Characteristics of Middle Jurassic overpressure and tight gas accumulation in Shengbei sub−sag, Turpan−Hami Basin, Xinjiang
-
摘要:研究目的
吐哈盆地胜北洼陷致密气已成为拓展勘探新战场、发现新储量的重要领域,致密储层发育特征及成藏机理已成为亟需解决的关键科学问题之一。
研究方法运用地球化学、地球物理学和油气地质等综合研究方法,对中侏罗统致密气源储特征和成藏期次进行了系统分析,厘定了超压发育特征及对致密气成藏的控制作用。
研究结果(1)主力烃源岩的有机质类型以III型干酪根为主,整体处于以生气为主的成熟期。中侏罗统发育低孔低渗—低孔特低渗致密储层,平均孔隙度为7.1%,平均渗透率为0.074×10−3 μm2。孔隙类型以次生溶蚀孔为主,同时发育黏土矿物层间孔、黄铁矿晶间孔和微裂缝。(2)中侏罗统发育以压力传导和生烃增压为成因的超压,压力系数主要分布在1.2~1.5,纵向上超压顶界面位于七克台组中上部。超压主要分布在胜北洼陷东部和东南部,断裂系统控制超压分布范围。(3)烃源岩排烃持续时间较长,从晚三叠世至今,至少存在两期主要的天然气充注期,两期主要成藏期次为:晚侏罗世至早白垩世和古新世至今。
结论中侏罗统致密气藏以“远源−近源两期成藏、压力−断裂协同输导、断裂−超压协调控制”的成藏模式为主。本文研究成果将为胜北洼陷致密气勘探开发提供科学依据和技术支持。
创新点:(1)揭示胜北洼陷致密气成藏的源储特征,超压与断裂系统相伴生,控制生排烃和致密气充注;(2)厘定了源储、超压(压力)、断裂等协同控制下的致密气成藏模式。
Abstract:This paper is the result of oil and gas exploration engineering.
ObjectiveThe tight gas in the Shengbei subsag of the Turpan−Hami Basin has become an important field for expanding new exploration battlefields and discovering new reserves. The development characteristics and accumulation mechanism of tight reservoirs have become one of the key scientific issues that need to be solved urgently.
MethodsUsing comprehensive research methods such as geochemistry, geophysics and oil and gas geology, the characteristics and accumulation stages of tight gas sources and reservoirs in the Middle Jurassic were systematically analyzed, and characteristics of overpressure development and the controlling effect on tight gas accumulation were determined.
ResultsThe following conclusions are drawn: (1) The organic matter type of the main source rocks is mainly type III kerogen, and the whole is in the mature stage dominated by gas generation. Middle Jurassic developed low porosity and low permeability−low porosity and ultra−low permeability tight reservoirs, with an average porosity of 7.1% and an average permeability of 0.074×10−3 μm2. The pore type is dominated by secondary dissolution pores, while clay mineral interlayer pores, pyrite intercrystalline pores and micro−fractures are developed. (2) The Middle Jurassic developed overpressure caused by pressure conduction and hydrocarbon generation pressurization. The pressure coefficient was mainly distributed between 1.2 and 1.5. The overpressure top interface was located in the middle and upper part of the Qiketai Formation vertically. The overpressure is mainly distributed in the east and southeast of the Shengbei subsag, and the fault system controls the distribution range of the overpressure. (3) The hydrocarbon expulsion from source rocks lasted for a long time. From Late Triassic to the present, there have been at least two main periods of natural gas charging, and the two main accumulation periods are: Late Jurassic to Early Cretaceous and Paleocene to date.
ConclusionsThe Middle Jurassic tight gas reservoirs are dominated by the accumulation model of "two−stage accumulation from far−source and near−source, pressure−fault coordinated transport, and fault−overpressure coordinated control". The research results in this paper will provide scientific basis and technical support for tight gas exploration and development in Shengbei Sub−sag.
Highlights:(1) Reveal the source rock and reservoir characteristics of tight gas accumulation in Shengbei Sub−Sag, and overpressure is accompanied by fault system to control hydrocarbon generation and expulsion and tight gas charging; (2) Summarize the tight gas accumulation model under the cooperative control of source and reservoir, overpressure (pressure), fault, etc.
-
-
图 1 吐哈盆地构造单位划分图(a)、胜北洼陷等T0构造图(b)
1—研究区域;2—盆地边界;3—构造单元边界;4—井名及井位;5—等T0等值线;6—地震剖面位置;7—连井剖面位置
Figure 1. Division of tectonic units of TuHa Basin (a), T0 structural map of Shengbei Sub−sag (b)
1−Study area; 2−Basin boundary; 3−Structural unit boundary; 4−Well name and well location; 5−Isoline of T0; 6−Seismic profile position; 7−Well−connected profile location
图 2 吐哈盆地地层综合柱状图(据苟红光等,2019)
1—泥岩;2—粉砂岩;3—砂岩;4—含粒砂岩;5—砾砂岩;6—煤;7—石膏层;8—玄武岩;9—凝灰岩
Figure 2. Comprehensive stratigraphic histogram of Turpan−Hami Basin (after Gou Hongguang et al., 2019)
1−Mudstone; 2−Siltstone; 3−Sandstone; 4−Grain−bearing sandstone; 5−Gravel sandstone; 6−Coal; 7−Gypsum layer; 8−Basalt; 9−Tuff
图 3 胜北洼陷侏罗系泥岩有机碳(a)和生烃潜量平均值分布直方图、烃源岩热解最高峰温和氢指数交汇图(b)、烃源岩镜质体反射率Ro与深度关系图(c)
J3q—齐古组;J2q—七克台组;J2s—三间房组;J2x—西山窑组;J1s—三工河组;J1b—八道湾组
Figure 3. Histogram of mean distribution of organic carbon and hydrocarbon generation potential of mudstone in Jurassic (a); Intersection diagram of peak pyrolysis temperature and hydrogen index of source rocks (b); Diagram of Ro and depth of source rocks in Shengbei Sub−sag (c)
J3q−Qigu Formation; J2q−Qiketai Formation; J2s−Sanjianfang Formation; J2x−Xishanyao Formation; J1s−Sangonghe Formation; J1b−Badaowan Formation
图 4 致密砂岩孔隙度和渗透率关系图(a)、典型样品扫描电镜分析图(b~i)
J2q—七克台组; J2s—三间房组;J2x—西山窑组;b—胜北5井,J2q,4002.13 m,灰色细砂岩,长石粒内溶蚀孔;c—台参2井,J2s,4481.84 m,含粒不等粒砂岩,长石粒内溶蚀孔;d—胜北10井,J2s,3900.00 m,灰色荧光砂岩,黏土矿物层间孔;e—连北5井,J2s,3896.23 m,灰色细砂岩,黏土矿物层间孔;f—连砂1井,J2x,3764.44 m,灰色砂岩,黄铁矿晶间孔;g—连砂1井,J2x,3764.44 m,灰色砂岩,黄铁矿晶间孔;h—胜北5井,J2q,4002.13 m,灰色细砂岩,颗粒内微裂缝;i—台参2井,J2s,4481.84 m,浅灰色荧光含粒不等粒砂岩,微裂缝
Figure 4. The relationship between porosity and permeability of tight sandstone (a), Sem analysis of typical samples (b−i)
J2q−Qiketai Formation; J2s−Sanjianfang Formation; J2x−Xishanyao Formation; b−Well Shengbei 5, J2q−4002.13 m, gray fine sandstone, dissolution pores in feldspar grains; c−Well Taican 2, J2s, 4481.84 m, granule−bearing anisomeric sandstone, dissolution pores in feldspar grains; d−Well Shengbei 10, J2s, 3900.00 m, gray fluorescent sandstone, clay mineral interbedded pores; e−Well Lianbei 5, J2s, 3896.23 m, gray fine sandstone with clay mineral interbedded pores; f−Well Liansha 1, J2x, 3764.44 m, gray sandstone, pyrite intercrystalline pores; g−Well Liansha 1, J2x, 3764.44 m, gray sandstone, pyrite intercrystalline pores; h−Well Shengbei 5, J2q, 4002.13 m, fine gray sandstone with microfractures in the grain; i−Well Taican 2, J2s, 4481.84 m, light gray fluorescent granulated anisomeric sandstone, microfracture
图 7 胜北26−胜北11−胜北5−连北5−连砂1−胜北10井超压顶面泥岩段连井对比剖面
1—荧光泥质砂岩;2—砂砾岩;3—荧光粒状砂岩;4—粒状砂岩;5—泥质粉砂岩;6—细砂岩;7—粉砂岩;8—粗砂岩;9—灰色泥岩;10—灰质泥岩;11—粉砂质泥岩;12—黑色碳质泥岩;13—灰色含灰泥岩;14—黑色煤
Figure 7. Well Shengbei 26−Shengbei 11−Shengbei 5−Lianbei 5−Liansha 1−Shengbei 10 overpressure top mudstone section comparison profile
1−Fluorescent argillaceous sandstone; 2−Glutenite; 3−Fluorescent granular sandstone; 9−Grey mudstone; 10−Lime mudstone; 11−Silt mudstone; 12−Black carbonaceous mudstone; 13−Grey lime mudstone; 14−Black coal
图 8 七克台组(a)、三间房组(b)、西山窑组(c)地层压力系数预测与断裂分布叠合图
1—区域大断裂;2—小断裂;3—井位与井名
Figure 8. Prediction of formation pressure coefficient and superimposition of fault distribution of Qiketai Formation(a), Sanjianfang Formation (b), Xishanyao Formation (c)
1−Regional large fault; 2−Small fault; 3−Well location and well name
图 10 中侏罗统典型样品包裹体识别与均一温度分布(a)、台参2井热演化、温度与埋藏史模拟图(b)
P—二叠系;T—三叠系;J—侏罗系;K—白垩系;Pal—古近世;N+Q—新近系+第四系;K2+Esh—上白垩系+鄯善群;K1—下白垩统;J3k—喀拉扎组;J3q—齐古组;J2q—七克台组;J2s—三间房组;J2x—西山窑组;J1s—三工河组;J1b—八道湾组;T2-3xq—小泉沟群;P3cf−T1cf—上−下苍房沟群;P2td—桃东沟群
Figure 10. Inclusion identification and homogenization temperature distribution of typical Middle Jurassic samples(a), simulation diagram of thermal evolution, temperature and burial history of Well Taican 2 (b)
P−Permian; T−Triassic; J−Jurassic; K−Cretaceous; Pal−Paleocene; N+Q−Neogene+Quaternary; K2+Esh−Upper Cretaceous+Shanshan Group; K1−Lower Cretaceous; J3k−Kalazha Group; J3q−Qigu Formation; J2q−Qiketai Formation; J2s−Sanjianfang Formation; J2x−Xishanyao Formation; J1s−Sangonghe Formation; J1b−Badaowan Formation; T2−3xq−Xiaoquangou Group; P3cf−T1cf−Upper−Lower Cangfanggou Group; P2td−Taodonggou Group
图 11 胜北洼陷近东西向典型地震剖面解释图(a)、胜北洼陷中侏罗统致密气成藏模式图(b)
1—原岩;2—砂体;3—甜点;4—断层;5—压力传导方向;K—白垩系;J3k—喀拉扎组;J3q—齐古组;J2q—七克台组; J2s—三间房组;J2x—西山窑组;J—侏罗系
Figure 11. Interpretation of typical near E-W seismic profiles(a), model diagram of tight gas accumulation in middle Jurassic in Shengbei Sub-sag of TuHa Basin(b)
1−Original rock; 2−Sand body; 3−Sweet spot; 4−Fault; 5−Pressure transmission direction; K−Cretaceous; J3k−Kalazha Formation; J3q−Qigu Formation; J2q−Qiketai Formation; J2s−Sanjianfang Formation; J2x−Xishanyao Formation; J−Jurassic
-
[1] Bowers G L. 1995. Pore−pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling and Completion, 10(2): 89−95. doi: 10.2118/27488-PA
[2] Cao Hua, Gong Jingjing, Wang Guifeng. 2006. The cause of overpressure and its relationship with reservoir forming[J]. Natural Gas Geoscience, 17(3): 422−425 (in Chinese with English abstract).
[3] Feng Y, Huang Z L, Wang E Z, Zhang H, Li T J, Liang Y. 2020. The hydrocarbon generation and expulsion features of source rocks and tight oil potential of the second member of the Qiketai Formation, Shengbei area in the Turpan–Hami Basin, NW China[J]. Geological Journal, 56(1): 337−358.
[4] Gou Hongguang, Zhang Pin, She Jiachao, Wang Zhiyong, Lin Lin, Zhang Yiting. 2019. Petroleum geological conditions, resource potential and exploration direction in Turpan−Hami Basin[J]. Marine Origin Petroleum Geology, 24(2): 85−96 (in Chinese with English abstract).
[5] Hao Aisheng, Li Jian, Guo Jianying, Wu Hao, Ran Qigui, Li Zhisheng, Qi Xuening, Zhang Lu, Wang Xiaobo. 2021. Characteristics and exploration direction of tight sandstone gas reservoirs in the Lower Jurassic of Turpan−Hami Basin[J]. Natural Gas Geoscience, 32(8): 1212−1222 (in Chinese with English abstract).
[6] Hua Y Q, Guo X W, Tao Z, He S, Dong T, Han Y J, Yang R. 2021. Mechanisms for overpressure generation in the Bonan sag of Zhanhua depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 128: 105032. doi: 10.1016/j.marpetgeo.2021.105032
[7] Li Hongzhe, Yang Zhanlong, Wu Qingpeng, Wan Chuanzhi. 2006. The Application of sedimentary facies amalyses in lithologic pool—Taking Turpan−Hami Basin Jurassic serious and Cretaceous serious as examples[J]. Natural Gas Geoscience, 17(5): 698−702 (in Chinese with English abstract).
[8] Li S L, Ma Y Z, Gomez E. 2021. Importance of modeling heterogeneities and correlation in reservoir properties in unconventional formations: Examples of tight gas reservoirs[J]. Journal of Earth Science, 32(4): 809−817. doi: 10.1007/s12583-021-1430-2
[9] Li Tianjun, Huang Zhilong, Zhang Yiting, Wang Rui, Zhang Hua, Zhou Zaihua. 2021. Lithofacies characteristics and genetic model of shallow lacustrine fine−grained sediments and its geological significance for shale oil in the Qiketai Formation in the Shengbei subsag, Turpan−Hami basin[J]. Acta Geologica Sinica, 95(12): 3869−3884 (in Chinese with English abstract).
[10] Li W, Chen Z X, Huang P H, Yu Z C, Min L, Lu X S. 2021. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development, 48(3): 625−640. doi: 10.1016/S1876-3804(21)60050-2
[11] Li Zaiguang, Yang Zhanlong, Li Hongzhe, Guo Jingyi, Huang Yunfeng, Wu Qingpeng. 2006. Detection of hydrocarbon potentials in Shengbei area of Tuha Basin[J]. Natural Gas Geoscience, 17(4): 532−537 (in Chinese with English abstract).
[12] Li Zaiguang, Yang Zhanlong, Li Lin, Guo Jingyi, Huang Yunfeng, Wu Qingpeng, Li Hongzhe. 2006. Hydrocarbon distribution of Shengbei area[J]. Natural Gas Geoscience, 17(1): 94−96 (in Chinese with English abstract).
[13] Liu B, Huang Z L, Tu X X, Zhang J X, Mu K X. 2011. Structural styles and hydrocarbon accumulation of the northern piedmont belt in the Taibei Sag, Turpan−Hami Basin[J]. Petroleum Exploration and Development Online, 38(2): 152−158. doi: 10.1016/S1876-3804(11)60023-2
[14] Liu Jiangtao, Huang Zhilong, Wang Hai. 2021. Dominant control factors of hydrocarbon distance accumulating in western arc−like zone of Turpan−hami Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 34(2): 24−30 (in Chinese with English abstract).
[15] Liu Y K, He Z L, He S, Zhang D W, Li T Y, Wang X L. 2021. A new quantitative model and application for overpressure prediction in carbonate formation[J]. Journal of Petroleum Science and Engineering, 198: 108145. doi: 10.1016/j.petrol.2020.108145
[16] Luo Shengyuan, He Sheng, Jin Qiuyue, Yang Ruizhi, Zhang Junli. 2015. Overpressure system classification and structure characteristic in Bonan Sag[J]. Journal of Jilin University(Earth Science Edition), 45(1): 37−51 (in Chinese with English abstract).
[17] Shi W Z, Xie Y H, Wang Z F, Li X S, Tong C X. 2013. Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin[J]. Journal of Asian Earth Sciences, 66(8): 150−165.
[18] Tang Wenbin, Xu Shenglin, Chen Hongde, Chen Anqing, Liang Jie, Xiao Dongsheng. 2017. Discovery of seismites in the first member of the Kelaza Formation in central Taibei Sag of Tuha Basin and its geological significance[J]. Oil & Gas Geology, 38(2): 345−354 (in Chinese with English abstract).
[19] Wang Jinsong, Wang Hua, Liang Shijun, Huang Weidong, Lü Xueju. 2009. Analysis on exploration of natural gas in thr Turpan−Hami Basin[J]. Petroleum Geology & Experiment, 31(4): 333−337 (in Chinese with English abstract).
[20] Wang Peng, Sun Linghui, Wang He, Li Zi’an. 2020. Microscopic pore structure of Ahe tight sand gas reservoirs of the Low Jurassic in Kuqa Depression and its controls on tight gas enrichment[J]. Oil & Gas Geology, 41(2): 295−304 (in Chinese with English abstract).
[21] Wang W , Lu S F, Chen X, Li X W, Li J J, Tian W C. 2015. A new method for grading and assessing the potential of tight sand gas resources: A case study of the Lower Jurassic Shuixigou Group in the Turpan−Hami Basin, NW China[J]. Petroleum Exploration and Development Online, 42(1): 66−73.
[22] Wang Y P, Zou Y R, Zhan Z W, Lin X H, Liang T. 2018. Origin of natural gas in the Turpan−Hami Basin, NW China: Evidence from pyrolytic simulation experiment[J]. International Journal of Coal Geology, 195: 238−249. doi: 10.1016/j.coal.2018.06.007
[23] Wang X, He S, Stuart J. Jones, Yang R, Wei A, Liu C H, Liu Q, Cheng C Y, Liu W M. 2019. Overpressure and its positive effect in deep sandstone reservoir quality of Bozhong Depression, offshore Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 182: 106362. doi: 10.1016/j.petrol.2019.106362
[24] Wu Yanjie, Wang shuai, He Lei, Wang Zidi, Nie Guoquan. 2021. Research on the burial history and the thermal evolution history of the Jurassic coal−measure source rocks in the eastern margin of Xiaocaohu Sag[J]. Northwestern Geology, 54(4): 180−191 (in Chinese with English abstract).
[25] Yang Zhanlong, Chen Qilin, Guo Jingyi. 2005. The particularity analysis of stratigraphy reservoirs in Shengbei depression[J]. Natural Gas Geoscience, 16(2): 181−185, 189 (in Chinese with English abstract).
[26] Zeng Fancheng, Zhang Changmin, Li Zhongcheng, Zhang Guoyi, Zhang Chi, Wang Yongjun, Sun Wentie, Deng Qingjie. 2021. Blocky pyroclastic rocks in the Cretaceous Shahezi Formation in Wangfu gas field, southern Songliao Basin[J]. Oil & Gas Geology, 42(2): 481−493 (in Chinese with English abstract).
[27] Zhao H J, Zhang M, Wang Z Y. 2010. Geochemical characteristics and possible origin of natural gas in the Taibei Depression, Turpan−Hami Basin, China[J]. Chinese Journal of Geochemistry, 29(3): 307−312. doi: 10.1007/s11631-010-0461-7
[28] Zhao Jingzhou, Li Jun, Cao Qing, Bai Yubin, Er Chuang, Wang Xiaomei, Xiao Hui, Wu Weitao. 2013. Hydrocarbon accumulation patterns of large tight oil and gas fields[J]. Oil & Gas Geology, 34(5): 573−583 (in Chinese with English abstract).
[29] Zhan Pin, Gou Hongguang, Long Fei, She Jiachao, Wang Zhiyong, Jin Yin. 2018. Natural gas geological conditions, resource potential and exploration direction in Turpan−Hmi Basin[J]. Natural Gas Geoscience, 29(10): 1531−1541 (in Chinese with English abstract).
[30] 曹华, 龚晶晶, 汪贵锋. 2006. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 17(3): 422−425. doi: 10.3969/j.issn.1672-1926.2006.03.029 [31] 苟红光, 张品, 佘家朝, 王志勇, 林霖, 张亦婷. 2019. 吐哈盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 24(2): 85−96. doi: 10.3969/j.issn.1672-9854.2019.02.009 [32] 郝爱胜, 李剑, 国建英, 吴浩, 冉启贵, 李志生, 齐雪宁, 张璐, 王晓波. 2021. 吐哈盆地下侏罗统致密砂岩气藏特征与勘探方向[J]. 天然气地球科学, 32(8): 1212−1222. doi: 10.11764/j.issn.1672-1926.2021.07.005 [33] 李红哲, 杨占龙, 吴青鹏, 万传治. 2006. 沉积相分析在岩性油气藏勘探中的应用—以吐哈盆地胜北洼陷中侏罗统−白垩系为例[J]. 天然气地球科学, 17(5): 698−702. doi: 10.3969/j.issn.1672-1926.2006.05.020 [34] 李在光, 杨占龙, 李红哲, 郭精义, 黄云峰, 吴青鹏. 2006. 吐哈盆地胜北地区含油气性检测[J]. 天然气地球科学, 17(4): 532−537. doi: 10.3969/j.issn.1672-1926.2006.04.022 [35] 李在光, 杨占龙, 李琳, 郭精义, 黄云峰, 吴青鹏, 李红哲. 2006. 胜北地区油气分布规律[J]. 天然气地球科学, 17(1): 94−96. doi: 10.3969/j.issn.1672-1926.2006.01.019 [36] 李天军, 黄志龙, 张亦婷, 王瑞, 张华, 周在华. 2021. 吐哈盆地胜北洼陷七克台组浅水湖相细粒沉积岩岩相特征、成因模式及页岩油意义[J]. 地质学报, 95(12): 3869−3884. doi: 10.3969/j.issn.0001-5717.2021.12.021 [37] 刘江涛, 黄志龙, 王海. 2010. 吐哈盆地西部弧形带油气远距离运移成藏主控因素[J]. 中国石油大学学报(自然科学版), 34(2): 24−30. [38] 罗胜元, 何生, 金秋月, 杨睿之, 张君立. 2015. 渤南洼陷超压系统划分及结构特征[J]. 吉林大学学报(地球科学版), 45(1): 37−51. [39] 唐文斌, 徐胜林, 陈洪德, 陈安清, 梁杰, 肖冬生. 2017. 吐哈盆地台北凹陷中部地区喀拉扎组一段震积岩的发现及其地质意义[J]. 石油与天然气地质, 38(2): 345−354. doi: 10.11743/ogg20170214 [40] 王劲松, 王华, 梁世君, 黄卫东, 吕学菊. 2009. 吐哈盆地天然气勘探潜力分析[J]. 石油实验地质, 31(4): 333−337. doi: 10.3969/j.issn.1001-6112.2009.04.004 [41] 王朋, 孙灵辉, 王核, 李自安. 2020. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用[J]. 石油与天然气地质, 41(2): 295−304. doi: 10.11743/ogg20200206 [42] 吴琰杰, 王帅, 何磊, 王紫笛, 聂国权. 2021. 吐哈盆地小草湖凹陷东缘侏罗系煤系烃源岩埋藏史、热演化史模拟[J]. 西北地质, 54(4): 180−191. [43] 杨占龙, 陈启林, 郭精义. 2005. 胜北洼陷岩性油气藏成藏条件特殊性分析[J]. 天然气地球科学, 16(2): 181−185,189. doi: 10.3969/j.issn.1672-1926.2005.02.010 [44] 曾凡成, 张昌民, 李忠诚, 张国一, 张驰, 王拥军, 孙文铁, 邓庆杰. 2021. 断块型沉火山碎屑岩致密气藏有效储层控制因素及分布规律—以松辽盆地南部王府气田白垩系沙河子组为例[J]. 石油与天然气地质, 42(2): 481−493. [45] 赵靖舟, 李军, 曹青, 白玉彬, 耳闯, 王晓梅, 肖晖, 吴伟涛. 2013. 论致密大油气田成藏模式[J]. 石油与天然气地质, 34(5): 573−583. doi: 10.11743/ogg20130501 [46] 张品, 苟红光, 龙飞, 佘家朝, 王志勇, 金颖. 2018. 吐哈盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 29(10): 1531−1541. doi: 10.11764/j.issn.1672-1926.2018.08.021