Optimization and evaluation of favorable CBM areas in the Upper Peimian of the Northwest Guizhou
-
摘要:研究目的
优选研究区煤层气勘查开发有利区,为贵州省煤层气勘查部署提供参考。
研究方法以煤层气勘查资料及实验测试成果为基础,系统分析研究区主煤层(6、14、27号煤层)的厚度、含气量、渗透率、储层压力和煤体结构发育特征,利用五指标法对19个含气区进行了优选评价。
研究结果(1)上述三个主煤层具有南西厚,北东薄的厚度变化趋势;煤层含气量平均11.73 m3/t,向斜控气特征典型。(2)区域上划分出7个大含气区,其中煤层含气量大于16 m3/t的地带主要分布于比德-三塘向斜及金龙-黔西-金沙向斜群。(3)煤层试井渗透率平均0.173 mD,属于中-低渗透率煤层,渗透率在横向上由西向东总体趋于降低,纵向上随着层位降低而趋于降低,但在不同煤层之间出现明显波动。(4)试井煤储层压力平均4.98 MPa,压力系数平均0.86,总体上欠压,由东向西方向具有由欠压状态向正常和超压状态转变的趋势。(5)构造煤具有自东向西逐渐增多的趋势,东部煤层以原生结构与碎裂煤为主,西部以碎粒煤与碎粉煤为主。
结论优选出Ⅰ级有利区7个,Ⅱ级有利区8个,Ⅲ级有利区4个,认为土城、杨梅树、大河边、水公河、比德、以支塘、金龙(北)等7个向斜为Ⅰ级有利区,是研究区煤层气开发潜力较大的含气构造单元;格目底、金盆、三塘、黔西(北)、金沙、流长、莫老坝7个向斜为Ⅱ级有利区;其余向斜为Ⅲ级有利区。
创新点:优选出黔西北地区上二叠统煤层气有利区,为下一步煤层气勘查工作部署提供了新的依据。
Abstract:This paper is the result of energy exploration engineering.
ObjectiveThe primary goal is to identify and classify favorable areas for CBM exploration and development, providing a scientific basis for future exploration efforts in Guizhou Province.
MethodsBased on geological exploration data and laboratory sample analyses, key reservoir characteristics of the major coal seams (No. 6, No. 14, and No. 27) were systematically assessed. Parameters such as coal seam thickness, gas content, permeability, reservoir pressure, and coal−body structure were analyzed. Using a five−index evaluation method, 19 gas−bearing areas were classified.
Results(1) The three major coal seams exhibit greater thickness in the southwest and thinner deposition toward the northeast. The average gas content is 11.73 m³/t, with gas accumulation primarily controlled by synclinal structures. (2) Seven extensive gas−bearing areas were identified, with the Bide−Santang Basin and the Jinlong−Qianxi−Jinsha syncline group exhibiting gas contents exceeding 16 m3/t. (3) The average well−tested permeability of the coal seams is 0.173 mD, indicating a medium−low permeability reservoir. Permeability decreases from west to east and with increasing depth, with significant variations across different seams. (4) The average reservoir pressure is 4.98 MPa, with an average pressure coefficient of 0.86, indicating a predominantly underpressured state. A transition from underpressure to normal and overpressure is observed from east to west. (5) Coal structural characteristics vary spatially, with primary and fragmented coal types dominant in the east, while granulated and pulverized coal types are more prevalent in the west.
ConclusionsBased on the evaluation, seven Grade I, eight Grade II, and four Grade III favorable CBM areas were identified. The Grade I areas, including the Tucheng, Yangmeishu, Dahebian, Shuigonghe, Bide, Zhitang, and northern Jinlong synclines, demonstrate significant CBM exploration and development potential. The Grade II areas include the Gemudi, Jinpen, Santang, northern Qianxi, Jinsha, Liuchang, and Molaoba synclines, while the remaining synclines are classified as Grade III.
Highlights:This study provides a comprehensive assessment of CBM potential in the Upper Permian of the Northwest Guizhou, offering a valuable reference for future CBM exploration planning.
-
-
表 1 上二叠统煤层试井压力统计
Table 1 Statistics of well testing pressure of Upper Permian coal seam
向斜/勘查区 测试
层次储层压力/MPa 压力系数 向斜/勘查区 测试
层次储层压力/MPa 压力系数 最小 最大 平均 最小 最大 平均 最小 最大 平均 最小 最大 平均 松河 4 6.94 12.35 9.10 1.08 1.40 1.25 流长 4 3.90 4.38 4.10 0.82 0.83 0.82 都格 8 2.03 6.05 3.29 0.71 0.91 0.81 新店东 1 3.51 0.67 阳关寨 6 3.63 6.46 4.69 0.78 1.15 0.90 野马川 3 5.16 5.54 5.39 0.68 0.70 0.69 玉舍 10 0.99 5.36 2.88 0.34 0.97 0.70 白布 5 7.94 10.01 8.90 0.82 0.93 0.88 化乐 5 2.97 5.69 4.57 0.65 1.01 0.89 安洛 4 3.70 6.45 4.83 1.07 1.35 1.19 官寨 3 4.60 5.20 4.94 0.81 0.84 0.83 林华 2 8.04 8.11 8.08 0.84 0.90 0.87 牛场 4 3.77 5.62 4.96 0.75 0.83 0.80 官田坝 1 5.65 0.91 表 2 部分勘查区煤层试井渗透率统计
Table 2 Permeability statistics of coal seam test in some exploration areas
勘查区 孔号 煤层
编号煤层埋深
/m煤层厚度
/m渗透率
/mD勘查区 孔号 煤层
编号煤层埋深
/m煤层厚度
/m渗透率
/mD阳关寨 902 3 464.56 2.24 0.1630 化乐 1602 2 464.04 0.40 0.5002 4 474.83 1.03 0.0690 5 502.26 1.15 0.3228 5 527.03 2.15 0.0414 6 523.35 5.90 0.3000 7 538.39 1.24 0.0571 3603 2 520.17 1.65 0.1074 10 551.84 1.53 0.0362 6 577.76 1.58 0.1682 12 566.15 0.98 0.7560 官寨 GZ-1 4 555.42 2.42 0.2300 松河 SH-1 1+3 620.45 2.03 0.1060 9 599.74 1.57 0.0210 9 661.98 1.41 0.0934 11 645.70 3.08 0.0430 16 739.97 1.89 0.2100 牛场 N506 13 497.47 1.37 2.0900 27−1 920.71 0.74 0.0437 29 619.92 1.76 0.9600 玉舍 3601 20 273.10 2.54 0.1850 34 669.43 0.88 1.0500 21 281.27 0.97 0.0751 流长 J701 6 474.49 1.41 0.0536 80 451.79 1.29 0.0980 8 491.64 2.38 0.0124 103 534.54 1.22 0.1510 9 504.80 1.48 0.0437 107−1 564.89 2.52 0.0494 13 567.22 1.13 0.0596 3801 5 252.34 2.91 0.0661 新店东 b503 9 534.07 5.22 0.0328 10 289.36 1.14 0.0182 15 309.72 1.05 0.0484 官田坝 1902 9 620.88 6.01 0.6920 19 336.06 1.16 0.0444 安洛 7-3 4 331.36 1.94 0.0874 25 357.28 1.03 0.0693 、 8 345.15 0.68 0.0758 都格 23-3 3 263.64 1.28 0.0542 14 404.48 0.90 0.0768 5−2 282.42 1.90 0.0718 15 554.60 1.35 0.0025 10 339.74 1.04 0.1021 野马川 507 1 751.20 1.12 0.0347 12 364.79 1.28 0.0546 4 795.70 0.70 0.0319 13−1 372.50 10.37 0.0747 7 826.90 0.70 0.0291 16 439.47 1.28 0.1035 白布 ZK11-4 6−1 923.26 0.85 0.0200 23−1 490.36 1.09 0.0893 6−2 934.12 2.15 0.0600 33 679.78 1.95 0.0102 7 984.95 0.84 0.0700 林华 LH-1 4 889.26 2.09 0.0268 28 1088.04 1.44 0.0300 15 964.07 1.48 0.0276 33 1151.22 2.61 0.0100 表 3 煤层气有利区块评价参数指标体系
Table 3 Evaluation parameter index system of CBM favorable block
参数名称 参数权重 评价标准 赋值 备注 单煤层厚度/m 0.413 >2 50 构造十分复杂,一票否决 1~2 30 <1 20 含气量/(m3/t) 0.255 >12 50 8~12 30 <8 20 煤层原始渗透率/mD 0.164 >0.5 50 0.1~0.5 30 <0.1 20 煤储层压力状态/Mpa 0.072 ≥0.9 50 0.9~0.7 30 <0.7 20 构造发育情况 0.096 构造简单,煤体结构完整 50 少量断层,煤体结构轻度破坏 30 断层发育,煤体结构严重破坏 20 表 4 煤层气有利区评价模糊赋分模型
Table 4 Fuzzy assignment model for CBM favorable area evaluation
指标 权重 向斜1 向斜2 ··· 向斜3 隶属度 权系数 隶属度 权系数 ··· 隶属度 权系数 A1 B1 X1 B1·X1 Y1 B1·Y1 ··· Z1 B1·Z1 A2 B2 X2 B2·X2 Y2 B2·Y2 ··· Z2 B2·Z2 A3 B3 X3 B3·X3 Y3 B3·Y3 ··· Z3 B3·Z3 ··· ··· ··· ··· ··· ··· ··· ··· ··· An Bn Xn Bn·Xn Yn Bn·Yn ··· Zn Bn·Zn 综合评价分数 Σ Bi·Xi (i=1,2···n) Σ Bi·Yi (i=1,2···n) ··· Σ Bi·Zi (i=1,2···n) 表 5 煤层气有利区分级标准
Table 5 Classification standard of CBM favorable area
分级 综合评价得分 开发建议 有利向斜 Ⅰ级 ≥40分 优先开发 土城,杨梅树,大河边,水公河,比德,以支塘,金龙(北) Ⅱ级 30~40分 次优开发 格目底,金盆,三塘,黔西(北),金沙,长岗,流长,莫老坝 Ⅲ级 ≤30分 备选开发 关寨,牛场,官田坝,野马川 表 6 重点向斜构造单元综合评价结果
Table 6 Results of comprehensive evaluation of key synclinal tectonic units
构造单元 单煤层厚度/m 含气量/(m3/t) 煤体结构 渗透率/mD 压力状态 总得分 赋值 权重 赋值 权重 赋值 权重 赋值 权重 赋值 权重 土城 50 0.413 30 0.255 50 0.164 30 0.072 50 0.096 43 杨梅树 50 50 50 20 30 46 格目底 30 30 50 20 30 33 大河边 50 50 50 20 30 46 比德 50 30 50 30 50 43 水公河 30 50 50 30 50 40 三塘 30 30 50 20 50 34 关寨 30 30 20 20 30 28 牛场 30 20 20 50 30 27 流长 30 50 20 20 30 33 莫老坝 50 30 20 20 20 35 以支塘 30 50 50 20 50 40 官田坝 20 30 30 50 50 29 野马川 20 50 30 20 20 29 黔西(北) 30 30 50 20 50 34 金龙(北) 30 50 50 20 50 40 金盆 30 50 30 20 50 36 长岗 30 50 50 20 30 38 金沙 30 50 50 20 30 38 -
[1] Bi C Q, Zhang J Q, Shan Y H, Hu Z F, Wang F G, Chi H P, Tang Y, Yuan Y, Liu Y R. 2020. Geological characteristics and co−exploration and co−production methods of Upper Permian Longtan coal measure gas in Yangmeishu Syncline, Western Guizhou Province, China[J]. China Geology, 3(1): 38−51. doi: 10.31035/cg2020020
[2] Cheng Yiyan, Chen Zhenlong, Li Song, Chen Shida, Guo Tao. 2021. Characteristics of coalbed methane accumulation in Bide−Santang syncline, western Guizhou and favorable sector[J]. Geological Bulletin of China, 40(7): 1140−1148 (in Chinese with English abstract).
[3] Deng Changwen, Mo Rihe. 2007. Drilling techniques of coalbed methane parameter well in baotian−qingshan area of guizhou[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 34(1): 53−54 (in Chinese with English abstract).
[4] Feng Sanli, Ye Jianping, Zhang Suian. 2002. Coalbed methane resources in the ordos basin and its development potential[J]. Geological Bulletin of China, 21(10): 658−662.
[5] Fu Xuehai, Qin Yong, Wei Chongtao. 2007. Coalbed Methane Geology[M]. Xuzhou: China University of Mining and Technology Press(in Chinese with English abstract).
[6] Gao Fuliang, Lu Hongfeng, Wang Haipeng. 2014. Discusson on the block evaluatin methods for low rank cbm resouraces in china: A case study of the Junggar Basin[J]. Geology and Resources, 23(1): 142−144 (in Chinese with English abstract).
[7] Gao Wei, Han Zhongqin, Jin Jun, Bai Lina, Zhou Peiming. 2018. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. Coal Geology & Exploration, 46(5): 81−89 (in Chinese with English abstract).
[8] Han Jun, Shao Longyi, Xiao Jianxin, Xiao Zhenghui, Ran Maoyun, Yu Xiaohui. 2008. Application of multi−layered fuzzy mathematics in assessment of exploitation potential of coalbed methane resources[J]. Coal Geology & Exploration, 36(3): 31−36 (in Chinese with English abstract).
[9] Hao Haiyang, Li Yong, Song Jiwei, Wang Hu, Li Yong, Dai Yunpeng. 2019. Well bore stabilization technique sin coal bearing formation in southwestern Guizhou[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 46(7): 8−13, 33 (in Chinese with English abstract).
[10] Hu Guoyi, Guan Hui, Jiang Dengwen, Du Ping, Li Zhisheng. 2004. Analysis of condition for the formation of a coal methane accumulation in the Qinshui coal methane field[J]. Geology in China, 31(2): 213−217 (in Chinese with English abstract).
[11] Hu Lin, Xue Xiaohui, Cheng Peng, Yang Yina, Chen Rong. 2019. Preliminary analysis of geological conditions of "three gas and exploration" reservoir of Xuanwei Formation in Xuanwei area[J]. Geological Survey and Research, 42(1): 13−17 (in Chinese with English abstract).
[12] Jin Jun, Yang Zhaobiao, Qin Yong, Cui Yuhuan, Wang Guoling, Yi Tongsheng, Wu Caifang, Gao Wei, Chen Jie, Li Geng, Li Cunlei. 2021. Progress, potential and prospects of CBM development in Guizhou Province[J]. Journal of China Coal Society, 46(12): 1706−1718 (in Chinese with English abstract).
[13] Li Xinzi, Wang Saiying, Wu Qun. 2013. Scheme for subdivision of tectonic coal systematics: Implications for coalbed methane development[J]. Geological Review, 59(5): 919−923 (in Chinese with English abstract).
[14] Li Yong, Huang Mingyong, Song Jiwei, Ban Jinpeng. 2018. Research on non−reservoir horizontal well development technology of Zhijin coalbed methane reservoir in Guizhou Province[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 44(10): 31−36 (in Chinese with English abstract).
[15] Lu Shuangfang, Shen Jianian, Wang Zhenping, Li Chun. 2003. Resource evaluation of coalbed gas and potential analysis in Hailar Basin[J]. Coal Geology & Exploration, 31(6): 28−31 (in Chinese with English abstract).
[16] Qin Yong, Xiong Menghui, Yi Tongsheng, Yang Zhaobiao, Wu Caifang. 2008. On unattached multiple superposed coalbed methane system: In a case of the Shuigonghe syncline, Zhijin−Nayong Coalfield, Guizhou[J]. Geological Review, 54(1): 65−70 (in Chinese with English abstract).
[17] Shan Yansheng, Bi Caiqin. Zhang Jiaqiang, Li Feng, Wang Guofu, Li Hui. 2018. Industrial grade coalbed methane findings in Yangmeishu syncline, Liupanshui area, western Guizhou[J]. Geology in China, 45(6): 1302−1303 (in Chinese with English abstract).
[18] Shao Longyi, Wen Huaijun, Li Yonghong, Zhou Jun, Cai Yuliang, Jia Zhiyao, Lu Jing. 2011. Assessment of favorable areas for coalbed methane resources exploration in the Muli coalfield of Qinghai Province based on multi−layered fuzzy mathematics[J]. Geological Bulletin of China, 30(12): 1896−1903 (in Chinese with English abstract).
[19] Sun Bin, Sun Fenjin, Tian Wenguang, Sun Qinpping, Chen Gang, Chen Hao, Feng Sheng. 2011. Controlling factors of coalbed methane enrichment in the Wushenqi Area, Ordos Basin[J]. Natural Gas Industry, 31(2): 34−38 (in Chinese with English abstract).
[20] Tang Youyi, Tian Gaoling, Sun Siqing, Zhang Guocheng. 2004. Improvement and perfect way for the classification of the shape and cause formation of coal body texture[J]. Journal of Jiaozuo Institute of Technology (Natural Science), 23(3): 161−164 (in Chinese with English abstract).
[21] Tang Xiangui. 2012. Occurrence regularities of coal resources in Guizhou Province[J]. Coal Geology & Exploration, 40(5): 1−5 (in Chinese with English abstract).
[22] Tian Ya, Du Zhili, Zhang Wenlong, Chen Yi. 2019. Main controlling factors and accumulation model of Jurassic coalbed methane in Muli Basin[J]. Geological Survey of China, 6(4): 88−94 (in Chinese with English abstract).
[23] Wang Enying, Liu Mingju, Wei Jianping. 2009. Newgenetic texture structure classification system of tectonic coal[J]. Journal of China Coal Society, 34(5): 656−660 (in Chinese with English abstract).
[24] Wang Shengjian, Gao Wei, Guo Tianxu, Bao Shujing, Jin Jun, Xu Qiufeng. 2020. The discovery of shale gas, coalbed gas and tight sandstone gas in Permian Longtan Formation, northern Guizhou Province[J]. Geology in China, 47(1): 249−250 (in chinese with english abstract).
[25] Wu Caifang, Liu Xiaolei, Zhang Shasha. 2018. Construction of index system of “Hierarchical progressive” geological selection of coalbed methane in multiple seam area of eastern Yunnan and western Guizhou[J]. Journal of China Coal Society, 43(6): 1647−1653 (in Chinese with English abstract).
[26] Wu Sheng, Xu Yun, Shen Jianing, Jin Liuqing, Chen Jiyu, Li Chenchen, Hu Xiaolin. 2018. Structural control on the enrichment of CBM in Changgang syncline, northern Guizhou coalfield[J]. Coal Geology & Exploration, 46(2): 22−27 (in Chinese with English abstract).
[27] Xie Guoyi, Liu Hu, Mao Zhixin. 2018. Guizhou Natural Gas energy investment corporation[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 45(5): 53−54 (in Chinese with English abstract).
[28] Xiong Dehua, Tang Shuheng, Zhu Baocun. 2011. Comprehensive evaluation of coalbed methane exploration potential in the Jin−Shaan−Meng area[J]. Natural Gas Industry, 31(1): 32−36 (in Chinese with English abstract).
[29] Yang Shu, Chu Yu, Yang Xiangkui, Lou Benjun. 2005. Application of the analytic hierarchy process (AHP) in the evaluation of the geo−environmental quality in the Sanjiang plain[J]. Geological Bulletin of China, 24(5): 485−490 (in Chinese with English abstract).
[30] Ye Jianping, Wu Jianguang, Fang Chao, Wu Jian, Xiong Dehua. 2011. Regional geological and reservoir characteristics of the Panhe CBM Gas Field in the southern Qinshui Basin and their influences on CBM gas production capacity[J]. Natural Gas Industry, 31(5): 16−20 (in Chinese with English abstract).
[31] Yi Tongsheng, Tang Xiangui, Yang Tongbao. 2019. Coal Resource Potential and Guarantee Capacity of Guizhou Province [M]. Xuzhou: China University of Mining and Technology Press(in Chinese with English abstract).
[32] Zheng Shiyi, Zhang Xujiao, Yang Yan, Li Zongmin, Zhang Jinzhe, Chen Jie. 2012. The application of analytic hierarchy process to the danger evaluation of collapse and slide in Lujiang basin segment of Nujiang valley, western Yunnan Province[J]. Geological Bulletin of China, 31(2/3): 356−365 (in Chinese with English abstract).
[33] 程轶妍, 陈贞龙, 李松, 陈世达, 郭涛. 2021. 黔西比德−三塘向斜煤层气藏特征及甜点区段[J]. 地质通报, 40(7): 1140−1148. [34] 邓昌文, 莫日和. 2007. 贵州保田−青山煤层气参数井钻井工艺技术[J]. 探矿工程(岩土钻掘工程), 34(1): 53−54. [35] 冯三利, 叶建平, 张遂安. 2002. 鄂尔多斯盆地煤层气资源及开发潜力分析[J]. 地质通报, 21(10): 658−662. [36] 傅雪海, 秦勇, 韦重韬. 2007. 煤层气地质学[M]. 徐州: 中国矿业大学出版社. [37] 高福亮, 鲁红峰, 王海鹏. 2014. 中国低煤阶煤层气资源区块评价方法讨论—以准噶尔盆地为例[J]. 地质与资源, 23(1): 142−144. [38] 高为, 韩忠勤, 金军, 白利娜, 周培明. 2018. 六盘水煤田煤层气赋存特征及有利区评价[J]. 煤田地质与勘探, 46(5): 81−89. doi: 10.3969/j.issn.1001-1986.2018.05.013 [39] 韩俊, 邵龙义, 肖建新, 肖正辉, 冉茂云, 于晓辉. 2008. 多层次模糊数学在煤层气开发潜力评价中的应用[J]. 煤田地质与勘探, 36(3): 31−36. doi: 10.3969/j.issn.1001-1986.2008.03.008 [40] 郝海洋, 李勇, 宋继伟, 王虎, 李勇, 代云鹏. 2019. 黔西南地区煤系地层井壁稳定技术探讨[J]. 探矿工程(岩土钻掘工程), 46(7): 8−13,33. [41] 胡国艺, 关辉, 蒋登文, 杜平, 李志生. 2004. 山西沁水煤层气田煤层气成藏条件分析[J]. 中国地质, 31(2): 213−217. doi: 10.3969/j.issn.1000-3657.2004.02.015 [42] 胡琳, 薛晓辉, 成鹏, 杨怡娜, 陈蓉. 2019. 滇东宣威地区宣威组“三气兼探”储层地质条件初步分析[J]. 地质调查与研究, 42(1): 13−17. [43] 金军, 杨兆彪, 秦勇, 崔玉环, 王国玲, 易同生, 吴财芳, 高为, 陈捷, 李庚, 李存磊. 2021. 贵州省煤层气开发进展、潜力及前景[J]. 煤炭学报, 46(12): 1706−1718. [44] 李辛子, 王赛英, 吴群. 2013. 论不同构造煤类型煤层气开发[J]. 地质论评, 59(5): 919−923. [45] 李勇, 黄明勇, 宋继伟, 班金彭. 2017. 贵州织金煤层气非储层水平井开发技术研究[J]. 探矿工程(岩土钻掘工程), 44(10): 31−36. [46] 卢双舫, 申家年, 王振平, 李椿. 2003. 海拉尔盆地煤层气资源评价及潜力分析[J]. 煤田地质与勘探, 31(6): 28−31. doi: 10.3969/j.issn.1001-1986.2003.06.009 [47] 秦勇, 熊孟辉, 易同生, 杨兆彪, 吴财芳. 2008. 论多层叠置独立含煤层气系统—以贵州织金−纳雍煤田水公河向斜为例[J]. 地质论评, 54(1): 65−70. doi: 10.3321/j.issn:0371-5736.2008.01.008 [48] 单衍胜, 毕彩芹, 张家强, 李锋, 王福国, 李惠. 2018. 黔西六盘水杨梅树发现工业级煤层气[J]. 中国地质, 45(6): 1302−1303. doi: 10.12029/gc20180618 [49] 邵龙义, 文怀军, 李永红, 周俊, 蔡玉良, 贾志燿, 鲁静. 2011. 青海省天峻县木里煤田煤层气有利区块的多层次模糊数学评判[J]. 地质通报, 30(12): 1896−1903. [50] 孙斌, 孙粉锦, 田文广, 孙钦平, 陈刚, 陈浩, 冯圣. 2011. 鄂尔多斯盆地乌审旗地区煤层气富集主控因素及其勘探方向[J]. 天然气工业, 31(2): 34−38. doi: 10.3787/j.issn.1000-0976.2011.02.008 [51] 汤友谊, 田高岭, 孙四清, 张国成. 2004. 对煤体结构形态及成因分类的改进和完善[J]. 焦作工学院学报(自然科学版), 23(3): 161−164. [52] 唐显贵. 2012. 贵州省煤炭资源赋存规律[J]. 煤田地质与勘探, 40(5): 1−5. doi: 10.3969/j.issn.1001-1986.2012.05.003 [53] 田亚, 杜治利, 张文龙, 陈夷. 2019. 木里盆地侏罗系煤层气主控因素及成藏模式[J]. 中国地质调查, 6(4): 88−94. [54] 王恩营, 刘明举, 魏建平. 2009. 构造煤成因−结构−构造分类新方案[J]. 煤炭学报, 34(5): 656−660. doi: 10.3321/j.issn:0253-9993.2009.05.016 [55] 王胜建, 高为, 郭天旭, 包书景, 金军, 徐秋枫. 2020. 黔北金沙地区二叠系龙潭组取得页岩气、煤层气和致密砂岩气协同发现[J]. 中国地质, 47(1): 249−250. doi: 10.12029/gc20200120 [56] 吴财芳, 刘小磊, 张莎莎. 2018. 滇东黔西多煤层地区煤层气“层次递阶”地质选区指标体系构建[J]. 煤炭学报, 43(6): 1647−1653. [57] 吴圣, 徐韵, 沈家宁, 金留青, 陈基瑜, 李臣臣, 胡小林. 2018. 黔北煤田长岗向斜煤层气富集的构造控制作用[J]. 煤田地质与勘探, 46(2): 22−27. doi: 10.3969/j.issn.1001-1986.2018.02.004 [58] 谢国毅, 刘虎, 毛志新. 2018. 贵州岩溶地区煤层气钻井关键技术[J]. 探矿工程(岩土钻掘工程), 45(5): 53−54. [59] 熊德华, 唐书恒, 朱宝存. 2011. 晋陕蒙地区煤层气勘查潜力综合评价[J]. 天然气工业, 31(1): 32−36. doi: 10.3787/j.issn.1000-0976.2011.01.006 [60] 杨澍, 初禹, 杨湘奎, 娄本君. 2005. 层次分析法(AHP)在三江平原地质环境质量评价中的应用[J]. 地质通报, 24(5): 485−490. [61] 叶建平, 吴建光, 房超, 吴见, 熊德华. 2011. 沁南潘河煤层气田区域地质特征与煤储层特征及其对产能的影响[J]. 天然气工业, 31(5): 16−20. doi: 10.3787/j.issn.1000-0976.2011.05.004 [62] 易同生, 唐显贵, 杨通保. 2019. 贵州省煤炭资源潜力与保障能力[M]. 徐州: 中国矿业大学出版社. [63] 郑师谊, 张绪教, 杨艳, 李宗敏, 张晋喆, 陈洁. 2012. 层次分析法在滇西怒江河谷潞江盆地段崩塌与滑坡地质灾害危险性评价中的应用[J]. 地质通报, 31(2/3): 356−365.