• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

川滇黔二叠系铅锌成矿物质来源:C-H-O-S-Pb同位素制约——以云南太平子铅锌矿为例

丁伟品, 谢财富, 黄诚, 张斌, 辛卓, 詹华思, 郑立龙, 孔凡全, 王红兵, 黄福林

丁伟品, 谢财富, 黄诚, 张斌, 辛卓, 詹华思, 郑立龙, 孔凡全, 王红兵, 黄福林. 川滇黔二叠系铅锌成矿物质来源:C-H-O-S-Pb同位素制约——以云南太平子铅锌矿为例[J]. 中国地质, 2022, 49(6): 1845-1861. DOI: 10.12029/gc20220611
引用本文: 丁伟品, 谢财富, 黄诚, 张斌, 辛卓, 詹华思, 郑立龙, 孔凡全, 王红兵, 黄福林. 川滇黔二叠系铅锌成矿物质来源:C-H-O-S-Pb同位素制约——以云南太平子铅锌矿为例[J]. 中国地质, 2022, 49(6): 1845-1861. DOI: 10.12029/gc20220611
DING Weipin, XIE Caifu, HUANG Cheng, ZHANG Bin, XIN Zhuo, ZHAN Huasi, ZHENG Lilong, KONG Fanquan, WANG Hongbing, HUANG Fulin. Sources of Permian lead-zine ore-forming materials in Sichuan-Yunnan-Guizhou area: C-H-O-S-Pb isotope constraints——An example from Taipingzi lead-zinc deposit in Yunnan Provinces[J]. GEOLOGY IN CHINA, 2022, 49(6): 1845-1861. DOI: 10.12029/gc20220611
Citation: DING Weipin, XIE Caifu, HUANG Cheng, ZHANG Bin, XIN Zhuo, ZHAN Huasi, ZHENG Lilong, KONG Fanquan, WANG Hongbing, HUANG Fulin. Sources of Permian lead-zine ore-forming materials in Sichuan-Yunnan-Guizhou area: C-H-O-S-Pb isotope constraints——An example from Taipingzi lead-zinc deposit in Yunnan Provinces[J]. GEOLOGY IN CHINA, 2022, 49(6): 1845-1861. DOI: 10.12029/gc20220611

川滇黔二叠系铅锌成矿物质来源:C-H-O-S-Pb同位素制约——以云南太平子铅锌矿为例

基金项目: 

中国地质调查局项目 DD2016008001

详细信息
    作者简介:

    丁伟品, 男, 1988年生, 高级工程师, 主要从事地质矿产研究工作; E-mail: gzsdingwp@126.com

  • 中图分类号: P618.4

Sources of Permian lead-zine ore-forming materials in Sichuan-Yunnan-Guizhou area: C-H-O-S-Pb isotope constraints——An example from Taipingzi lead-zinc deposit in Yunnan Provinces

Funds: 

the project of China Geological Survey DD2016008001

More Information
    Author Bio:

    DING Weipin, male, born in 1988, senior engineer, engaged in geological and mineral research; E-mail: gzsdingwp@126.com

  • 摘要:
    研究目的 

    川滇黔地区铅锌矿成因具有多样性,特别是与峨眉山玄武岩的关系存在较大的争议,本文从前人关注较少的二叠系碳酸盐岩中的铅锌矿入手,研究成矿物质来源。

    研究方法 

    以云南寻甸县太平子铅锌矿为研究对象,运用S、Pb、C、H、O同位素实验数据及流体包裹体测温等方法,对成矿物质来源及成矿流体特征进行探讨。

    研究结果 

    矿石铅同位素组成比较均一,分布集中,206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的变化范围分别为18.543~18.584、15.646~15.694、38.799~38.958,属于正常普通铅,具壳源特征,主要来源于基底岩石,水岩反应可能使赋矿围岩贡献少量的成矿物质。矿石硫化物δ34S变化范围为-13.6‰~-7.3‰,方铅矿的δ34S高于闪锌矿,硫同位素分馏并未达到平衡,生物成因硫酸盐还原作用(BSR)是还原硫的主要来源。热液方解石δ13CV-PDB范围为3.8‰~4.7‰,δ18OV-SMOW范围为12.0‰~16.7‰,相较于滇东北其他重要的铅锌矿床,具有明显的低δD、高δ18Ofluid特点,成矿流体中的水主要来源于岩浆水和有机水的混合,具有中—高温、低盐度特征。

    结论 

    太平子铅锌矿在成矿物质、流体、成矿温度等均与区域上其他典型铅锌矿有较明显差别,具有典型的岩浆-热液成因特点。

    Abstract:

    This paper is the result of the geological survey engineering.

    Objective 

    The genesis of Pb-Zn deposit in Sichuan, Yunnan and Qianhai is diverse, especially the relationship with the Emei Mountain basalt is more controversial. In this paper, we study the source of ore-forming material, starting from Pb-Zn deposit in Permian carbonate rocks, which has received less attention from previous authors.

    Methods 

    Using experimental data of S, Pb, C, H, and O isotopes and fluid inclusion temperature measurements, the source of mineralized materials and the characteristics of mineralized fluids were investigated in the Taipingzi Pb-Zn deposit in Xundian County, Yunnan Province.

    Results 

    The Pb isotopic compositions of the ore are relatively homogeneous and concentrated, with the variations of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ranging from 18.543 to 18.584, 15.646 to 15.694 and 38.799 to 38.958, respectively. These suggest that the Pb in Taipingzi Pb-Zn deposit belongs to normal common Pb with crustal origin. The metal-forming materials are mainly from the basement rocks, and the water-rock reaction may make the mineralized enclosing rocks contribute a small number of mineralized materials. The δ34S in ore sulfide varies from -13.6 ‰ to -7.3 ‰ and δ34S of the galena is higher than that in sphalerite. Sulfur isotope fractionation has not reached equilibrium, sulfur is mainly from crustal source. Biogenic sulfate reduction (BSR) is the main mechanism of sulfur reduction. A large amount of biogenic sulfur reduction has accumulated in the mineralized area before mineralization. The hydrothermal calcite δ13CV-PDB ranges from 3.8 ‰ to 4.7‰ and δ18OV-SMOW ranges from 12.0 ‰ to 16.7 ‰ with obvious low δD and high δ18Ofluid characteristics compared to other important Pb-Zn deposits in northeast Yunnan. The water in the mineralizing fluid mainly originates from a mixture of magmatic and organic water, with medium-high temperature and low salinity characteristics.

    Conclusions 

    Taipingzi Pb-Zn deposit is significantly different from other typical Pb-Zn ores in the region in terms of metallogenic material, fluids and metallogenic temperature, and has typical magmatic-hydrothermal genesis characteristics.

  • 锶作为岩石圈上部含量最大的微量元素(胡进武等,2004黄奇波等,2011),广泛存在于自然界中但分布非常不均,锶的分布状态及其存在形态受到自然条件、人类活动等多种因素的影响,导致锶在分布上富集或贫乏(Comar et al., 1957; 范伟等2010)。在不同的时期、不同岩性的基岩地层中锶元素的丰度存在明显的差异性,一般在海相沉积的碳酸盐岩中锶的丰度最高,在含锶矿物的闪长岩、花岗岩、黏土岩以及碳酸盐岩中,锶含量相对比较富集,黏土、砂中锶的丰度最低(刘庆宣等,2004)。作为微量元素,锶主要存在于各种造岩矿物和副矿物中,也能形成一些独立的矿物,主要为存在于碳酸盐岩中的菱锶矿(SrCO3)和天青石(SrSO4),同时文石、方解石、钙长石及石膏等矿物中亦常见锶置换钙的类质同像现象(Clow et al., 1997文冬光等,1998)。岩石中的锶是地下水中锶的主要物质来源,锶在赋存母岩中主要经风化、淋滤后在地下水流作用下进行迁移转化(文冬光等,1998康志强等,2011苏春田等, 2017a, b),进而进入人类及其他动植物的物质循环。前人研究表明,地下水中锶的分布与富集受渗流地层岩性、溶滤强度、水化学条件(王增银等,2003祁晓凡等,2009范伟等, 2010)等因素的影响。目前,各国根据锶的含量及其生理医学作用制定了锶矿泉水的标准,参照饮用天然矿泉水国家标准(GB8537- 2016),地下水的质量浓度达到0.2mg/L,可命名为富锶矿泉水,规定的限值为5mg/L。岩溶水作为山区居民主要饮用的水源,关乎百姓的生活与饮食健康,因而查明地下水中锶的分布状态,揭示锶的动态变化,分析锶的富集规律,具有较大的研究意义与实际价值。

    前人对富锶地下水的研究多集中在赋存条件、水质评价等方面,多集中在非岩溶地区(孙岐发等,2019),针对西南岩溶区富锶地下水的研究还较少(祁晓凡等,2009康志强等,2011苏春田等, 2017a, b),针对三峡岩溶区的研究则更少。本文选取湖北秭归地区两个岩溶流域为研究区,以岩溶水系统为单元,从锶的物质来源条件入手,分析岩溶水系统中锶的水岩作用过程,研究不同含水岩组、不同水流条件下地下水中锶的分布与富集特征,探讨宜昌三峡岩溶去地下水中锶富集的条件与规律。

    本文主要针对秭归地区的茅坪河和九畹溪两个岩溶流域开展研究。研究区地处长江之滨、西陵峡畔、清江以北,属于中国地形第二、三阶梯的过渡地带,为川东褶皱与鄂西山地交汇地,境内山脉为大巴山、巫山余脉,地形起伏较大。该地区属于亚热带季风气候,气候温暖、降雨充沛,年降雨量在900~1200 mm,其中汛期降雨量占绝大部分,受季风气候和山峦起伏的影响,降雨量的季节变化和空间差异明显,小气候特征比较显著。秭归县位于鄂西褶皱山地,西南高东北低,平均海拔高程千米以上,山峰耸立,河谷深切,相对高差一般在500~1300 m。其中中低山区多分布于秭归盆地周边,斜坡倾角介于15~25°,面积960 km2;大于25°以上的斜坡主要分布在长江峡谷区、中高山向中低山过渡地带,陡缓变化较大,多形成陡崖。

    研究区地处黄陵穹隆西南缘,自北东向西南从侵入岩体、前震旦纪到三叠纪地层连续出露且较齐全,区内南沱组角度不整合于侵入岩与变质岩基底之上,第四系与下伏地层为角度不整合,其余地层之间均为整合与平行不整合接触关系(南沱组与陡山沱组呈平行不整合,纱帽组与云台观组呈平行不整合)。区域内地层主要是以沉积岩为主,累计沉积岩岩层最大厚度约7567 m,其中碳酸盐岩总厚度达到3443 m,占沉积岩总厚度的45.5%,碳酸盐岩地层主要有震旦系,寒武系、奥陶系、志留系、二叠系及三叠系,岩性以灰岩、白云岩为主,非碳酸盐岩地层有志留系、泥盆系、白垩系,岩性以碎屑岩为主,尤以仙女山一带的白垩系的碎屑砾岩、砂岩为特殊,常常发育有可溶性砾岩裂隙孔洞水。

    前人在进行岩溶含水系统划分过程中,主要考虑了含水岩组、空间介质结构、组合特征、岩溶水径流方式、埋藏条件等因素(裴建国等,2008; 梁永平等,2015)。秭归地区属于南方岩溶的范畴,多种地层组合特征、构造条件下发育多样的岩溶水系统,既发育有管道裂隙集中排泄型系统、也有裂隙分散排泄型岩溶水系统。根据区域地层的含水性分析,大致可划分为3个岩溶含水系统(图 1):上震旦岩溶含水系统(Z2d、Z21d)、下寒武—奥陶岩溶含水系统(∈1t、∈1sl、∈2q、∈2O1l、O1n、O1g、O2-3b)、石炭—三叠岩溶含水系统(P1q、P1m、P2w、T1d、T2j),进一步可细分为7个岩溶含水子系统(表 1)。本文依据空间结构、含水介质、排泄方式、代表水流、标高、流量等特征数据,并结合野外调查资料,对岩溶子含水单元排泄特征进行整理划分(表 1)。

    图  1  研究区水文地质简图及主要泉点分布图
    Figure  1.  Hydrogeological map showing distribution of main springs in the study area
    表  1  岩溶含水子系统的介质结构及排泄特征
    Table  1.  Structure and drainage characteristics of karst water-bearing units
    下载: 导出CSV 
    | 显示表格

    2016—2018年期间,本文依托中国地质调查局二级项目“宜昌长江南岸岩溶流域水文地质环境地质调查”,系统地采集了研究区泉水、典型断面地表水样品,对重点岩溶泉点进行月度监测,并选送测区内主要含水岩组的岩样进行岩石矿物组成分析。针对不同岩溶水系统,选取了31组岩溶泉点作为长期监测点(长观站)(图 1),用于分析地下水的动态变化规律。本文的研究数据来源于区域水文地质调查,及31个岩溶泉长期监测点(长观站)月度样采集,共整理了415组水样数据,93组岩矿分析数据,基于此对锶的分布特征进行分析。

    水样采集采用600 mLPVC瓶,现场用水样涮洗3次,同时对水样水温、pH、电导率、流量等指标进行现场测定。此后样品在12 h内送回室内,采用《中华人民共和国地质矿产行业标准DZ/T 0064.49- 93地下水水质检验方法》酸碱滴定法测试并计算碱度。同时将水样用孔径0.45 μm的醋酸纤维膜过滤后,分装于2个50 mLPET瓶中分别用于阴阳离子测试,其中阳离子测试样会使用分析纯HNO3酸化至pH<2,阴离子样则不加处理。

    水化学样品的测试在中国地质大学(武汉)地质调查研究院实验中心完成,阴离子由戴安离子色谱仪ICS2100测试,阳离子由赛默飞公司生产的ICP-OES(ICAP6300)测试;岩石样品矿物组成测试在澳实分析检测(广州)有限公司测试完成,锶等矿物组分均采用封闭酸溶-电感耦合等离子体质谱法(ICP-MS)测试。

    通过对93组岩矿分析数据分析可知,不同地质年代的沉积地层中锶的含量大不相同(表 2),在震旦系地层中,灯影组地层锶含量比陡山沱组高,灯影组锶含量可达到2900 μg/g,均值为1121 μg/g,且组内不同段含量差异明显,如灯影组二段的白云质灰岩中锶含量介于800~2600 μg/g,其含量较一段和三段的白云岩大,灯影组地层整体变异系数为88.2%(n=10);寒武系上统娄山关组白云岩中锶含量介于77~2500 μg/g,变异系数为62.5%(n=11),锶含量均值大但分布上存在差异性;奥陶系地层锶含量均不高,介于100~400 μg/g,变异系数相对较低;嘉陵江组地层锶的含量较高,均值为2861 μg/g,变异系数也较高,为137.3%(n=17)。

    表  2  秭归岩溶地层中锶含量概况统计
    Table  2.  Statistics of Sr contents in karst strata in the Zigui area
    下载: 导出CSV 
    | 显示表格

    可知,秭归地区富锶地层主要为灯影组、娄山关组、嘉陵江组。从沉积相来看,上述沉积地层均为干旱气候条件下碳酸盐台地浅滩、潮坪-潟湖沉积(徐长昊,2016),为封闭性较好的沉积环境,是蒸发沉积富锶地层发育的良好条件。

    同时对区内浅层包气带内岩样分析发现,表层岩石中天青石矿物较少,锶含量偏低且与CaO的相关性较好,而与MgO、SO3、Al2O3的相关性一般。主要是由于表层岩石受到较强的淋滤作用而导致锶的流失,此外浅循环系统中的锶会以类质同像形式存在于方解石矿物中。

    对由钻孔揭露深层封闭地层岩样分析发现,锶主要以天青石形式存在,常常与石膏矿物共存。如钻孔ZK05揭露的娄山关组地层中,锶含量普遍较高且与SO3有较好的相关性(R2=0.737,n=10)。另在对钻孔ZK03揭露的奥陶系岩心分析发现,随着MgO含量的增大,岩性逐渐白云岩化,同时锶含量逐渐减小(图 2);此外,锶的含量会随着碳酸盐中泥质含量的增大(SiO2含量增大)而减小(图 2)。

    图  2  ZK03孔奥陶系岩心中MgO-Sr(a)与SiO2-Sr(b)浓度关系
    Figure  2.  Relationship of Sr vs. MgO and SiO2 of rocks revealed from ZK03

    通过对茅坪河与九畹溪两个流域岩溶地下水样分析,从富锶水化学类型、水岩作用程度、物理化学条件等方面,对该区地下水锶分布与富集展开讨论。

    针对研究区所采集的415组水样,从Piper三线图(图 3)来看,地下水中锶含量大于2 mg/L时,水中阳离子以Ca2+、Mg2+为优势离子,阴离子以SO42-为主;地下水中锶含量在0.70~10 mg/L时,水中阳离子以Na+为主,阴离子以Cl-为主;地下水中锶含量小于0.70 mg/L时,水中阴离子以HCO3-为主。因此,锶浓度相对较高的地下水化学类型主要包括SO4型和Cl型,其中尤以SO4型地下水的锶浓度最高。

    图  3  富锶地下水Piper三线图
    Figure  3.  Piper diagram of Sr-rich groundwater

    岩溶地下水中离子组分主要来源于对母岩的溶滤作用,其决定着地下水中主要水化学过程(康志强等,2011; 苏春田等,2017a)。母岩中锶含量影响着水流系统地下水中锶的分布(文冬光等,1998苏春田等,2017b)。地下水中锶离子主要来源于富锶矿物(天青石、菱锶矿),赋存在方解石、文石及白云石类质同像形态的锶,以及铝硅酸盐中的锶等的溶解(徐兴国,1984),具体的化学反应方程式如下:

    (1)

    (2)

    (3)

    表层岩溶泉可反映局部水流系统的水化学特征。基于所采集的334处表层岩溶泉,绘制出研究区锶在表层岩溶水中的分布规律,发现全区存在5处富锶地下水分布区(图 4),且这些富锶地下水分布与富锶地层的分布表现出一致性,二叠系阳新组岩溶水,三叠系嘉陵江组岩溶水,寒武系娄山关组岩溶水,寒武系水井沱组岩溶水及震旦系灯影组岩溶水。其中杨新组表层岩溶水中Sr含量介于0.26~ 0.76 mg/L;嘉陵江组介于0.23~0.60 mg/L;娄山关组介于0.13~0.43 mg/L;水井沱组与灯影组介于0.22~0.72 mg/L。

    图  4  表层岩溶泉中锶的分布特征
    Figure  4.  Distribution of strontium in karst water

    对于排泄区,选取研究区内4处锶含量较高的地层中出露的地下水点为例,即白龙潭、龙洞、迷宫泉和龙王洞(表 1)。从锶离子与硫酸根离子、重碳酸根离子的浓度关系(图 5)发现,嘉陵江组白龙潭岩溶泉水锶含量较高,与硫酸根离子有较好的一致性(R2=0.707,n=5),另知嘉陵江组岩矿分析中SO3含量较高,反映出在该泉域的径流途径上有天青石的存在;娄山关组迷宫泉与重碳酸根离子和硫酸根离子均呈现较好的相关性(R2=0.668,n=10;R2= 0.768,n=13),反映出径流途径中存在两种富锶矿物溶解。此外,针对地下水中丰、枯两季表现出差异性(图 5),主要是由于研究区具有典型南方岩溶管道-裂隙水系统,地下水径流路径和径流时间短、水岩作用不充分(罗明明等,2015),表现出枯季地下水中锶含量普遍比丰水期的要高。由上可知,岩溶水中锶离子含量与各岩溶水系统中富锶矿物含量密切相关,流经的地层岩性差异导致各岩溶水流系统表现出不同的水岩作用过程,或受石膏、天青石矿物溶解的影响,或受菱锶矿溶解的影响,或受多种锶源的混合补给。

    图  5  地下水锶与HCO3-、SO42-的摩尔浓度关系
    Figure  5.  Relationship between strontium concentration and HCO3-, SO42- in groundwater

    对于锶在多级水系系统中的分布规律,本文以泗溪流域庙坪—鱼泉洞多级水流系统为例(图 1b),不同级次的地下水中锶含量及饱和程度易表现出差异性(表 3图 6)。庙坪洼地表层岩溶泉为局部水流系统,锶含量均值为0.08 mg/L,si_Str与si_Cel均比较低(表 3),多为方解石中类质同像锶的溶解释放;鱼泉洞泉水为中间水流系统,地下水锶含量均值为0.22 mg/L,si_Stron与SI_Cel相比于局部水流系统稍高但未达到饱和(表 3),但冬季其锶的饱和指数相对夏季要高,主要由于冬季水流滞缓,水岩作用相对充分(表 3);以钻孔ZK04揭露的区域水流系统,其锶均值在2.33 mg/L,si_Str、si_Cel、si_Cal、si_Dol均趋于饱和(图 6)。可知地下水与母岩水岩相互作用的时间与水流路径长短决定了地下水中富锶矿物的饱和程度及地下水中锶含量(张群利等,2011苏春田等,2017a)。

    表  3  不同级次水流水化学信息统计表
    Table  3.  Hydrochemistry of different water flow levels
    下载: 导出CSV 
    | 显示表格
    图  6  地下水中Sr2+与SO42-的关系
    si_Cal—方解石饱和指数;si_Dol—白云岩饱和指数;si_Cel—天青石饱和指数;si_Str—菱锶矿饱和指数
    Figure  6.  Relationship between Sr2+ and SO42- in groundwater
    si_Cal-Calcite saturation index; si_Dol-Dolomite saturation index; si_Cel: Celestine saturation index; si_Str-Strontianite saturation index

    此外,通过对钻孔ZK04及钻孔ZK05中锶含量分析(表 3图 6),发现两者锶离子浓度均很大。在两孔钻进施工中,均有H2S与CH4等还原性气体溢出,且岩心中有机炭的含量相对较高,尤其是ZK05岩矿组分中发现有单质S存在。推知两孔均混有碳酸盐岩和硫酸盐岩(富含大量的石膏),且均为相对封闭的还原环境。

    在这种封闭缺氧还原环境中,地下水中的SO42-在有机炭和脱硫细菌作用下,容易发生脱硫酸作用(刘硕等,2016),其化学反应式为:

    (4)

    (5)

    当地层中含有大量铁的时候S2-便会与铁结合,逐渐生成黄铁矿,而硫化氢气体极易溶于水(溶解比例约为1∶3),在氧气充足的时候,H2S会被氧化成硫酸与碳酸盐结合形成石膏矿物沉淀,但当氧气不足的时候,少部分的H2S会被氧化成单质S,更大一部分仍以气体的形式存在于封闭的还原条件中,这也就是ZK05孔岩心组分中单质S存在的原因。硫酸根离子的转化,促进了石膏、天青石的溶解过程,致使地下水中锶离子富集,甚至使天青石溶解达到饱和,同时菱锶矿的溶解也增大了地下水中锶的含量(罗璐等,2015)。

    本文通过对秭归岩溶流域锶的分布与迁移进行分析,得到以下结论:

    (1)研究区内嘉陵江组、娄山关组、灯影组地层中的锶含量最高,代表着潮坪-潟湖沉积相;区内浅层岩石中天青石矿物较少,锶含量偏低;深层封闭地层岩样中锶主要以天青石形式存在,常常与石膏矿物共存。

    (2)富锶岩溶水的水化学类型主要包括SO4型和Cl型,尤以SO4型地下水的锶浓度最高;母岩中锶的含量决定了地下水中锶的浓度,且锶主要通过溶滤作用进入地下水中。

    (3)地下水水流系统中水岩作用程度及地下水的滞留时间均影响地下水中锶的浓度,浅循环岩溶地下水流系统中锶均未达到饱和,少数深循环区域地下水流系统中锶浓度趋近饱和状态。对于富含石膏、天青石的封闭还原环境有利于地下水中锶的富集。

    创新点: 以前人关注较少、区域铅锌矿赋矿层位较年轻且围岩形成时代与峨眉山玄武岩相近的二叠系碳酸盐岩中的铅锌矿为切入点,综合运用S、Pb、C、H、O同位素及流体包裹体特征对成矿物质来源进行分析,为区域铅锌矿成矿研究补充了科学依据。
  • 图  1   川滇黔铅锌矿成矿区区域构造略图(底图据王宝禄等,2004

    1—康定—水城—垭都断裂;2—安宁河—绿汁江断裂;3—弥勒—师宗—水城断裂;4—罗次—易门断裂;5—普渡河—滇池断裂;6—小江断裂;7—则木河断裂;8—峨山—通海断裂;9—化念—石屏断裂;10—红河断裂;Ⅰ—一级建造单元;Ⅱ—二级建造单元;Ⅲ—三级建造单元

    Figure  1.   Regional structure sketch map of Sichuan-Yunnan-Guizhou lead-zinc metallogenic region (base map from Wang Baolu et al., 2004)

    1-Kangding - Shuicheng - Yadu fault; 2-Anninghe - Lüzijiang fault; 3-Mile - Shizong - Shuicheng fault; 4-Luoci - Yimen fault; 5- Puduhe - Dianchi fault; 6-Xiaojiang fault; 7-Zhemuhe fault; 8-Eshan - Tonghai fault; 9-Huanian - Shiping fault; 10-Honghe fault; Ⅰ-First-level construction unit; Ⅱ-Second-level construction unit; Ⅲ-Third-level construction units

    图  2   太平子铅锌矿地质简图

    1—峨眉山玄武岩二段;2—峨眉山玄武岩一段;3—茅口组;4—栖霞组;5—梁山组;6—娄山关组;7—西王庙组二段;8—西王庙组一段;9—陡坡寺组;10—龙王庙组;11—隐爆角砾岩;12—实测逆断层;13—太平子铅锌矿(采样点)

    Figure  2.   The geological map of Taipingzi lead-zinc deposit

    1-The second member of Emeishan basalt; 2-The first member of Emeishan basalt; 3-Maokou Formtion; 4-Qixia Formtion; 5-Liangshan Formtion; 6-Loushanguan member; 7-The second member of Xiwangmiao Formtion; 8-The first member of Xiwangmiaomember; 9-Douposhi Formtion; 10-Longwangmiao Formtion; 11-Detonation breccia; 12-Measured reverse fault; 13-Taipingzi Lead-zinc deposit(Sampling points)

    图  3   太平子铅锌矿矿石标本及镜下特征

    a—团块状铅锌矿;b—浸染状、星点状铅锌矿;c—闪锌矿(Sp)、方铅矿(Gn)、黄铁矿(Py)(-);d—硫锑铅矿Blr、闪锌矿(Sp)、黄铁矿(Py)(-)

    Figure  3.   The specimens and photomicrograph of the ore from Taipingzi lead-zinc deposit

    a-Massive lead-zinc ore; b-Disseminated or stellate lead-zinc ore; c-Sphalerite(Sp), galena (Gn) and pyrite (Py)(-); d-Boulangerite Blr, sphalerite(Sp)and pyrite (Py)(-)

    图  4   太平子铅锌矿硫化物硫同位素组成频率直方图(a)和组成分布图(b)

    Figure  4.   The frequency histogram(a)and composition distribution(b)of δ34S for ore sulfides in the Taipingzi lead-zinc deposit

    图  5   太平子铅锌矿铅同位素构造模式图(底图据Zartman and Haines, 1988

    Ⅰ—闪锌矿(不含方解石矿石);Ⅱ—闪锌矿(含方解石矿石);Ⅲ—方铅矿(不含方解石矿石);Ⅳ—方铅矿(含方解石矿石);Ⅴ—灰质白云岩(蚀变围岩);Ⅵ—灰质白云岩(原岩)

    Figure  5.   The lead isotope tectonic model diagram of the Taipingzi lead-zinc deposit (after Zartman and Haines, 1988)

    Ⅰ-Sphalerite(without calcite ore); Ⅱ-Sphalerite(with calcite ore); Ⅲ-Galena(without calcite ore); Ⅳ-Galena(with calcite ore); Ⅴ-Ash dolomite(altered peridotite); Ⅵ-Ash dolomite(original rock)

    图  6   太平子铅锌矿铅同位素∆β-∆γ构造环境分类图(底图据朱炳泉,1998

    1—地幔源铅;2—上地壳源铅;3—上地壳与地幔混合的俯冲带铅(3a—岩浆作用;3b—沉积作用);4—化学沉积作用铅;5—海底热水作用铅;6—中深变质作用铅;7—深变质下地壳铅;8—造山带铅;9—古老页岩上地壳铅;10—退变质铅;Ⅰ—闪锌矿(不含方解石矿石);Ⅱ—闪锌矿(含铅锌矿方解石);Ⅲ—方铅矿(不含方解石矿石);Ⅳ—方铅矿(含铅锌矿方解石)

    Figure  6.   The diagram of Δγβ for genetic classification according to lead isotope compositions of the the Taipingzi lead-zinc deposit(after Zhu Bingquan, 1998)

    1-Mantle-derived lead; 2-Upper crust lead; 3-Mixed lead of upper crust and mantle subduction(3a-Magmatism; 3b-Sedimentation); 4-Chemical sedimentary lead; 5-Submarine hydrothermal lead; 6-Medium- high grade metamorphism lead; 7-Lower crust lead of highgrade metamorphism; 8-Orogenic belt lead; 9-Upper crust lead of ancient shale; 10-Retrograde metamorphic lead; Ⅰ- Sphalerite (without calcite ore); Ⅱ-Sphalerite(with lead-zinc ore calcite); Ⅲ-Galena(without calcite ore); Ⅳ-Galena(with lead-zinc ore calcite)

    图  7   太平子铅锌矿δ13CV-PDB-δ18OV-SMOW关系图(底图据Liu et al., 2011)

    Ⅰ—方解石(含铅锌矿);Ⅱ—方解石(不含铅锌矿、蚀变围岩方解石脉);Ⅲ—灰质白云岩(蚀变围岩);Ⅳ—灰质白云岩(原岩)

    Figure  7.   δ13CV-PDB-δ18OV-SMOW diagram of the Taipingzi lead-zinc deposit(after Liu et al., 2011)

    Ⅰ—Calcite(with lead-zinc ore); Ⅱ—Calcite(excluding lead-zinc ore and eroded perimeter calcite veins); Ⅲ—Ash dolomite(altered peridotite); Ⅳ—Ash dolomite(original rock)

    图  8   太平子铅锌矿脉石矿物方解石流体包裹体δ18Ofluid-δD图解(底图据Kesler et al., 1997

    Ⅰ—方解石(含铅锌矿);Ⅱ—方解石(不含铅锌矿、蚀变围岩方解石脉)

    Figure  8.   The diagram of δ18Ofluid-δD for fluid inclusions in calcites from the Taipingzi lead-zinc deposit(after Kesler et al., 1997)

    Ⅰ-Calcite(with lead-zinc ore); Ⅱ-Calcite(excluding lead-zinc ore and eroded perimeter calcite veins)

    表  1   太平子铅锌矿硫同位素组成

    Table  1   Sulfur isotopic compositions of the Taipingzi lead-zinc deposit

    下载: 导出CSV

    表  2   太平子铅锌矿及围岩铅同位素组成

    Table  2   Lead isotope compositions of ores and wall rocks from the Taipingzi lead-zinc deposit

    下载: 导出CSV

    表  3   太平子铅锌矿脉石矿物方解石流体包裹体氢氧同位素组成

    Table  3   Hydrogen and oxygen isotope compositions for fluid inclusions in calcites from the Taipingzi lead-zinc deposit

    下载: 导出CSV

    表  4   太平子铅锌矿碳氧同位素组成

    Table  4   Carbon and oxygen isotope compositions of the Taipingzi lead-zinc deposit

    下载: 导出CSV
  • Bao Guangping, Cui Yinliang, Gao Jianguo. 2013. REE geochemical features of hydrothermal calcite from Maozu Pb-Zn deposit, northeastern Yunnan Province, China[J]. Acta Mineralogica Sinica, 33(4): 681-684(in Chinese with English abstract).

    Chen Haoshou. 1994. Isotope Geochemistry[M]. Hangzhou: Zhejiang University Press, 1-340(in Chinese).

    Chen Jin. 1993. Pb-Zn Sulfide deposite and metallogenic model in Qilingchang, Huize, Yunnan[J]. Geological Exploration for Non-ferrous Metals, (2): 85-90(in Chinese with English abstract).

    Chiaradia M, Fontbote L, Paladines A. 2004. Metal sources in mineral deposits and crustal rocks of Ecuador (1° N-4° S): A lead isotope synthesis[J]. Economic Geology, 99(6): 1085-1106.

    Chen Da. 2015. Space-Time distribution, source bed and stratabound mechanisms of Zn-Pb deposits in western margin of Yangzi platform[J]. Journal of Jilin University(Earhth Science Edition), 45(5): 1365-1375(in Chinese with English abstract).

    Dennis P F, Rowe P J, Atkinson T C. 2001. The recovery and isotopic measurement of water from fluid inclusions in speleothems[J]. Geochimica et Cosmochimica Acta, 65(6): 871-884. doi: 10.1016/S0016-7037(00)00576-7

    Fu Shaohong. 2004. Metallogenesis of Pb-Zn Deposits and Enrichment Regularity of Dispersed Elements Cd, Ga, and Ge in SW Yangtze Block[D]. Chengdu: Chengdu University of Technology, 1-94(in Chinese).

    Goldfarb R J, Ayuso R, Miller M L, Ehert S W, Marsh E E, Petsel S A, Miller L D, Bradley D, Johnson C, McClelland W. 2004. The Late Cretaceous Domlin Creek gold deposit, Southwestern Alaska: Controls ore formation[J]. Economic Geology, 99(4): 643-671. doi: 10.2113/gsecongeo.99.4.643

    Guo Xin. 2011. Mineralization and Metallogenic Pattern of Lead-Zinc Deposits in Northeast Yunnan[D]. Beijing: China University of Geosciences (Beijing) 1-157(in Chinese).

    Han Runsheng, Liu Congqiang, Huang Zhilong, Chen Jin, Ma Deyun, Li Lei, Ma Gengsheng. 2007. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) District, Yunnan, South China[J]. Ore Geology Reviews, 31: 360-383. doi: 10.1016/j.oregeorev.2006.03.003

    Hoefs J. 1997. Stable Isotope Geochemistry, 4th Edition[M]. Berlin: Springer, 199-201.

    Hu Yaoguo. 2000. On Occurs of Silver, Sources of Metallogenic Materials and Metallogenic Mechanism of Silver Polymetallic Deposit in Yinchangpo, Guizhou Province[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences(in Chinese with English abstract).

    Huang Zhilong, Chen Jin, Liu Congqiang, Han Runsheng, Li Wenbo, Zhao Shunde, Gao Derong, Feng Zhihong. 2001. A preliminary discussion on the genetic relationship between Emeishan basalts and Pb-Zn deposits as exemplified by the Huize Pb-Zn deposit, Yunnan Province[J]. Acta Mineralogica Sinica, 21(4): 681-688(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2001.04.019

    Jin Zhongguo, Zhou Jiaxi, Huang Zhilong, Luo Kai, Gao Jianguo, Peng Song, Wang Bing, Chen Xinglong. 2016. Ore genesis of the Nayongzhi Pb-Zn deposit, Puding City, Guizhou Province, China: Evidences from S and in situ Pb isotopes[J]. Acta Petrologica Sinica, 32(11): 3441-3453(in Chinese with English abstract).

    Kong Zhigang, Wu Yue, Zhang Feng, Zhang Changqin, Meng Xuyang. 2018. Sources of ore-forming of typical Pb-Zn deposits in the Sichuan-Yunnan-Guizhou metallogenic province: Constraints from S-Pb isotope compositions[J]. Earth Science Frontiers, 25(1): 125-137(in Chinese with English abstract).

    Kesler S E, Vennemann T W, Frederickson C, Breithaupt A, Vazquez R, Furman F C. 1997. Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians[J]. Geochimica et Cosmochimica Acta, 61(7): 1513-1523. doi: 10.1016/S0016-7037(97)00014-8

    Li Bo. 2010. The Study of Fluid Inclusions Geochemistry and Tectonic Geochenmistry of Lead-Zinc Deposits: Taking Huize and Songliang Lead-Zinc Deposits for Example, in the Northeast of Yunnan Province, China[D]. Kunming: Kunming University of Science and Technology, 1-194(in Chinese with English abstract).

    Li Fayuan. 2003. Study on Occurrence State and Enrichment Mechanism of Dispersed Elements in MVT Deposits——A case Study for the Tian-baoshan and Daliangzi Pb-Zn Deposits in Sichuan Province[D]. Chengdu: Chengdu University of Technology, 1-64(in Chinese).

    Li Lianju, Liu Hongtao, Liu Jishun. 1999. A discussion on the source bed of Pb-Zn-Ag deposits in Northeast Yunnan[J]. Geological Exploration for Non-ferrous Metals, 8(6): 333-339(in Chinese with English abstract).

    Li Yanhe. 1998. Some applications of isotope-tracing in geology[J]. Earth Science Frontiers, 5(1/2): 275-281(in Chinese with English abstract).

    Li Wenbo, Huang Zhilong, Chen Jin, Han Runsheng, Guan Tao, Xu Cheng, Gao Derong, Zhao Shunde. 2002. Sources of ore-forming materials in Huize superlarge Zinc-Lead deposit, Yunnan Province: Evidence from contents of ore-forming element in strata and basalts from margin of ore district[J]. Mineral Deposits, 21(Supp. ): 413-416(in Chinese with English abstract).

    Li Wenbo, Huang Zhilong, Zhang Guan. 2006. Sources of the ore metals of the Huize ore field in Yunnan Province: Constraints from Pb, S, C, O and Sr isotope geochemisty[J]. Acta Petrologica Sinica, 22(10): 2567-2580(in Chinese with English abstract).

    Liao Wen. 1990. Mixed metallogenic model of stratabound zinc-lead deposits in the junction area of Sichuan, Yunnan and Guizhou[J]. Mineral Geology in Southwest China, 4(4): 24-37(in Chinese with English abstract).

    Liu Hechang. 1996. Pb-Zn source bed(rocks) of Dian-Chuan-Qian metallogenic region[J]. Geology and Exploration, 32(2): 12-17(in Chinese with English abstract).

    Liu Hechang, Lin Wenda. 1999. Lead-Zinc-Silver Deposit Regular Research in Northeast Yunnan Province[M]. Kunming: Yunnan University Press, 1-426(in Chinese).

    Macfarlane A W, Marcet P, LeHuray A P, Petersen U. 1990. Lead isotope provinces of the central Andes inferred from ores and crustal rocks[J]. Economic Geology, 85(8): 1857-1880. doi: 10.2113/gsecongeo.85.8.1857

    Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551

    Ohmoto H. 1986. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 16: 49l-559.

    Si Rongjun. 2005. Ore Deposit Geochemistry of the Fule Dispersed Element-Polymetallic Deposit, Yunnan Province[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Science, 1-118(in Chinese with English abstract).

    Wang Baolu, Lu Shikun, Hu Jugui. 2002. A tentative description of the Chuan-Dian-Qian rhombic massif[J]. Yunnan Geology, 23(2): 140-143(in Chinese with English abstract).

    Wang Hai, Wang Jingbin, Zhu Xinyou, Li Yongsheng, Zhen Shimin, Sun Hairui, Cheng Xiyin, Han Ying, Sun Zijian, Jiang Binbin. 2018. Genesis of the Dalingzi Pb-Zn deposit in the western margin of Yangtze plate: Constraints from fluid inclusions and isotopic evidence[J]. Geotectonica et Metallogenia, 42(4): 681-698(in Chinese with English abstract).

    Wang Hai, Zhu Xinyou, Wang Jingbin, Jia Delong, Shi Yu, Chen Lei, Xu Zhengfan. 2021. Sources of metallogenic materials and metallogenic mechanism of Tianbaoshan Pb-Zn deposit in Sichuan Province: Constraints from fluid inclusions and isotope evidences[J]. Acta Petrologica Sinica, 37(6): 1830-1844(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.06.12

    Wang Jian, Zhang Jun. 2015. Ore-forming fluid characteristics and mineralization mechanism of Daliangzi Pb-Zn deposit in Sichuan Province[J]. Acta Mineralogica Sinica, (Supp. 1): 678(in Chinese).

    Wang Jian, Zhang Jun, Zhang Xiaojun, Liu Wenhao, Zhong Wenbin, Yang Qing, Liu Chongpeng. 2019. Rb-Sr geochronology, stable isotopic analyses and geological significance of the Tianbaoshan Pb-Zn deposit in Sichuan Province, China[J]. Earth Science, 44(9): 3026-3037(in Chinese with English abstract).

    Wei Chen, Ye Lin, Li Zhenli, Hu Yusi, Huang Zhilong, Liu Yuping, Wang Haoyu. 2020. Metal sources and ore genesis of the Wusihe Pb-Zn deposit in Sichuan, China: New evidence from in-situ S and Pb isotopes[J]. Acta Petrologica Sinica, 36(12): 3783-3794(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.13

    Wen Ligang, Zeng Pusheng, Wang Zhaoquan. 2017. A discussion on key issues in genesis of Pb-Zn deposits in the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province, SW China[J]. Geological Review, 63(Supp. 1): 153-154(in Chinese with English abstract).

    Wu Yudong, Wang Zongqi, Luo Jinhai, Chen Jiaxiao, Zhang Yingli, Wang Shidi. 2016. Geochemical characteristics and metallogenic mechanism analysis of Huodehong lead-zinc deposit, northeast Yunnan Province[J]. Mineral Deposits, 35(5): 1084-1098(in Chinese with English abstract).

    Wu Yue. 2013. The Age and Ore-forming Process of MVT Deposits Boundary Area of Sichuan-Yunnan-Guizhou Province, Southwest China[D]. Beijing: China University of Geosciences (Beijing), 1-167(in Chinese with English abstract).

    Xiong Wei, Cheng Penglin, Zhou Gao, He Zhiwei. 2015. The origin of ore-forming metals in northwestern Guizhou Pb-Zn metallogenic district constrained by Pb isotopes[J]. Acta Mineralogica Sinica, 35(4): 425-429(in Chinese with English abstract).

    Yang Guangshu, Yan Yongfeng, Wen Hanjie, Hu Ruizhong, Zhang Junwei. 2015. Geological characteristics and S source of MVT Pb-Zn deposit in northeast Yunnan[J]. Acta Mineralogica Sinica, (Supp. 1): 249-251(in Chinese).

    Yang Qing, Zhang Jun, Wang Jian, Zhong Wenbin, Liu Wenhao. 2017. Study of ore-forming fluid geochemistry of Maozu large-scale lead-zinc deposit in northeast Yunnan[J]. Mineral Resources and Geology, 31(5): 854-862. doi: 10.3969/j.issn.1001-5663.2017.05.003

    Yuan Bo, Mao Jingwen, Yan Xinghu, Wu Yue, Zhang Feng, Zhao Liangliang. 2014. Sources of metallogenic materials and metallogenic mechanism of Daliangzi Ore Field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite[J]. Acta Petrologica Sinica, 30(1): 209-220(in Chinese with English abstract).

    Zartman R E, Haines S M. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bi-directional transport[J]. Geochimica et Cosmochimica Acta, 52(6): 1327-1339. doi: 10.1016/0016-7037(88)90204-9

    Zhang Changqin. 2008. The Genetic model of Mississippi Valley-type (MVT) Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Province, China[D]. Beijing: Chinese Academy of Geological Sciences, 1-167(in Chinese with English abstract).

    Zhang Changqin, Li Xianghui, Yu Jinjie, Mao Jingwen, Chen Fukun, Li Houmin. 2008. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances[J]. Geological Review, 54(4): 532-538(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.04.013

    Zhang Geli, Tian Tao, Wang Ruiting, Gao Weihong, Chang Zongdong. 2020. S, Pb isotopic composition of the Dongtangzi Pb-Zn deposit in the Fengtai ore concentration area of Shaanxi Province for tracing sources of ore-forming materials[J]. Geology in China, 47(2): 472-484(in Chinese with English abstract).

    Zhang Ligang. 1985. Geological Application for the Stable Isotope[M]. Xi'an: Shaanxi Science and Technology Press, 1-267(in Chinese).

    Zhang Yan, Han Runsheng, Wei Pintang. 2015. A review of isotopic tracing of metallogenic fluids in Huize Oversized lead-zinc deposit[J]. Acta Geologica Sinica, 89: 242-244(in Chinese). doi: 10.1111/1755-6724.12408

    Zhang Zhenliang, Huang Zhilong, Rao Bing, Li Wenbo, Yan Zaifei. 2005. Study on the ore-forming fluid characteristics of Huize Pb-Zn ore deposits[J]. Contributions to Geology and Mineral Resources Research, 20(2): 115-122(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1412.2005.02.008

    Zhao Lunshan, Zhang Benren. 1987. Geochemistry[M]. Beijing: Geological Publishing House, 1-401(in Chinese).

    Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry[M]. Beijing: Science Press, 1-316(in Chinese).

    Zhu Bingquan. 1998. Geological Isotope Theory and Application Evolution of Crust-Mantle in the Mainland China[M]. Beijing: Science Press, 1-330(in Chinese).

    Zhou Jiaxi, Huang Zhilong, Gao Jianguo, Wang Tao. 2012. Source of ore-forming metals and fluids and mechanism of mineralization, Maozu large carbonare-hosted lead-znic deposit, northeast Yunnan Province[J]. Mineral Petrology, 32(3): 62-69(in Chinese with English abstract).

    Zhou C X, Wei C S, Guo J Y, Li C Y. 2001. The source of metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr isotope constraints[J]. Economic Geology, 96(3): 583-598. doi: 10.2113/gsecongeo.96.3.583

    包广萍, 崔银亮, 高建国. 2013. 滇东北茂租铅锌矿床热液方解石稀土元素地球化学特征[J]. 矿物学报, 33(4): 681-684. doi: 10.16461/j.cnki.1000-4734.2013.04.039
    陈好寿. 1994. 同位素地球化学研究[M]. 杭州: 浙江大学出版社, 1-340.
    陈进. 1993. 麒麟厂铅锌硫化矿矿床成因及成矿模式探讨[J]. 有色金属矿产与勘查, 2(2): 85-90, 99.
    陈大. 2015. 扬子地台西缘铅锌矿床分布规律及矿源层探讨[J]. 吉林大学学报, 45(5): 1365-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505010.htm
    付绍洪. 2004. 扬子地块西南缘铅锌成矿作用与分散元素镉镓锗富集规律[D]. 成都: 成都理工大学, 1-94.
    郭欣. 2011. 滇东北地区铅锌矿床成矿作用与成矿规律[D]. 北京: 中国地质大学(北京), 1-157.
    胡耀国. 2000. 贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制[D]. 贵阳: 中国科学院地球化学研究所, 1-94.
    黄智龙, 陈进, 刘丛强, 韩润生, 李文博, 赵顺德, 高德荣, 冯志宏. 2001. 峨眉山玄武岩与铅锌矿床成矿关系初探——以云南会泽铅锌矿床为例[J]. 矿物学报, 21(4): 681-688. doi: 10.3321/j.issn:1000-4734.2001.04.019
    金中国, 周家喜, 黄智龙, 罗开, 高建国, 彭松, 王兵, 陈兴龙. 2016. 贵州普定纳雍枝铅锌矿矿床成因: S和原位Pb同位素证据[J]. 岩石学报, 32(11): 3441-3453. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611016.htm
    孔志岗, 吴越, 张锋, 张长青, 孟旭阳. 2018. 川滇黔地区典型铅锌矿床成矿物质来源分析: 来自S-Pb同位素证据[J]. 地学前缘, 25(1): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801011.htm
    李波. 2010. 滇东北地区会泽、松梁铅锌矿床流体地球化学与构造地球化学研究[D]. 昆明: 昆明理工大学, 1-194.
    李发源. 2003. MVT铅锌矿床中分散元素赋存状态和富集机理研究——以四川天宝山、大梁子铅锌矿床为例[D]. 成都: 成都理工大学, 1-64.
    李连举, 刘洪滔, 刘继顺. 1999. 滇东北铅、锌、银矿床矿源层问题探讨[J]. 有色金属矿产与勘查, 8(6): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS199906003.htm
    李文博, 黄智龙, 陈进, 韩润生, 管涛, 许成, 高德荣, 赵顺德. 2002. 云南会泽超大型铅锌矿床成矿物质来源——来自矿区外围地层及玄武岩成矿元素含量的证据[J]. 矿床地质, 21(增刊): 413-416. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1114.htm
    李文博, 黄智龙, 张冠. 2006. 云南会泽铅锌矿田成矿物质来源: Pb、S、C、H、O、Sr同位素制约[J]. 岩石学报, 22(10): 2567-2580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610017.htm
    李延河. 1998. 同位素示踪技术在地质研究中的某些应用[J]. 地学前缘, 5(1/2): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY802.014.htm
    廖文. 1990. 川、滇、黔交界地区层控铅锌矿床的混合成矿模式[J]. 西南矿产地质, 4(4): 24-37.
    柳贺昌. 1996. 滇、川、黔成矿区的铅锌矿源层(岩)[J]. 地质与勘探, 32(2): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT602.002.htm
    柳贺昌, 林文达. 1999. 滇东北铅锌银矿床规律研究[M]. 昆明: 云南大学出版社, 1-426
    司荣军. 2005. 云南省富乐分散元素多金属矿床地球化学研究[D]. 贵阳: 中国科学院地球化学研究所, 1-118.
    吴越. 2013. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制[D]. 北京: 中国地质大学(北京), 1-167.
    王宝禄, 吕世琨, 胡居贵. 2004. 试论滇川黔菱形地块[J]. 云南地质, 23(2): 140-143.
    王海, 王京彬, 祝新友, 李永胜, 甄世民, 孙海瑞, 程细音, 韩英, 孙紫坚, 蒋斌斌. 2018. 扬子地台西缘大梁子铅锌矿床成因: 流体包裹体及同位素地球化学约束[J]. 大地构造与成矿学, 42(4): 681-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201804009.htm
    王海, 祝新友, 王京彬, 贾德龙, 石煜, 陈磊, 许正繁. 2021. 四川天宝山铅锌矿成矿物质来源与成矿机制: 来自流体包裹体及同位素地球化学制约[J]. 岩石学报, 37(6): 1830-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202106012.htm
    王健, 张均. 2015. 四川省大梁子铅锌矿床成矿流体特征及成矿机制[J]. 矿物学报, (增刊1): 678. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1495.htm
    王健, 张均, 张晓军, 刘文浩, 仲文斌, 杨清, 刘重芃. 2019. 四川天宝山矿床闪锌矿Rb-Sr年代学、稳定同位素及地质意义[J]. 地球科学, 44(9): 3026-3037. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909019.htm
    武昱东, 王宗起, 罗金海, 程家孝, 张英利, 王师迪. 2016. 滇东北火德红铅锌矿床地球化学特征与成矿机制分析[J]. 矿床地质, 35(5): 1084-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605015.htm
    温利刚, 曾普胜, 王兆全. 2017. 川-滇-黔多金属成矿域铅锌成矿的两个关键问题[J]. 地质论评, 63(增刊1): 153-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1074.htm
    韦晨, 叶霖, 李珍立, 胡宇, 黄智龙, 刘玉平, 王皓宇. 2020. 四川乌斯河铅锌矿床成矿物质来源及矿床成因: 来自原位S-Pb同位素证据[J]. 岩石学报, 36(12): 3783-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012013.htm
    熊伟, 程鹏林, 周高, 何志威. 2015. 黔西北铅锌成矿区成矿金属来源的铅同位素示踪[J]. 矿物学报, 35(4): 425-429. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201504002.htm
    袁波, 毛景文, 闫兴虎, 吴越, 张锋, 赵亮亮. 2014. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J]. 大地构造与成矿学, 30(1): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401016.htm
    杨清, 张均, 王健, 仲文斌. 刘文浩. 2017. 滇东北茂租大型铅锌矿床成矿流体地球化学研究[J]. 矿产与地质, 31(5): 854-862. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201705003.htm
    杨光树, 燕永锋, 温汉捷, 胡瑞忠, 张军伟. 2015. 滇东北MVT铅锌矿床地质特征与S源[J]. 矿物学报, (增刊1): 249-251. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1185.htm
    张长青. 2008. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型[D]. 北京: 中国地质科学院, 1-167.
    张长青, 李向辉, 余金杰, 毛景文, 陈福坤, 李厚民. 2008. 四川大梁子铅锌矿床单颗粒闪锌矿铷锶测年及地质意义[J]. 地质论评, 54(4): 532-538. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200804017.htm
    张革利, 田涛, 王瑞廷, 高卫宏, 常宗东. 2020. 凤太矿集区东塘子铅锌矿床S、Pb同位素组成对成矿物质来源的示踪[J]. 中国地质, 47(2): 472-484. doi: 10.12029/gc20200214
    张理刚. 1985. 稳定同位素在地质科学中的应用[M]. 西安: 陕西科技出版社, l-267.
    张振亮, 黄智龙, 饶冰, 李文博, 严再飞. 2005. 会泽铅锌矿床成矿流体研究[J]. 地质找矿论丛, 20(2): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK200502008.htm
    张艳, 韩润生, 魏平堂. 2015. 会泽超大型铅锌矿床成矿流体同位素示踪综述[J]. 地质学报, 89: 242-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1103.htm
    赵伦山, 张本仁. 1987. 地球化学[M]. 北京: 地质出版社, 1-401.
    郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社, 1-316.
    朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 1-330.
    周家喜, 黄智龙, 高建国, 王涛. 2012. 滇东北茂租大型铅锌矿床成矿物质来源及成矿机制[J]. 矿物岩石, 32(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201203009.htm
  • 期刊类型引用(5)

    1. 王鹤源,王泽堃,谷思莹,杨烁暄,赵梓垚,陈旭. 宜昌—武汉长江沿岸典型砾石层对比分析. 高校地质学报. 2024(01): 47-55 . 百度学术
    2. 林旭,李玲玲,刘静,吴中海,李长安,刘维明,向宇,刘海金,陈济鑫. 长江早更新世向江汉盆地输送碎屑物质:来自碎屑锆石U-Pb年龄的约束. 地球科学. 2023(11): 4214-4228 . 百度学术
    3. 孙杨,谢远云,迟云平,康春国,吴鹏. 大兴安岭东麓龙江县白土山组地层特征:化学风化、沉积循环、源-汇体系和沉积环境. 山地学报. 2022(01): 14-28 . 百度学术
    4. 魏松林,孙全,陈平,杜林诚. 基于航测无人机的卵石三轴粒径计算及精度评估. 工程勘察. 2022(11): 68-74 . 百度学术
    5. 王令占,杨博,涂兵. 鄂东南咸宁北部冲洪积物的ESR年代及意义. 华南地质. 2021(02): 127-135 . 百度学术

    其他类型引用(3)

图(8)  /  表(4)
计量
  • 文章访问数:  1905
  • HTML全文浏览量:  890
  • PDF下载量:  1908
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-08-05
  • 修回日期:  2022-09-24
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-12-24

目录

/

返回文章
返回
x 关闭 永久关闭