
    Table  1.  Attribute parametere of flow units of Fuyu oil layers
    下载: 导出CSV 
    | 显示表格

    将95个取心井数据点(S25、S53、S552、S554和S555井)投在RQI-Φz双对数关系图上(图 4a),扶余油层可划分为E类、G类和P类3种类型的流动单元。同样,在FZI值累计概率百分数图上(图 4b),数据点显示出明显的三段式,以FZI值0.5 µm和0.8 µm为界可将扶余油层划分出E类、G类和P类3种类型流动单元,且两者吻合很好。

    图  4  扶余油层储层流动单元类型划分图
    a—RQI-Φz双对数关系图;b—FZI值累计概率百分数图;1—E类流动单元;2—G类流动单元;3—P类流动单元
    Figure  4.  Division of flow unit type for Fuyu reservoir
    a-RQI-Φz double logarithmic relationship diagram; b- FZI value cumulative probability percentage diagram; 1- Type E flow unit; 2- Type G flow unit; 3- Type P flow unit

    表 1可知,Φ值介于5.7%~17.5%,表明扶余油层流动单元为低孔—特低孔储层。K值介于0.01~4.8×10-3 µm2,表明流动单元为特低渗储层。从E类至P类流动单元,KRQIFZI值逐渐减小,表明流动单元渗流能力逐渐减弱,储层非均质性较强。

    E类流动单元流动带指数FZI平均值为1.20 μm,K平均值为3.17×10-3 µm2RQI平均值为0.16 μm,具有相对较强的渗流能力;G类流动单元流动带指数FZI平均值为0.65 μm,K平均值为1.58×10-3 µm2RQI平均值为0.11 μm,渗流能力中等;P类流动单元流动带指数FZI值平均值为0.33 μm,K平均值为0.27× 10-3 µm2RQI平均为0.04 μm,渗流能力较差。

    以扶余油层主力层FⅠ5、FⅠ6和FⅠ7小层为例。在扶余油层主力层流动单元分布和油藏分布平面图(图 5)上,E类流动单元发育不良,主要为G类、P类流动单元分布,不同流动单元之间、流动单元与渗流屏障之间呈不规则带状、片状交错或相间分布,E类流动单元主要分布在西南构造高部位,正断层形成了渗流通道,不同位置又因断层上下盘错动形成泥岩渗流屏障。由流动单元分布和油藏分布剖面示意(图 6)可知,同一油井不同小层可发育不同类型的流动单元,同一小层不同油井可发育不同类型的流动单元。以上均表明主力层流动单元储层非均质性较强。

    图  5  扶余油层主力层流动单元分布和油藏分布平面图
    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—正断层;6—剖面;7—油层;8—差油层;9—油水同层;10—取心井;11—采油井;12—注水井
    Figure  5.  Plane of the main layers flow units showing distribution of reservoirs in Fuyu
    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Normal fault; 6- Profile; 7- Oil layer; 8- Poor oil layer; 9- Water within oil layer; 10- Cored well; 11- Oil production well; 12- Water injection well
    图  6  扶余油层主力层流动单元分布和油藏分布剖面图
    1—P类流动单元;2—G类流动单元;3—E类流动单元;4—渗流屏障;5—油层;6—差油层;7—油水同层;8—分层界线及层号
    Figure  6.  Profile showing distribution of the main layers flow units and reservoirs of Fuyu oil layers
    1-Type P flow unit; 2-Type G flow unit; 3-Type E flow unit; 4- Seepage barrier; 5- Oil layer; 6- Poor oil layer; 7- Water within oil layer; 8- Oil layer boundary and number

    归纳前人“相控”流动单元方面的诸多研究,发现存在两种观点。一是各类流动单元类型与不同的沉积微相具有较好的对应关系(王志章等,2010),二是同一种流动单元往往对应多种沉积微相类型,同一种沉积微相类型也可能存在多种流动单元(于蒙等,2017)。

    松辽盆地中央坳陷扶余油层发育河流—浅水三角洲相(黄薇等,2013),三肇凹陷扶余油层发育大型浅水三角洲(朱筱敏等,2012),研究区扶余油层自下而上发育湖泊相、三角洲相和曲流河相(周路路,2013)。扶余油层主力层发育曲流河相,沉积微相较为单调,主要为河道、河道间及溢岸砂(图 7)。各类流动单元分布于河道、溢岸砂中,河道间形成渗流屏障。对比主力层沉积微相平面分布图(图 7)与流动单元分布和油藏分布平面图(图 5)可知,主力层的沉积微相总体上控制了流动单元分布形态及渗流边界,发育良好的P类、G类流动单元呈不规则片状、线状随机分布于河道、溢岸砂中。少量发育的E类流动单元则有规律地分布于河道中(图 7)。

    图  7  扶余油层主力层沉积微相平面分布图
    1—河道;2—溢岸砂;3—决口扇;4—天然堤;5—河道间;6—正断层;7—取心井;8—采油井;9—注水井;10—E类流动单元
    Figure  7.  4Plane of sedimentary microfacies in the main layers of Fuyu oil layers
    1- Channel; 2- Effusion sand; 3- Splay; 4- Natural levee; 5- Interchannel; 6- Normal fault; 7- Cored well; 8- Oil production well; 9- Water injection well; 10- Type E flow unit

    研究区发育的构造均为开启型正断层,继承性发育的正断层在泉头组沉积时期受稳定的拉张应力作用持续发育。根据主力层流动单元分布和油藏分布平面图(图 5)上西南部断层两侧S50-62井和S54-64井钻遇的流动单元实际发育情况,分析断层对流动单元发育的控制作用。如图 8所示,正断层下盘S50-62井钻遇FⅠ5、FⅠ7小层砂岩,上盘S54-64井钻遇FⅠ5、FⅠ7小层泥岩,断层作为渗流通道,在下盘砂岩中形成E类、P类流动单元,上盘泥岩形成渗流屏障。同样,两井均钻遇FⅠ6小层砂岩,上下盘分别形成G类、P类流动单元。因此,认为研究区开启型正断层控制着储层流动单元的发育和分布。考虑到断层上下盘不断错动,断层开启程度不断变化,上下盘砂、泥接触部位与面积不断变化,认为流动单元的空间分布状态也是动态变化的。

    图  8  扶余油层断层控制流动单元发育模式图
    Figure  8.  Pattern of fault controlling flow units development of Fuyu oil layers

    利用扶余油层流动单元划分标准,对扶余油层各主力层流动单元进行划分,取得很好划分效果(图 9)。由图 9可知,数据点表现出明显的三段式分布,划分出3种流动单元类型,且以G类、P类流动单元为主,E类流动单元较少。认为文中储层流动单元划分标准可为松辽盆地其他地区特低渗储层流动单元划分提供一定参考依据。

    图  9  扶余油层主力层FZI值累计概率百分数图
    1—FⅠ5小层;2—FⅠ6小层;3—FⅠ7小层
    Figure  9.  FZI value cumulative probability percentage of main layers of Fuyu oil layers
    1- FⅠ5 oil layer; 2- FⅠ6 oil layer; 3- FⅠ7 oil layer

    扶余油层油藏具有上生下储的特征(霍秋立等,1999邹才能等,2007),上覆青山口组的油源沿着继承性发育的开启型正断层向下“倒灌”、“注入式”垂向运移至扶余油层(迟元林等,2000刘宗堡等,2009张雷等,2010),并侧向运移赋存在特低渗砂质储层中(连承波等,2011),形成大面积分布的岩性油藏(谭保祥等,1995迟元林等,2000张顺等,2011黄薇等,2013)和构造-岩性油藏,以空间成因单砂体为控制因素形成的单一岩性圈闭为最基本的控油与聚油单元(孙雨等,2009孙雨等,2018),断层与砂体之间的空间配置关系则控制了油气的运移与圈闭。

    研究区扶余油层除主力层油层有效砂厚大、横向连续性较好,而其他小层或多为薄层或横向连续性差。特以主力层油藏为例,讨论储层流动单元油藏的分布及开发效果。

    主力层油藏电测解释为油层、差油层及油水同层(图 5)。由图 5可知,特低渗储层流动单元空间分布对油藏的空间分布控制有限,两者无明显的相关性,表现为油层、差油层及油水同层随机分布于E类至P类各类流动单元中。油藏分布受控于断层,主要沿着正断层两侧分布。

    扶余油层FⅠ5小层流动单元钻遇的S50-76、S46-70、S44-68和S52-60等井(图 5a图 10),注水开发见效(图 10),电测解释为油层。同样,FⅠ7小层流动单元钻遇的大部井,如S50-82、S44-64、S42-86、S48-74、S42-74、S40-82等(图 5c图 11),注水开发效果好(图 11),电测解释为油层。因此,对于特低渗储层而言,认为储层流动单元开发见效范围控制了油藏实际分布范围。

    图  10  扶余油层FⅠ5小层油井生产柱状图
    1—日产液;2—日产油;3—累产油
    Figure  10.  Oil wells production histogram of FI5 layer of Fuyu oil layers
    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production
    图  11  扶余油层FⅠ7小层油井生产柱状图
    1—日产液;2—日产油;3—累产油
    Figure  11.  Oil wells production histogram of FI7 layer of Fuyu oil layers
    1- Daily fluid production; 2- Daily oil production; 3- Accumulated oil production

    由扶余油层FⅠ5小层油井生产柱状图(图 10)可知,从E类至P类特低渗储层流动单元,油井的日产油量、累产油量总体呈现出逐渐上升的趋势(个别井例外),这与高、中、低渗储层呈现逐渐下降的趋势截然不同。E类流动单元钻遇的3口井(S42- 82、S50-54、S50-62井)或有效砂体厚度(砂体射开厚度)小或紧靠泥岩渗流屏障(图 5),导致注水效果差,油井产量小;G类流动单元钻遇井虽射开厚度大但紧靠泥岩渗流屏障,导致开发效果一般;P类流动单元钻遇的几口井或射开厚度较大或紧靠正断层形成的渗流通道,因而注水效果好,油井产量高。

    由扶余油层FⅠ7小层油井生产柱状图(图 11)可知,注水见效的G类与P类储层流动单元,在相同的生产周期内,油井的日产油量、累产油量近乎相同,而注水开发不见效的E类至P类储层流动单元,油井的产量也近乎相同。可见,对于特低渗储层而言,不同类型的流动单元自身渗流能力的差异对油藏开发效果的影响已不明显。

    普遍认为,储层流动单元渗流能力越强,油藏注水开发效果越好(陈程等,2003石占中等,2003王长发等,2003张振红等,2005吴小斌等,2011李照永,2011),但研究区特低渗储层流动单元却无该趋势甚至表现出相反的趋势。考虑到扶余油层特低渗储层渗流能力极弱,且又为低孔—特低孔储层,认为流动单元自身的渗流能力对油藏开发的作用已经很小,而不同流动单元之间的渗流能力差异所引起油藏开发效果的不同也已不明显,油藏开发效果主要取决于砂体射开厚度、注水效果等开发因素以及砂体厚度、断层渗流通道、泥岩渗流屏障等地质因素。

    (1)扶余油层特低渗油气储层流动单元划分出E、G、P三种类型,其中E类FZI值大于0.8 μm,G类FZI值介于0.5~0.8 μm,P类FZI值小于0.5 μm。从E类至P类流动单元,渗流能力逐渐减小,储层非均质性较强。

    (2)扶余油层特低渗油气储层流动单元发育及分布受沉积相和断层构造双重控制。

    (3)在特低渗尺度内,油气储层流动单元本身渗流能力极弱,其自身的渗流能力对油藏开发效果的影响已经很小,而不同流动单元之间的渗流能力差异所引起油藏开发效果的不同也已不明显,油藏开发效果取决于砂体射开厚度、注水效果等开发因素以及砂体厚度、断层等地质因素。

  • 图  1   中国东部主要构造单元图(a)、辽东凤凰山岩体地质简图(b)及采样位置图(c)

    Figure  1.   Simplified geological map of eastern China, showing major tectonic units (a), geological map of the Fenghuangshan pluton in the Liaodong Peninsula (b) and geological map of sampling location map(c)

    图  2   辽东凤凰山岩体黑云母正长花岗岩

    岩石标本照片(a)、正交偏光(b)、单偏光(c)下的显微镜照片,Q—石英;Or—正长石;Bt—黑云母;Pl—斜长石

    Figure  2.   Biotite syenogranite sampled from Fenghuangshan pluton in Dandong, Liaoning Province

    rock specimen (a), photo under crossed polarized light (b), photo under single polaroid glass (c), Q-Quartz; Or-Orthoclase; Bt-Biotite; Pl-Plagioclase

    图  3   辽东凤凰山黑云母正长花岗岩SHRIMP U-Pb年龄

    Figure  3.   SHRIMP zircon U-Pb concordia diagram and average age of the syenogranites sampled from Fenghuangshan pluton in Dandong, Liaoning Province

    图  4   辽宁丹东凤凰山岩体花岗岩的K2O-SiO2 (a, 据Rollinson, 1993)、QAP图解(b,据Le Maitre et al., 1989)及A/CNK-A/NK图解(c, 据Maniar and Piccoli, 1989)

    1a—硅英岩(石英岩);1b—富石英花岗岩类;2—碱长花岗岩;3a—花岗岩(正长花岗岩);3b—花岗岩(二长花岗岩);4—花岗闪长岩;5—英云闪长岩;6*—石英碱长正长岩;6—碱长正长岩;7*—石英正长岩;7—正长岩;8*—石英二长岩;8—二长岩;9*—石英二长闪长岩、石英二长辉长岩;9—二长闪长岩、二长辉长岩;10*—石英闪长岩、石英辉长岩、石英斜长岩;10—闪长岩、辉长岩、斜长岩

    Figure  4.   K2O-SiO2 diagram, (a, after Rollinson, 1993), QAP diagram (b, after Le Maitre et al., 1989) and A/CNK-A/NK diagram (c, after Maniar and Piccoli, 1989) of granite sampled from Fenghuangshan pluton in Dandong, Liaoning Province

    1a-Quartzolite; 1b-Quartz-rich-granitioids; 2-Alkali-feldspar-granite; 3a-Syenogranite; 3b-Monzogranite; 4-Granodiorite; 5-Tonalite; 6*-Quartz-alkali-feldspar-syenite; 6-Alkali-feldspar-syenite; 7*-Quartz-syenite; 7-Syenite; 8*-Quartz-monzonite; 8-Monzonite; 9*-Quartz-monzodiorite; quartz-monzogabbro; 9-Monzodiorite; monzogabbro; 10*-Quartz-diorite; quartz-gabbro; and quartz-anorthosite; 10-Diorite, gabbro, and anorthosite

    图  5   辽宁丹东凤凰山正长花岗岩的稀土配分曲线(a)和微量蛛网图(b)(标准值据Sun and Mcdonough, 1989)

    Figure  5.   Rare earth element distribution curves (a) and trace element spider diagram (b) of granite sampled from Fenghuangshan pluton in Dandong, Liaoning Province (the normal value is from Sun and Mcdonough, 1989)

    图  6   辽宁丹东凤凰山岩体花岗岩的K2O-SiO2判别图解(a,底图据Collins et al., 1982)、(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)相关图(b,据Whalen et al., 1987)及Nb-Y-Ce构造环境判别图(c,据Eby, 1992)

    A1—A1型花岗岩; A2—A2型花岗岩;FG—(M+I+S)型分异花岗岩;OTG—未分异(M+I+S)型花岗岩

    Figure  6.   K2O-SiO2 diagram (a, after Collins et al., 1982), (Na2O+K2O)/CaO-(Zr+Nb+Ce+Y) diagram (b, after Whalen et al., 1987) and Nb-Y-Ce diagram (c, after Eby, 1992)of granite sampled from Fenghuangshan pluton in Dandong, Liaoning Province

    A1-A1 type granite; A2 -A2 type granite; FG-(M + I +S) type differentiated granite; OTG-Undifferentiated (M + I + S) type granite

    表  1   辽东凤凰山黑云母正长花岗岩锆石SHRIMP U-Pb定年数据

    Table  1   SHRIMP U-Pb dating of the syenogranite sampled in the Fenghuangshan pluton

    下载: 导出CSV

    表  2   辽东凤凰山黑云母正长花岗岩主量元素含量(%)

    Table  2   Major elements (%) data of the Fenghuangshan pluton in Liaodong area

    下载: 导出CSV

    表  3   辽东凤凰山黑云母正长花岗岩微量元素含量(10-6)

    Table  3   Trace and rare-earth elements(10-6) data for the Fenghuangshan pluton

    下载: 导出CSV
  • Barbarin B. 1990. Granitoids main petrogenetic classification in relation to origin and tectonic setting[J]. Geochemical Journal, 25: 227-238.

    Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 46: 605-626.

    Bonin B, Azzouni S A, Bussy F, Ferrag S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings[J]. Lithos, 45(1/4): 45-70.

    Belousova E A, Griffin W L, O Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143: 602-622. doi: 10.1007/s00410-002-0364-7

    Chen Shuliang. 2003. Finding report 1∶25000 Regional Geological Survey of Dandong and Donggang City[R]. Dalian Branch of Liaoning Institute of Geology and Mineral Resources, 51-60(in Chinese).

    Claoue-Long J C, Compston W, Roberts J, Fanning C M. 1995. Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis[J]. SEPN Special Publication, 5: 3-31.

    Collins W J, Beams S D, White A J, Chappell B W. 1982. Nature and origin of A-type granite with particular reference to South eastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189-200.

    Dong Shuwen, Zhang Yueqiao, Long Changxing, Yamg Zhenyu, Qi Qiang, Wang Tao, Hu Jianmin, Chen Xuanhua. 2007. The Jurassic tectonic reform and the new interpretation of Yanshan Movement in China[J]. Acta Geologica Sinica, 81(11): 1449-1461 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.11.001

    Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26: 115-134.

    Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644.

    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical rocesse in the crust mantle system[J]. Chemical Geology, 120: 347-359.

    King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of alumious A-type granites from the Lachlan fold belt, Southeastern. Australia[J]. Journal of Petrology, 38: 371-391.

    Le Maitre R W, Bateman P, Dudek A. 1989. A classification of igneous rocks and glossary of terms[J]. Blackwell, Oxforo, 11: 25-37.

    Lin Jingqian, Tan Dongjuan, Chi Xiaoguo. 1992. Mesozoic Granites in Jiaodong and Liaotung Peninsulas[M]. Beijing: Geological Publishing House, 1-208(in Chinese).

    Maniar P D, Piccolli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101 (5): 635-643.

    Maruyama S, Seno T. 1986. Orogeng and relative plate Motions: Example of the Japanese Islands[J]. Tectonphysics, 127: 305-329.

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983.

    Rollinson H. 1993. Using geochemical data: Evaluation, presentation, interpretation[J]. Longman Scientific and Technical, London, 52-61.

    Shang Luning, Zhang Yong, Yao Yongjian, Wu Hao, Hu Gang, Tian Zhixian. 2020. Late Cenozoic evolution of East China continental margin and restoration of plate interaction processes[J]. Geology in China, 47(5): 1323-1336(in Chinese with English abstract).

    Song Biao, Zhang Yuhai, Wan Yusheng, Jian Ping. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48 (Supp.): 26-31(in Chinese with English abstract).

    Song Yunhong, Hao Libo, Yang Fengchao, Zhao Dongfang. 2015. Zircon SHRIMP U-Pb age, geochemical characteristics and geological significance of the Triassic Dixiongshan granites in Liaodong Peninsula[J]. Geology and Resources, 24(5): 444-449(in Chinese with English abstract).

    Song Yunhong, Yang Fengchao, Yan Guolei, Wei Minghui, Shi Shaoshan. 2016. SHRIMP U-Pb ages and Hf isotopic compositions of Paleoproterozoic granites from the eastern part of Liaoning Province and their tectonic significance[J]. Acta Geologica Sinca, 90(10): 2620-2636(in Chinese with English abstract).

    Sun Jinfeng, Yang Jinhui. 2009. Early Cretaceous A-type granite and craton destruction in eastern North China[J]. Earth Science——Journal of China University of Geosciences, 34(1): 137-147(in Chinese with English abstract).

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[C]//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins. Geological Society. London, Special Publications, 42(1): 312-345.

    Sylvester P J. 1989. Post-collisional alkaline granites[J]. Journal of Geology, 97: 261-280.

    Wang Dezi, Zhao Guangtao and Qiu Jiansheng. 1995. The tectonic constraint on the Late Mesozoic A-type granites in eastern China[J]. Geological Journal of Universities, 1(2): 13-22(in Chinese with English abstract).

    Wang Qiang, Zhao Zhenhua, Xiong Xiaolin. 2000. Determination of late Yanshanian A-type granite in Tongbai-Dabie orogenic belt[J]. Acta Petrologica et Mineralogica, 19(4): 297-306(in Chinese with English abstract).

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419.

    Williams I S. 1998. U-Th-Pb geochronology by ion microprobe[C]//Mckibben M A, Shanks III W C, Ridley W I(eds.). Applications of Microanalytical Techniques to Understanding Mineraling Processes[J]. Reviews in Economic Geology, 7: 1-35.

    Williams I S, Buick C I, Cartwright I. 1996. An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reylolds Range, Central Australia[J]. Journal of Metamorphic Geology, 14: 29-47.

    Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233: 103-119.

    Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187: 143-173.

    Yang Fengchao, Song Yunhong, Yang Jialin, Gu Yuchao, Xu Jia, Yang Hongzhi. 2020. The first reported of zircon SHRIMP U-Pb age of amphibolite in Liaodong on the eastern of North China Craton[J]. Geology in China, 47(3): 892-893(in Chinese).

    Yang Fengchao, Sun Jinggui, Song Yunhong, Zhang Peng, Bi Zhongwei. 2016. SHRIMP U-Pb age, Hf isotope composition and geochemical characteristics of Neoarchean granitic complex in Liaodong Lianshanguan Area, NE China[J]. Earth Science, 41(12): 2008-2018(in Chinese with English abstract).

    Yang Fengchao, Song Yunhong, Yang Jialin, Shen Xin, Gu Yuchao. 2018. SHRIMP U-Pb age and geochemical characteristics of granites in Wulong-Sidaogou gold deposit, East Liaoning[J]. Geotectonica et Metallogenia, 42(5): 135-142(in Chinese with English abstract).

    Yang Fengchao, Song Yunhong, Hao Libo, Chai Peng. 2015. Late Jurassic SHRIMP U-Pb age and Hf iostopic characteristics of granite from the Sanjiazi Area in Liaodong and their geological significance[J]. Acta Geologica Sinca, 89(10): 1773-1782(in Chinese with English abstract).

    Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006. A hybrid origin for the Qianshan A-type granites, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89(1/2): 89-106.

    Yang J H, Wu F Y, Wilde S A, Belousova E, Griffin W L. 2008. Mesozoic decratonization of the North China block[J]. Geology, 36(6): 467-470.

    Yang Jinhui, Wu Fuyuan, Zhong Lin, Zhu Meifei, Simon A W. 2004. The magmas mixing petrogenesis of A-type granites : Qianshan pluton granites in Dandong, Liaoning, the geochemistry of its Inclusions and the isotopic evidence for Sr-Nd-Hf[C]//National Workshop on Petrology and Geochemistry, 319-320(in Chinese with English abstract).

    Yang Zhongjie. 2021. Zircon U-Pb ages and petrogeochemical characteristics of Paleoproterozoic granitic pegmatites in Xiuyan area, eastern Liaoning Province, and their geological significance[J]. Geological Review, 67(2): 523-541(in Chinese with English abstract).

    Zhang Tian, Zhang Yueqiao. 2007. Mesozoic intrusive magmatism sequence and its structural constraints in the Jiaodong Peninsula[J]. Geological Journal of China Universities, 13(2): 323-336(in Chinese with English abstract).

    Zhao Yan, Li Shenghui, Yang Zhongzhu, Zhang Peng, Chen Jingsheng, Zhang Jing, Chen Cong. 2022. Zircon U-Pb dating of monzogranite dikes in Wengquangou Biron orefield, Eastern Liaoning: Constraints on metallogenic age[J]. Geology and Resources, 31(3): 342-350(in Chinese with English abstract).

    董树文, 张岳桥, 龙长兴, 杨振宁, 季强, 王涛, 胡建民, 陈宝华. 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm
    陈树良. 2003. 1∶25万区域地质调查报告: K51C004003(丹东)、J51C001003(东港市)[R]. 辽宁省地质矿产调查院大连分院, 51-60.
    林景仟, 谭东娟, 迟效国. 1992. 胶辽半岛中生代花岗岩[M]. 北京: 地质出版社, 1-208.
    尚鲁宁, 张勇, 姚永坚, 吴浩, 胡刚, 田陟贤. 2020. 中国东部大陆边缘晚新生代构造演化及板块相互作用过程重建[J]. 中国地质, 47(5): 1323-1336. http://geochina.cgs.gov.cn/geochina/article/abstract/20200504?st=search
    宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(增刊): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
    宋运红, 杨凤超, 闫国磊, 魏明辉, 石绍山. 2016. 辽东地区古元古代花岗岩SHRIMP U-Pb年龄、Hf同位素组成及构造意义[J]. 地质学报, 90(10): 2620-2636. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201610007.htm
    宋运红, 郝立波, 杨凤超, 赵东芳. 2015. 辽东三叠纪弟兄山岩体SHRIMP U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 24(5): 444-449. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201505009.htm
    孙金凤, 杨进辉. 2009. 华北东部早白垩世A型花岗岩与克拉通破坏[J]. 地球科学——中国地质大学学报, 34(1): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901015.htm
    王德滋, 赵广涛, 邱检生. 1995. 中国东部晚中生代A型花岗岩的构造制约[J]. 高校地质学报, 1(2): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.001.htm
    王强, 赵振华, 熊小林. 2000. 桐柏—大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 19(4): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200004001.htm
    杨仲杰. 2021. 辽东岫岩地区古元古代花岗伟晶岩锆石U-Pb年龄、地球化学特征及地质意义[J]. 地质论评, 67(2): 523-541. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102023.htm
    杨凤超, 宋运红, 杨佳林, 顾玉超, 胥嘉, 杨宏志. 2020. 华北克拉通东部辽东地区斜长角闪岩锆石SHRIMP U-Pb年龄报道[J]. 中国地质, 47(3): 892-893. http://geochina.cgs.gov.cn/geochina/article/abstract/20200329?st=search
    杨凤超, 孙景贵, 宋运红, 张朋, 毕中伟. 2016. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 地球科学; 41(12): 2008-2018. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612005.htm
    杨凤超, 宋运红, 杨佳林, 沈鑫, 顾玉超. 2018. 辽东五龙. 四道沟金矿集区花岗杂岩SHRIMP U-Pb年龄、地球化学特征及地质意义[J]. 大地构造与成矿学, 42(5): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805013.htm
    杨凤超, 宋运红, 郝立波, 柴鹏. 2015. 辽东三家子地区晚侏罗世花岗岩SHRIMP U-Pb年龄、Hf同位素特征及地质意义[J]. 地质学报, 89(10): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201510005.htm
    杨进辉, 吴福元, 锺霖, 朱美妃, Simon A W. 2004. A型花岗岩的岩浆混合成因: 辽东千山花岗岩及包体的地球化学、Sr-Nd-Hf同位素证据[C]//2004年全国岩石学与地球化学研讨会, 319-320.
    张田, 张岳桥. 2007. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 13(2): 323-336. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200702014.htm
    赵岩, 李生辉, 杨中柱, 张朋, 陈景胜, 张璟, 陈聪. 2022. 辽东翁泉沟硼矿区二长花岗岩脉锆石U-Pb年龄及对成矿时代的制约[J]. 地质与资源, 31(3): 342-350. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202203004.htm
  • 期刊类型引用(5)

    1. 吴穹螈,王少鹏,张岚,翟上奇,常会江. 浅水三角洲储层流动单元划分. 长江大学学报(自然科学版). 2023(02): 84-95 . 百度学术
    2. 荆锡贵,李凤杰,张达,李宁,苗贺,丁锐. 松辽盆地腰南5井上白垩统嫩江组一段遗迹化石组合及其沉积环境. 中国地质. 2023(06): 1848-1856 . 本站查看
    3. 马永宁,魏龙杰,吴珍珍,何子琼,傅塬,郭艳琴. 靖安油田杨66井区延10储层非均质性及流动单元. 西安石油大学学报(自然科学版). 2022(04): 1-9 . 百度学术
    4. 王春伟,董佑桓,杨勇,杨向东,陈鑫. 辫状河油藏层内非均质性及其对剩余油分布的影响. 地质与资源. 2022(06): 770-775 . 百度学术
    5. 景涛涛,韩宇宁,石雅琨,马永宁,魏龙杰,王美霞,郭艳琴. 靖安油田Y66区延9_1储层流动单元研究. 河北地质大学学报. 2021(03): 32-36 . 百度学术

    其他类型引用(1)

图(6)  /  表(3)
计量
  • 文章访问数:  1927
  • HTML全文浏览量:  906
  • PDF下载量:  1713
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2022-09-16
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-10-24

目录

/

返回文章
返回
x 关闭 永久关闭