Characteristics of middle Jurassic overpressure and tight gas accumulation in Shengbei sub-sag, Tuha Basin, Xinjiang
-
摘要:研究目的
吐哈盆地胜北洼陷致密气已成为拓展勘探新战场、发现新储量的重要领域,致密储层发育特征及成藏机理已成为亟需解决的关键科学问题之一。
研究方法运用地球化学、地球物理学和油气地质等综合研究方法,对中侏罗统致密气源储特征和成藏期次进行了系统分析,厘定了超压发育特征及对致密气成藏的控制作用。
研究结果得出以下结论:(1)主力烃源岩的有机质类型以III型干酪根为主,整体处于以生气为主的成熟期。中侏罗统发育低孔低渗—低孔特低渗致密储层,平均孔隙度为7.1%,平均渗透率为0.074×10−3 μm2。孔隙类型以次生溶蚀孔为主,同时发育粘土矿物层间孔、黄铁矿晶间孔和微裂缝。(2)中侏罗统发育以压力传导和生烃增压为成因的超压,压力系数主要分布在1.2~1.5,纵向上超压顶界面位于七克台组中上部。超压主要分布在胜北洼陷东部和东南部,断裂系统控制超压分布范围。(3)烃源岩排烃持续时间较长,从晚三叠世至今,至少存在两期主要的天然气充注期,两期主要成藏期次为:晚侏罗世至早白垩世和古新世至今。
结论中侏罗统致密气藏以“远源-近源两期成藏、压力-断裂协同输导、断裂-超压协调控制”的成藏模式为主。本文研究成果将为胜北洼陷致密气勘探开发提供科学依据和技术支持。
创新点:揭示胜北洼陷致密气成藏的源储特征,超压与断裂系统相伴生,控制生排烃和致密气充注;(2)厘定了源储、超压(压力)、断裂等协同控制下的致密气成藏模式。
Abstract:This paper is the result of oil and gas exploration engineering.
ObjectiveThe tight gas in the Shengbei subsag of the Turpan−Hami Basin has become an important field for expanding new exploration battlefields and discovering new reserves. The development characteristics and accumulation mechanism of tight reservoirs have become one of the key scientific issues that need to be solved urgently.
MethodsUsing comprehensive research methods such as geochemistry, geophysics and oil and gas geology, the characteristics and accumulation stages of tight gas sources and reservoirs in the Middle Jurassic were systematically analyzed, and the characteristics of overpressure development and the controlling effect on tight gas accumulation were determined.
ResultsThe following conclusions are drawn: (1) The organic matter type of the main source rocks is mainly type III kerogen, and the whole is in the mature stage dominated by gas generation. The Middle Jurassic developed low porosity and low permeability—low porosity and ultra−low permeability tight reservoirs, with an average porosity of 7.1% and an average permeability of 0.074×10−3 μm2. The pore type is dominated by secondary dissolution pores, while clay mineral interlayer pores, pyrite intercrystalline pores and micro−fractures are developed. (2) The Middle Jurassic developed overpressure caused by pressure conduction and hydrocarbon generation pressurization. The pressure coefficient was mainly distributed between 1.2 and 1.5. The overpressure top interface was located in the middle and upper part of the Qiketai Formation vertically. The overpressure is mainly distributed in the east and southeast of the Shengbei subsag, and the fault system controls the distribution range of the overpressure. (3) The hydrocarbon expulsion from source rocks lasted for a long time. From the Late Triassic to the present, there have been at least two main periods of natural gas charging, and the two main accumulation periods are: Late Jurassic to Early Cretaceous and Paleocene to date.
ConclusionsThe Middle Jurassic tight gas reservoirs are dominated by the accumulation model of "two−stage accumulation from far−source and near−source, pressure−fault coordinated transport, and fault−overpressure coordinated control". The research results in this paper will provide scientific basis and technical support for tight gas exploration and development in Shengbei Sub−sag.
Highlights:(1) Reveal the source rock and reservoir characteristics of tight gas accumulation in Shengbei Sub−Sag, and overpressure is accompanied by fault system to control hydrocarbon generation and expulsion and tight gas charging; (2) Summarize the tight gas accumulation model under the cooperative control of source and reservoir, overpressure (pressure), fault, etc.
-
1. 引 言
流速、流向及悬浮沉积物浓度对海洋物理、生物、化学要素的循环具有重要影响,是研究浅海及河口地区泥沙输运、物质运移的基本要素。同步获取研究区全剖面的流速、流向及悬浮沉积物浓度对于理解悬浮沉积物输运过程、预测营养盐及污染物的迁移和归宿等问题具有重要的意义。传统的测流方法常采用单点式流速仪,对测点不同深度流速进行逐点测量以获得整个剖面的流速;悬浮沉积物浓度的测量常采用取样过滤称重法,该方法不但费时费力,而且在时间和空间的分辨率有限。
声学技术在海洋观测领域的发展应用,使得海洋水文要素的测量有了质的改变,声学多普勒剖面流速仪(Acoustic Doppler Current Profiler,ADCP),能够快速获得某个完整剖面的流速、流向等参数,同时仪器同步记录的声学背向散射强度可间接计算所测海域悬浮沉积物浓度的分布情况,为海洋泥沙动力输运的研究提供可靠的数据支撑。声学法具有不采样、水体不受扰动、精度高等特点,已被广泛应用于海洋水文要素测量中(Simpson, 2001; Yorke and Oberg, 2002; Ha and Maa, 2008; Salehi and Strom, 2011;张英豪和赖锡军, 2014; Li et al., 2019)。船载走航式ADCP是指将ADCP搭载在调查船上,结合精准的导航系统,在船只走航过程中对所测海域的海流进行连续全剖面测量,具有不扰动流场、测量历时短、测量范围大、充分利用航时等特点,已被广泛应用到江河湖海的流速、流量测量中。如1997 年三峡工程大江截流和2002 年三峡工程明渠截流(杨丰和杨俊青,2004),以及广东北江飞来峡工程截流等(刘勇胜和黄程鹏,2014),杭州湾跨海大桥、港珠澳大桥等工程也均使用ADCP 进行了流速测量(刘彦祥,2016)。
祥云岛位于乐亭县东南部,京唐港与北港之间的沿海地带,岸滩分布有优质天然细沙,是著名的沿海旅游沙岛。祥云岛外海7~15 m等深线海域建有海洋牧场,占海面积1333 hm2。近年来,祥云岛受人为活动及海洋水动力条件影响,沿岸不同区域均出现了不同程度的侵淤现象(陈文超等,2016;汪翡翠等,2021);与此同时,海洋牧场等近岸工程的建设带来的环境效应逐渐受到重视,如崔雷等(2017)通过耦合二维浅水水动力数值模型及物质输运数值模型,对京唐港填海工程中周边潮流场及悬浮沉积物运移进行模拟研究,并分析了对海域水质环境的影响。因此,对祥云岛海域流速、流向及悬浮沉积物浓度的快速同步调查,对祥云岛及其近海工程的生态环境具有重要意义。本文通过船载走航式ADCP在祥云岛海域进行现场海流、悬浮沉积物全剖面测量,为该海域海洋动力、泥沙输运及祥云岛岸线演化等海洋过程的研究提供支撑。
2. 现场调查
2.1 ADCP测流原理
ADCP基于多普勒原理(刘德铸,2010;张春海和董晓冰,2013),通过测定声波入射到海水中微颗粒背向散射在频率上的多普勒频移,从而得到不同水层水体的运动速度。所谓声学多普勒效应是指当物体相对于声源有径向位移时,导致观测到的声源发生改变的现象。多普勒频移与散射粒子速度之间的关系为:
Fd=2FVC 式中:Fd为声学多普勒频移;F为发射声波的频率;V为颗粒物沿声束方向的相对速度;C为声波在海水中的传播速度,式中“2”是因为ADCP发射并接收回波,所以多普勒频移加倍。假定水体中颗粒物的运动速度和水流速度一致,ADCP通过跟踪颗粒物的运动,测定水流相对于ADCP的速度,此速度扣除船速后,即可得到水流的绝对速度(杨锦坤等,2009)。
此外,由于散射ADCP发射波的颗粒物主要是悬浮沉积物,ADCP同步接收水中散射体的回波强度信号的大小能够间接反映水中悬浮沉积物浓度(杨惠丽等,2017)。利用ADCP背向散射强度反演悬浮沉积物含量是一种便捷,高效的方法,其非干扰式的测量特性更易获得真值。自Deines (1999)提出了声学多普勒剖面仪测得的背向散射强度与悬浮沉积物含量的关系后,许多学者也逐步开展了利用ADCP的背向散射强度反演悬浮沉积物含量的研究(Glenn et al., 1999; Hoitink, et al., 2005; Merckelbach et al., 2006; Gunawan et al., 2010)。已有研究表明源声波散射强度的大小与散射水体中的悬浮物浓度的大小成正比(Thorne and Campbell, 1992),在受潮流、潮汐作用强烈的近岸海域,利用回归公式反演的悬浮沉积物浓度与实测数据的平均误差小于20%(姬厚德等,2018)。对于有限海域,泥沙类型和粒径相对均一情况下,声学散射强度与泥沙浓度的关系可简化为公式:lg(C)=K1E+K2,其中C为悬浮沉积物浓度,E为回波强度,K1、K2为拟合因子,通过现场泥沙浓度和回波强度的回归分析来标定(Farmer, 1998)。
2.2 调查区域及测线布置
祥云岛长约13 km,呈NE-SW走向,岛屿面积20.68 km2,属于离岸沙坝岛。祥云岛东北段为潮汐通道,现已人为改造,西南端为大清河口;东部靠海侧建有简易的人工沙堤,中西部靠海侧残留低缓沙丘。潮间带的沙滩面积约为0.64 km2,潮滩平均坡度3°~8°。沉积物以浅黄色、黄棕色的细沙为主,平均粒径Mz介于2.06~2.34ϕ,分选系数介于0.24~0.47(陈文超等,2016;文明征等,2020;梅西等,2020)。
2019年7月25—28日,在祥云岛海域开展走航式ADCP测量。如图1所示本次测量共设计12条测线,其中测线L1~L10垂直于岸滩分布,平均测线长度约8.0 km;测线L11、L12平行于祥云岛分布,平均测线长度为17.5 km。由于祥云岛潮间带平缓,近岸段水深较浅,测量船容易发生触底的危险。为确保调查过程中设备和人员的安全,选择高潮位时间段进行垂直于岸线的测线测量。根据中国地质调查局天津地质调查中心在津冀沿海的潮汐站监测系统(李勇等,2020),各测线测量时间与潮位对应关系如图2所示。
2.3 参数设置
走航式ADCP测量采用美国TRDI公司生产的瑞江牌(WHR600)声学多普勒流速剖面仪,具有4个换能器,主要技术指标有:工作频率600 kHz;换能器发射角度20°测速范围为±0.01~±10 m/s(水平方向),速度分辨率0.25 cm/s;测深范围:0.75~100 m。本次调查过程中ADCP换能器入水深度为1.10 m,波束角为20°;水流层数设置为50,层厚0.50 m,第一层中心位置为1.96 m。
3. 结果与分析
祥云岛位于半封闭的渤海内部,潮汐类型属于不规则半日潮,测量期间平均潮差0.79 m。测线L1、L3、L5~L7及L10~L12测量期间为涨潮期;测线L2、L4、L8及L9测量期为落潮期(图2)。
3.1 测量结果质量控制
现场流速测量过程中受风浪等环境的干扰,测量数据会出现明显的噪点。因此,数据分析前需要将这部分数据剔除。为控制测量数据质量,本次调查将满足回波强度(Echo Intensity)为50~200 counts,相关系数(correlation)为50~200,良好百分比检验参数大于50%的数据作为有效数据,其余数据予以剔除(杨锦坤等,2009)。通常认为ADCP单次回波所测的流速误差比较大,一般使用一段时间的平均流速来表示某一点或时刻的流速,ADCP流速的平均时间可根据具体情况而定(吴云帆等,2014)。本次测量数据中参与平均的呯(ping)集合数为20(测量时船速约2.1 m/s,相当于平均时长为1 min,平均距离约50 m)。
3.2 祥云岛海域流速特征
3.2.1 海流流向特征
走航式ADCP获得沿测线方向的全水深流速,为更直观地显示剖面流速流向特征,本文选取表、中、底不同深度的海流进行分析。如图3所示,测线L5不同深度水层(水深2.21 m、6.21 m、10.21 m)的航迹和流速矢量图结果表明,在涨、落潮阶段海流流向在不同深度水层的流向基本保持一致。对海流流向沿深度方向求均值,如图4所示:测线L1、L3、L5和L7为涨潮期(图4a),涨潮流为SW方向;测线L2、L4和L8为落潮期(图4b),落潮流为NE方向。因此,祥云岛外海海域流向具有明显的往复特征,海流流向以NE−SW为主,基本与祥云岛岸线平行。
图2潮位信息显示,测线L9测量时间为平潮转落潮期,其全水深平均流向并没有表现为明显的NE方向(图4b),测线L9不同深度水层航迹和流速矢量结果如图5所示,在浅表层(2.96 m水深),近岸段流速方向为NE向,沿离岸方向流速方向为SW向,水深4.96 m水层流速矢量表明离岸段流向为SW向,水深9.96 m水层显示流速流向在整个测线上均表现为NE方向,与落潮流的方向保持一致。这表明在平潮转为落潮期间,海流转向始于底部海水,且海流转向与潮位变化具有一定的滞后性。为更清晰地描述这一问题,取测线L9不同等深线处海流流向数据绘制流向剖面分布图,如图6所示:相对水深(流速测量点水深/全水深)大于0.5时,海流流向为NE向,小于0.5是海流流向为SW向;测线L9由近岸向离岸方向测量,潮位逐渐由平潮转为落潮,沿等深线增加方向(离岸方向),流速转向的相对深度逐渐减小,再次证明该海域平潮转为落潮期间海流转向始于底层海水。
3.2.2 海流流速特征
本文选取涨落潮期间典型剖面流速幅值进行对比分析,测线L1、L3、L6和L10为涨潮期、测线L4和L8为落潮期,各测线流速幅值剖面分布如图7所示。涨潮期间,测线 L1位于祥云岛东北端,离岸方向距离海底约11 m高度处有一层相对稳定的高流速层,流速可达0.7~0.8 m/s,向祥云岛滩面方向水深逐渐变浅,水深小于11 m时,该高流速层减弱;测线L10位于祥云岛西南端,其流速特征与测线L1类似,流速沿向岸方向逐渐降低;测线L3流速幅值相对均匀,垂向和向岸方向流速变化不明显;测线L6流速幅值沿向岸方向呈现明显减小的趋势。结果表明:涨潮流流速沿向岸方向逐渐减小;相对于祥云岛东北和西南段,中部流速幅值整体偏小,测线L3和L6涨潮流离岸端流速可达到0.5 m/s以上。测线L4和L8位于祥云岛中部,其流速幅值明显小于测线L3和L6,祥云岛岸段落潮流速明显低于涨潮流速,而测线L8在近岸段的流速要明显大于离岸段。
测线L11与L12均位于涨潮期,涨潮过程中测线L12在时间上更接近于L1和L10(图2)。 以测线L12为例(图7)平行于祥云岛方向,涨潮期间祥云岛东北端存在明显的高流速层,高流速层位于距离海底约11 m处,这与测线L1的测量结果是一致的。为更直观地展现高流速层的分布形态,本文以测线L1为例,取测线L1中不同等深线(14.46 m、11.46 m和7.46 m)处的流速剖面进行对比,如图8所示。离岸方向等深线测量点数值越大,14.46 m处流速剖面结构表现为抛物线型,表明该处存在明显的高流速层,向岸方向,水深减小(7.46 m),流速剖面垂向分布趋于均匀,11.46 m处为过渡段,流速剖面表现为斜直线型。
3.3 祥云岛近岸悬浮沉积物分布
本次测量中未进行同步取样测试,未能建立背向散射强度与悬浮沉积物的回归公式。如前所述,ADCP记录的声学背向散射强度数据能够在一定程度上定性反映祥云岛周边海域的悬浮沉积物分布情况。本次测量中船载走航式ADCP记录了航测过程中的背向散射强度,以涨潮期间测线L1、L5、L10及L12为例,如图9所示。
涨潮期间祥云岛不同位置背向散射强度剖面的分布结果(图9)显示,祥云岛近底普遍存在一层高悬浮沉积物层,且向岸方向悬浮沉积物浓度逐渐增加。图10为测线L1中不同等深线处(14.46 m、11.46 m和7.46 m)的背向散射强度分布对比图,更直观地反映了悬浮沉积物向岸方向增加的现象。测线L12平行于祥云岛方向,沿NE方向在近底逐渐出现一层悬浮沉积物层,高悬浮沉积物浓度层的出现与流速分布(图7,测线L12)具有很好的一致性;水体中悬浮沉积物的维持需要一定的流速,流速幅值为0.30~0.60 m/s时,水体中更容易形成一层稳定的悬浮沉积物层。沿祥云岛岸线由东北向西南方向,流速降低相应的悬浮沉积物浓度也降低,表明悬浮沉积物在向西南方向输运过程中发生沉积。
3.4 悬浮沉积物输运对岸线蚀退的影响
祥云岛是滦河早期从大清河口、长河口入海时建造的沙坝(高善明,1981),自滦河迁徙改道北移入海之后,陆源泥沙来源断绝,加之京唐港的修建,港口防沙堤不断向海延伸,截断了沿岸泥沙的补给,之后祥云岛岸线急剧退化。研究表明1987—2000年,祥云岛岸线呈现出北部侵蚀、南部淤积的状态,岸线变化速率分别为−9.20~+10.40 m/a;2000年以后,北部约1500 m砂质岸线转变为港口围堤,被京唐港扩建、祥云湾码头占用,在沿岸流作用下祥云岛东北段泥沙向西南段运移,引起西南段淤积(邢容容等,2017)。邱若峰等(2010)指出祥云岛西南端的金沙岛岸段,自1987年以来向海拓展22 m,该岸段向海推进的一个重要原因在于人为的吹沙造陆,使得该岸段泥沙补给充足(陈文超等,2016)。 本文测量结果显示祥云岛近海海域涨潮流速(SW向)大于落潮流速(NE向)且祥云岛东北端悬浮沉积物大于西南段悬浮沉积物。这表明目前祥云岛近岸海域的悬浮沉积物整体沿NE−SW方向进行运移,与目前祥云岛岸线的侵蚀现状是一致的。
此外,祥云岛海洋牧场于2007年开始申报建设,牧场位于京唐港西南的祥云湾外海海域,水深7~15 m等深线范围内。海洋牧场建设在其规划海域内投放了包括水泥沉箱、水泥铸块、花岗岩石礁、钢筋板框、船礁等在内的各类人工渔礁共计约20万m3(王湛,2018)。人工渔礁的投放必然对近岸海域的流场产生影响,天津地质调查中心2018年的模拟结果显示,人工渔礁的投放仅对投放区周围两倍面积范围内的流场有影响,并导致明显的侵蚀淤积现象
1 。但该结果尚缺乏现场实测数据支撑,有关海洋牧场建设对海域流场的影响,还需要后续海洋牧场建成后的持续跟踪调查。4. 结 论
利用走航式ADCP在祥云岛海域开展流速、流向及悬浮沉积物浓度等水文要素测量,该方法较传统的定点观测和取样测试,具有不扰动流场、测量历时短、测量范围大、充分利用航时等特点,效率大幅提升。测量结果显示:
(1)祥云岛海域海流以平行于岸线为主,具有明显的往复性,该区域涨潮流明显大于落潮流,涨潮流沿向岸方向逐渐减弱,祥云岛西南部局部落潮流存在向岸方向增强的现象。
(2)祥云岛海域在平潮向落潮过渡期间,海流转向始于底部海水,且海流转向与潮位变化具有一定的滞后性。
(3)测量期间背向散射强度数据表明,祥云岛近岸海域存在明显的高浓度层,且沿向岸方向浓度增加,平行于祥云岛岸线方向,悬浮沉积物浓度由东北向西南方向逐渐降低。
(4)祥云岛近岸海域在涨落潮流的作用下,悬浮沉积物沿祥云岛岸线由东北向西南运移,是导致祥云岛岸线在东北段侵蚀、西南段淤积的主要原因之一。
-
图 1 吐哈盆地构造单位划分图(a)、胜北洼陷等T0构造图(b)
1—研究区域;2—盆地边界;3—构造单元边界;4—井名及井位;5—等T0等值线;6—地震剖面位置;7—连井剖面位置
Figure 1. Division of tectonic units of TuHa Basin (a), T0 structural map of Shengbei Sub−Sag (b)
1−Study area; 2−Basin boundary; 3−Structural unit boundary; 4−Well name and well location; 5−Isoline of T0; 6−Seismic profile position; 7−Well−connected profile location
图 2 吐哈盆地地层综合柱状图(据苟红光等,2019)
1—泥岩;2—粉砂岩;3—砂岩;4—含粒砂岩;5—砾砂岩;6—煤;7—石膏层;8—玄武岩;9—凝灰岩
Figure 2. Comprehensive stratigraphic histogram of TuHa Basin (after Gou Hongguang et al., 2019)
1−Mudstone; 2−Siltstone; 3−Sandstone; 4−Grain−bearing sandstone; 5−Gravel sandstone; 6−Coal; 7−Gypsum layer; 8−Basalt; 9−Tuff
图 3 胜北洼陷侏罗系泥岩有机碳(a)和生烃潜量平均值分布直方图、烃源岩热解最高峰温和氢指数交汇图(b)、烃源岩镜质体反射率Ro与深度关系图(c)1−S1+S2(mg/g);2−TOC平均值;3−J3q;4−J2q;5−J2s;6−J2x;7−J1s;8−J1b
Figure 3. Histogram of mean distribution of organic carbon and hydrocarbon generation potential of mudstone in Jurassic (a); Intersection diagram of peak pyrolysis temperature and hydrogen index of source rocks (b); Diagram of Ro and depth of source rocks in Shengbei Sub−Sag (c) 1−S1+S2 (mg/g); 2−TOC average value; 3−J3q;4−J2q;5−J2s;6−J2x;7−J1s;8−J1b
图 4 致密砂岩孔隙度和渗透率关系图(a)、典型样品扫描电镜分析图(b~i)
1—三间房组;2—七克台组;3—西三窑组(b) 胜北5井,J2q,4002.13 m,灰色细砂岩,长石粒内溶蚀孔;(c) 台参2井,J2s,4481.84 m,含粒不等粒砂岩,长石粒内溶蚀孔;(d) 胜北10井,J2s,3900.00 m,灰色荧光砂岩,黏土矿物层间孔;(e) 连北5井,J2s,3896.2 3m,灰色细砂岩,黏土矿物层间孔;(f) 连砂1井,J2x,3764.44 m,灰色砂岩,黄铁矿晶间孔;(g) 连砂1井,J2x,3764.44 m,灰色砂岩,黄铁矿晶间孔;(h) 胜北5井,J2q,4002.13 m,灰色细砂岩,颗粒内微裂缝;(I) 台参2井,J2s,4481.84 m,浅灰色荧光含粒不等粒砂岩,微裂缝
Figure 4. The relationship between porosity and permeability of tight sandstone (a); Sem analysis of typical samples (b−i)
1−J2s; 2−J2q; 3−J2x (b) Well Shengbei 5, J2q, 4002.13 m, gray fine sandstone, dissolution pores in feldspar grains; (c) Well Taican 2, J2s, 4481.84 m, granule−bearing anisomeric sandstone, dissolution pores in feldspar grains; (d) Well Shengbei 10, J2s, 3900.00 m, gray fluorescent sandstone, clay mineral interbedded pores; (e) Well Lianbei 5, J2s, 3896.23 m, gray fine sandstone with clay mineral interbedded pores; (f) Well Liansha 1, J2x, 3764.44 m, gray sandstone, pyrite intercrystalline pores; (g) Well Liansha 1, J2x, 3764.44 m, gray sandstone, pyrite intercrystalline pores; (h) Well Shengbei 5, J2q, 4002.13m, fine gray sandstone with microfractures in the grain; (I) Well Taican 2, J2s, 4481.84 m, light gray fluorescent granulated anisomeric sandstone, microfracture
图 5 胜北洼陷中侏罗统实测地层压力
1—七克台组实测压力;2—三间房组实测压力;3—西三窑组实测压力;4—超压顶界面;5—单井实测压力;6—泥浆密度换算压力;7—预测压力
Figure 5. Comparison of measured formation pressure
1−J2q Measured pressure; 2−J2s Measured pressure; 3−J2x Measured pressure; 4−Overpressure top interface; 5−Measured pressure points in a single well; 6−Mud density conversion pressure point; 7−Predict stress
图 7 胜北26−胜北11−胜北5−连北5−连砂1−胜北10井超压顶面泥岩段连井对比剖面
1—荧光泥质砂岩;2—砂砾岩;3—荧光粒状砂岩;4—粒状砂岩;5—泥质粉砂岩;6—细砂岩;7—粉砂岩;8—粗砂岩;9—灰色泥岩;10—灰质泥岩;11—粉砂质泥岩;12—黑色碳质泥岩;13—灰色含灰泥岩;14—黑色煤
Figure 7. Shengbei 26−Shengbei 11−Shengbei 5−Lianbei 5−Liansha 1−Shengbei 10 Well Overpressure Top Mudstone Section Comparison Profile
1−Fluorescent argillaceous sandstone; 2−Glutenite; 3−Fluorescent granular sandstone; 9−Grey mudstone; 10−Lime mudstone; 11−Silt mudstone; 12−Black carbonaceous mudstone; 13−Grey lime mudstone; 14−Black coal
图 8 七克台组(a)、三间房组(b)、西山窑组地层(c)压力系数预测与断裂分布叠合图
1—区域大断裂;2—小断裂;3—井位与井名
Figure 8. Prediction of formation pressure coefficient and superimposition of fault distribution of Qiketai Formation(a), Sanjianfang Formation (b), Xishanyao Formation (c)
1−Regional large fault; 2−Small fault; 3−Well location and well name
图 11 胜北洼陷近东西向典型地震剖面解释图(a)、胜北洼陷中侏罗统致密气成藏模式图(b)
1—原岩;2—砂体;3—甜点;4—断层;5—压力传导方向
Figure 11. Interpretation of typical near E-W seismic profiles(a), model diagram of tight gas accumulation in middle Jurassic in Shengbei Sub-Sag of TuHa Basin(b)
1−Original rock; 2−Sand body; 3−Sweet spot; 4−Fault; 5−Pressure transmission direction
-
[1] Bowers G L. 1995. Pore−pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling and Completion, 10(2): 89−95. doi: 10.2118/27488-PA
[2] Cao Hua, Gong Jingjing, Wang Guifeng. 2006. The cause of overpressure and its relationship with reservoir forming[J]. Natural Gas Geoscience, 17(3): 422−425 (in Chinese with English abstract).
[3] Feng Y, Huang Z L, Wang E Z, Zhang H, Li T J, Liang Y. 2020. The hydrocarbon generation and expulsion features of source rocks and tight oil potential of the second member of the Qiketai Formation, Shengbei area in the Turpan–Hami Basin, NW China[J]. Geological Journal, 56(1): 337−358.
[4] Gou Hongguang, Zhang Pin, She Jiachao, Wang Zhiyong, LIN Lin, ZHANG Yiting. 2019. Petroleum geological conditions, resource potential and exploration direction in Turpan−Hami Basin[J]. Marine Origin Petroleum Geology, 24(2): 85−96 (in Chinese with English abstract).
[5] Hao Aisheng, Li Jian, Guo Jianying, wu Hao, Ran Qigui, Li Zhisheng, Qi Xuening, Zhang Lu, Wang Xiaobo. 2021. Characteristics and exploration direction of tight sandstone gas reservoirs in the Lower Jurassic of Turpan−Hami Basin[J]. Natural Gas Geoscience, 32(8): 1212−1222 (in Chinese with English abstract).
[6] Hua Y Q, Guo X W, Tao Z, He S, Dong T, Han Y J, Yang R. 2021. Mechanisms for overpressure generation in the bonan sag of Zhanhua depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 128: 105032. doi: 10.1016/j.marpetgeo.2021.105032
[7] Li Hongzhe, Yang Zhanlong, Wu Qingpeng, Wan Chuanzhi. 2006. The Application of sedimentary facies amalyses in lithologic pool−Taking Turpan−Hami Basin Jurassic serious and Cretaceous serious as examples[J]. Natural Gas Geoscience, 17(5): 698−702 (in Chinese with English abstract).
[8] Li S L, Ma Y Z, Gomez E. 2021. Importance of Modeling Heterogeneities and Correlation in Reservoir Properties in Unconventional Formations: Examples of Tight Gas Reservoirs[J]. Journal of Earth Science, 32(4): 809−817. doi: 10.1007/s12583-021-1430-2
[9] Li Tianjun, Huang Zhilong, Zhang Yiting, Wang Rui, Zhang Hua, Zhou Zaihua. 2021. Lithofacies characteristics and geneticmodel of shallow lacustrine fine−grained sediments and its geological significance for shale oil in the Qiketai Formation in the Shengbei subsag, Turpan−Hami basin[J]. Acta Geologica Sinica, 95(12): 3869−3884 (in Chinese with English abstract).
[10] Li W, Chen Z X, Huang P H, Yu Z C, Min L, Lu X S. 2021. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development, 48(3): 625−640. doi: 10.1016/S1876-3804(21)60050-2
[11] Li Zaiguang, Yang Zhanlong, Li Hongzhe1, Guo Jingyi, Huang Yunfeng, Wu Qingpeng. 2006. Detection of hydrocarbon potentials in Shengbei area of Tuha Basin[J]. Natural Gas Geoscience, 17(04): 532−537 (in Chinese with English abstract).
[12] Li Zaiguang, Yang Zhanlong, Li Lin, Guo Jingyi, Huang Yunfeng, Wu Qingpeng, Li Hongzhe. 2006. Hydrocarbon distribution of Shengbei area[J]. Natural Gas Geoscience, 17(1): 94−96 (in Chinese with English abstract).
[13] Liu B, Huang Z L, Tu X X, Zhang J X, Mu K X. 2011. Structural styles and hydrocarbon accumulation of the northern piedmont belt in the Taibei Sag, Turpan−Hami Basin[J]. Petroleum Exploration and Development Online, 38(2): 152−158. doi: 10.1016/S1876-3804(11)60023-2
[14] Liu Jiangtao, Huang Zhilong, Wang Hai. 2021. Dominant control factors of hydrocarbon distance accumulating in western arc−like zone of Turpan−hami Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 34(2): 24−30 (in Chinese with English abstract).
[15] Liu Y K, He Z L, He S, Zhang D W, Li T Y, Wang X L. 2021. A new quantitative model and application for overpressure prediction in carbonate formation[J]. Journal of Petroleum Science and Engineering, 198: 108145. doi: 10.1016/j.petrol.2020.108145
[16] Luo Shengyuan, He Sheng, Jin Qiuyue, Yang Ruizhi, Zhang Junli. 2015. Overpressure system classification and structure characteristic in Bonan Sag[J]. Journal of Jilin University(Earth Science Edition), 45(1): 37−51 (in Chinese with English abstract).
[17] Shi W Z, Xie Y H, Wang Z F, Li X S, Tong C X. 2013. Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin[J]. Journal of Asian Earth Sciences, 66(8): 150−165.
[18] Tang Wenbin, Xu Shenglin, Chen Hongde, Chen Anqing, Liang Jie, Xiao Dongsheng. 2017. Discovery of seismites in the first member of the Kelaza Formation in central Taibei Sag of Tuha Basin and its geological significance[J]. Oil & Gas Geology, 38(2): 345−354 (in Chinese with English abstract).
[19] Wang Jinsong, Wang Hua, Liang Shijun, Huang Weidong, Lü Xueju. 2009. Analysis on exploration of natural gas in thr Turpan−Hami Basin[J]. Petroleum Geology & Experiment, 31(4): 333−337 (in Chinese with English abstract).
[20] Wang Peng, Sun Linghui, Wang He, Li Zi’an. 2020. Microscopic pore structure of Ahe tight sand gas reservoirs of the Low Jurassic in Kuqa Depression and its controls on tight gas enrichment[J]. Oil & Gas Geology, 41(2): 295−304 (in Chinese with English abstract).
[21] Wang W , Lu S F, Chen X, Li X W, Li J J, Tian W C. 2015. A new method for grading and assessing the potential of tight sand gas resources: A case study of the Lower Jurassic Shuixigou Group in the Turpan−Hami Basin, NW China[J]. Petroleum Exploration and Development Online, 42(1): 66−73.
[22] Wang Y P, Zou Y R, Zhan Z W, Lin X H, Liang T. 2018. Origin of natural gas in the Turpan−Hami Basin, NW China: Evidence from pyrolytic simulation experiment[J]. International Journal of Coal Geology, 195: 238−249. doi: 10.1016/j.coal.2018.06.007
[23] Wang X, He S, Stuart J. Jones, Yang R, Wei A, Liu C H, Liu Q, Cheng C Y, Liu W M. 2019. Overpressure and its positive effect in deep sandstone reservoir quality of Bozhong Depression, offshore Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 182: 106362. doi: 10.1016/j.petrol.2019.106362
[24] Wu Yanjie, Wang shuai, He Lei, Wang Zidi, Nie Guoquan. 2021. Research on the burial history and the thermal evolution history of the JurassicCoal−Measure source rocks in the eastern margin of Xiaocaohu Sag[J]. Northwestern Geology, 54(4): 180−191 (in Chinese with English abstract).
[25] Yang Zhanlong, Chen Qilin, Guo Jingyi. 2005. The particularity analysis of stratigraphy reservoirs in Shengbei depression[J]. Natural Gas Geoscience, 16(2): 181−185,189 (in Chinese with English abstract).
[26] Zeng Fancheng, Zhang Changmin, Li Zhongcheng, Zhang Guoyi, Zhang Chi, Wang Yongjun, Sun Wentie, Deng Qingjie. 2021. Blocky pyroclastic rocks in the Cretaceous Shahezi Formation in Wangfu gas field, southern Songliao Basin[J]. Oil & Gas Geology, 42(2): 481−493 (in Chinese with English abstract).
[27] Zhao H J, Zhang M, Wang Z Y. 2010. Geochemical characteristics and possible origin of natural gas in the Taibei Depression, Turpan−Hami Basin, China[J]. Chinese Journal of Geochemistry, 29(3): 307−312. doi: 10.1007/s11631-010-0461-7
[28] Zhao Jingzhou, Li Jun, Cao Qing, Bai Yubin, Er Chuang, Wang Xiaomei, Xiao Hui, Wu Weitao. 2013. Hydrocarbon accumulation patterns of large tight oil and gas fields[J]. Oil & Gas Geology, 34(5): 573−583 (in Chinese with English abstract).
[29] Zhan Pin, Gou Hongguang, Long Fei, She Jiachao, Wang Zhiyong, Jin Yin. 2018. Natural gas geological conditions, resource potential and exploration direction in Turpan−Hmi Basin[J]. Natural Gas Geoscience, 29(10): 1531−1541 (in Chinese with English abstract).
[30] 曹华, 龚晶晶, 汪贵锋. 2006. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 17(3): 422−425. doi: 10.3969/j.issn.1672-1926.2006.03.029 [31] 苟红光, 张品, 佘家朝, 王志勇, 林霖, 张亦婷. 2019. 吐哈盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 24(2): 85−96. doi: 10.3969/j.issn.1672-9854.2019.02.009 [32] 郝爱胜, 李剑, 国建英, 吴浩, 冉启贵, 李志生, 齐雪宁, 张璐, 王晓波. 2021. 吐哈盆地下侏罗统致密砂岩气藏特征与勘探方向[J]. 天然气地球科学, 32(8): 1212−1222. doi: 10.11764/j.issn.1672-1926.2021.07.005 [33] 李红哲, 杨占龙, 吴青鹏, 万传治. 2006. 沉积相分析在岩性油气藏勘探中的应用—以吐哈盆地胜北洼陷中侏罗统−白垩系为例[J]. 天然气地球科学, 17(5): 698−702. doi: 10.3969/j.issn.1672-1926.2006.05.020 [34] 李在光, 杨占龙, 李红哲, 郭精义, 黄云峰, 吴青鹏. 2006. 吐哈盆地胜北地区含油气性检测[J]. 天然气地球科学, 17(4): 532−537. doi: 10.3969/j.issn.1672-1926.2006.04.022 [35] 李在光, 杨占龙, 李琳, 郭精义, 黄云峰, 吴青鹏, 李红哲. 2006. 胜北地区油气分布规律[J]. 天然气地球科学, 17(1): 94−96. doi: 10.3969/j.issn.1672-1926.2006.01.019 [36] 李天军, 黄志龙, 张亦婷, 王瑞, 张华, 周在华. 2021. 吐哈盆地胜北洼陷七克台组浅水湖相细粒沉积岩岩相特征、成因模式及页岩油意义[J]. 地质学报, 95(12): 3869−3884. doi: 10.3969/j.issn.0001-5717.2021.12.021 [37] 刘江涛, 黄志龙, 王海. 2010. 吐哈盆地西部弧形带油气远距离运移成藏主控因素[J]. 中国石油大学学报(自然科学版), 34(2): 24−30. [38] 罗胜元, 何生, 金秋月, 杨睿之, 张君立. 2015. 渤南洼陷超压系统划分及结构特征[J]. 吉林大学学报(地球科学版), 45(1): 37−51. [39] 唐文斌, 徐胜林, 陈洪德, 陈安清, 梁杰, 肖冬生. 2017. 吐哈盆地台北凹陷中部地区喀拉扎组一段震积岩的发现及其地质意义[J]. 石油与天然气地质, 38(2): 345−354. doi: 10.11743/ogg20170214 [40] 王劲松, 王华, 梁世君, 黄卫东, 吕学菊. 2009. 吐哈盆地天然气勘探潜力分析[J]. 石油实验地质, 31(4): 333−337. doi: 10.3969/j.issn.1001-6112.2009.04.004 [41] 王朋, 孙灵辉, 王核, 李自安. 2020. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用[J]. 石油与天然气地质, 41(2): 295−304. doi: 10.11743/ogg20200206 [42] 吴琰杰, 王帅, 何磊, 王紫笛, 聂国权. 2021. 吐哈盆地小草湖凹陷东缘侏罗系煤系烃源岩埋藏史、热演化史模拟[J]. 西北地质, 54(4): 180−191. [43] 杨占龙, 陈启林, 郭精义. 2005. 胜北洼陷岩性油气藏成藏条件特殊性分析[J]. 天然气地球科学, 16(2): 181−185,189. doi: 10.3969/j.issn.1672-1926.2005.02.010 [44] 曾凡成, 张昌民, 李忠诚, 张国一, 张驰, 王拥军, 孙文铁, 邓庆杰. 2021. 断块型沉火山碎屑岩致密气藏有效储层控制因素及分布规律—以松辽盆地南部王府气田白垩系沙河子组为例[J]. 石油与天然气地质, 42(2): 481−493. [45] 赵靖舟, 李军, 曹青, 白玉彬, 耳闯, 王晓梅, 肖晖, 吴伟涛. 2013. 论致密大油气田成藏模式[J]. 石油与天然气地质, 34(5): 573−583. doi: 10.11743/ogg20130501 [46] 张品, 苟红光, 龙飞, 佘家朝, 王志勇, 金颖. 2018. 吐哈盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 29(10): 1531−1541. doi: 10.11764/j.issn.1672-1926.2018.08.021