• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

基于预测农作物Se含量构建富硒土地质量评价体系—以湖南龙山县为例

张俊, 戴亮亮, 巩浩, 彭志刚, 许青阳, 胡向荣, 贺灿, 吴文彬, 陈伟, 曾剑

张俊,戴亮亮,巩浩,彭志刚,许青阳,胡向荣,贺灿,吴文彬,陈伟,曾剑. 2025. 基于预测农作物Se含量构建富硒土地质量评价体系—以湖南龙山县为例[J]. 中国地质, 52(1): 362−371. DOI: 10.12029/gc20220618001
引用本文: 张俊,戴亮亮,巩浩,彭志刚,许青阳,胡向荣,贺灿,吴文彬,陈伟,曾剑. 2025. 基于预测农作物Se含量构建富硒土地质量评价体系—以湖南龙山县为例[J]. 中国地质, 52(1): 362−371. DOI: 10.12029/gc20220618001
Zhang Jun, Dai Liangliang, Gong Hao, Peng Zhigang, Xu Qingyang, Hu Xiangrong, He Can, Wu Wenbin, Chen Wei, Zeng Jian. 2025. Construction of Se−enriched land quality evaluation system based on predicted Se content in crops: A case study of Longshan County, Hunan Province[J]. Geology in China, 52(1): 362−371. DOI: 10.12029/gc20220618001
Citation: Zhang Jun, Dai Liangliang, Gong Hao, Peng Zhigang, Xu Qingyang, Hu Xiangrong, He Can, Wu Wenbin, Chen Wei, Zeng Jian. 2025. Construction of Se−enriched land quality evaluation system based on predicted Se content in crops: A case study of Longshan County, Hunan Province[J]. Geology in China, 52(1): 362−371. DOI: 10.12029/gc20220618001

基于预测农作物Se含量构建富硒土地质量评价体系—以湖南龙山县为例

基金项目: 中国地质调查局项目“湘西片区土地质量地球化学调查”(DD20211576)资助。
详细信息
    作者简介:

    张俊,男,1999年生,助理工程师,主要从事环境地球化学研究;E-mail:2463707356@qq.com

    通讯作者:

    戴亮亮,男,1993年生,工程师,主要从事环境地球化学、生态地球地球化学研究;E-mail:dailiangliang@mail.cgs.gov.cn

  • 中图分类号: S511

Construction of Se−enriched land quality evaluation system based on predicted Se content in crops: A case study of Longshan County, Hunan Province

Funds: Supported by the project of China Geological Survey “Land Quality Geological Survey in Western Hunan” (No. DD20211576).
More Information
    Author Bio:

    ZHANG Jun, male, born in 1999, assistant engineer, mainly engaged in environmental geochemistry; E-mail: 2463707356@qq.com

    Corresponding author:

    DAI Liangliang, male, born in 1993, engineer, mainly engaged in environmental geochemistry, ecological geochemistry research; E-mail: dailiangliang@mail.cgs.gov.cn.

  • 摘要:
    研究目的 

    硒(Se)是人体必需的微量元素之一。富硒土地和富硒农产品的开发利用成为了乡村振兴的重要实践,但仅根据土壤Se含量难以准确地指导地方政府进行富硒土地资源开发。

    研究方法 

    本文以湖南省龙山县西北部作为研究区,基于1∶50000土地质量地球化学调查数据和全国土地调查成果数据探讨了水稻Se生物富集系数的影响因素,并据此建立了水稻籽实Se含量多元线性回归预测模型,结合耕地地力和环境质量提出了富硒土地质量评价体系。

    研究结果 

    (1)研究区土壤Se含量为0.19~0.84 mg/kg,平均值0.48 mg/kg,水稻籽实Se含量为0.02~0.23 mg/kg,平均值0.10 mg/kg,水稻籽实富硒率为83%。(2)水稻籽实Se生物富集系数与土壤Cd、S和TC呈极显著负相关关系,相关系数分别−0.617、−0.452和−0.574。(3)区划结果显示,研究区以无公害富硒中高产耕地为主,面积占比78%,无公害中高产耕地和无公害低产耕地面积相对较小,面积分别占13%和4%;安全利用富Se耕地和谨慎利用耕地面积分别占4%和1%。

    结论 

    在科学预测农作物籽实Se元素含量的基础上,本文构建了一种基于农作物富Se水平、耕地地力和环境质量的地块尺度富Se土地质量评价体系,对地方政府进行富Se土地资源开发利用具有重要参考示范意义。

    创新点:

    利用土壤理化性质与Se生物富集系数的密切联系,建立了农作物籽实Se含量预测模型,构建了一种基于农作物富Se水平、耕地地力等级和耕地环境质量的地块尺度富Se土地质量评价体系。

    Abstract:

    This paper is the result of soil geochemical survey engineering.

    Objective 

    Selenium (Se) is one of the essential trace elements for human body. The development and utilization of Se−rich land and Se−rich agricultural products have become a pivotal practice in rural revitalization. Nonetheless, it is challenging to accurately guide the local government to develop Se−rich land resources in accordance with nothing more than the content of Se in soil.

    Methods 

    The northwestern part of Longshan County, Hunan Province were selected as the explored area in this paper. The influencing factors of Se bioconcentration factors of rice were systematically and comprehensively explored on the basis of 1∶50000 land quality geochemical survey data and national land survey results data. Accordingly, the prediction model of Se bioconcentration factors of rice was established. Aside from that, the Se−rich land quality evaluation system was put forth by integrating with land fertility and ecological environment.

    Results 

    (1) The soil Se content was 0.19−0.84 mg/kg, with an average value of 0.48 mg/kg. The Se content of rice seeds was 0.02−0.23 mg/kg, with an average value of 0.10 mg/kg, and the Se−rich rate of rice seeds was 82%. (2) The Se bioconcentration factors of rice seeds displayed negative association with soil Cd, S, and TC, among which the correlation coefficients were −0.617, −0.452, and −0.574, separately. (3) As suggested by the zoning results, the pollution−free medium−high yield cultivated land with Se enrichment in the explored area accounts for 78%; The pollution−free medium−high yield cultivated land, the pollution−free low yield cultivated land, the cultivated land of safe utilization, the cultivated land of prudent utilization account for 13%, 4%, 4% and 1%, respectively.

    Conclusions 

    On the basis of scientific prediction of crop seeds Se content, a block scale Se−rich land quality evaluation system was innovatively constructed based on Se content of crops, land fertility and ecological environment in this paper. On this basis, this research is expected to offer paramount reference and demonstration significance for local governments to develop Se−rich land resources.

    Highlights:

    A prediction model of Se content in crop seeds was constructed based upon the close relationship between soil physical and chemical properties and the Se bioconcentration factor. A block scale Se−rich land quality evaluation system was constructed in line with Se content of crops, land fertility and ecological environment.

  • 图  1   研究区地理位置及采样点位图

    1—乡镇位置;2—县政府驻地;3—表层土采样点位;4—水稻采样点位;5—河流;6—第四系;7—上白垩统栏垅组;8—下白垩统东井组

    Figure  1.   Location and sampling map of the study area

    1−Township location; 2−County government station; 3−Sampling sites of topsoil; 4−Sampling sites of rice; 5−River; 6−Quaternary; 7−Upper Cretaceous Lanlong Formation; 8−Lower Cretaceous Dongjing Formation

    图  2   表层土壤Se含量空间分布特征

    Figure  2.   Spatial distribution characteristics of Se contents in surface soil

    图  3   水稻籽实Se与土壤Se含量散点图

    Figure  3.   Scatter plot of Se content in rice and rhizospere soil

    图  4   水稻Se含量预测值和实测值相关关系图

    Figure  4.   Correlation diagram between of predictive values and measured values of Se contents in rice

    图  5   研究区富Se耕地质量综合等级图

    Figure  5.   Distribution of comprehensive grade of Se−rich arable land in the study area

    表  1   样品分析方法及检出限

    Table  1   Analysis methods and detect limits of samples

    样品类型 分析方法 测定元素或指标 规范检出限 分析方法检出限
    土壤 X射线荧光光谱法(XRF) SiO2 0.1 0.05
    Al2O3 0.05 0.03
    高频燃烧红外吸收法(HFIR) S 30 15
    TC 0.1 0.02
    电感耦合等离子体质谱法(ICP−MS) Cd 0.03 0.02
    离子选择性电极(ISE) pH 0.1 0.01
    原子荧光光谱法(AFS) Se 0.01 0.01
    水稻 原子荧光光谱法(AFS) Se - 0.005
      注:SiO2、Al2O3、TC检出限单位为%,S、Cd、Se检出限单位为 mg/kg,pH无量纲。
    下载: 导出CSV

    表  2   表层土壤Se含量分级标准及统计

    Table  2   Classification standard and statistics of Se content in top soil

    硒含量范围/(mg/kg) 硒含量分级 样品数/件 所占比例/%
    <0.125 缺乏 0 0
    0.125~<0.175 边缘 0 0
    0.175~<0.4 适量 49 28
    0.4~<3.0 125 72
    ≥3.0 过剩 0 0
    下载: 导出CSV

    表  3   水稻籽实与根系土Se含量(mg/kg)

    Table  3   Se content (mg/kg) of rice seeds and rhizospere soil

    种类 样品数 最大值 最小值 平均值 标准差 富硒率
    水稻 籽实 35 0.23 0.02 0.10 0.06 83%
    根系土 35 0.75 0.25 0.45 0.20
      注:富Se率=(富Se样本数/总样本数)×100%。
    下载: 导出CSV

    表  4   Se的生物富集系数与土壤理化指标相关系数

    Table  4   Association coefficients of BCFSe with soil physicochemical properties

    Cd SiO2 Al2O3 S TC pH BCF
    Cd 1
    SiO2 −0.510** 1
    Al2O3 0.290 −0.830** 1
    S 0.408* −0.094 −0.049 1
    TC 0.220* −0.079 0.068 0.423* 1
    pH 0.601** −0.507** 0.273 0.065 0.178 1
    BCF −0.617** 0.337* −0.337* −0.452** −0.574** −0.263 1
      注:*为P<0.05,**为P<0.01。
    下载: 导出CSV

    表  5   富Se耕地质量评价指标及权重

    Table  5   Quality evaluation index and weight of Se-rich cultivated land

    一级指标 二级指标 三级指标 等级划定
    耕地地力 立地条件及土壤性状(0.40) 地形部位(0.15)
    坡度(0.13)
    土层厚度(0.13)
    剖面构型(0.12)
    土壤质地(0.12)
    土壤结构(0.11)
    pH(0.24)
    Ⅰ等(高产能)
    Ⅱ等(中产能)
    Ⅲ等(低产能)
    土壤养分(0.40) 有机质(0.50)、P(0.20)K(0.30)
    土壤管理(0.20) 利用现状(0.4)
    灌溉保证率(0.3)
    排涝能力(0.3)
    生态环境 Cd、Hg、As、Pb、Cr A、B、C
    农作物富硒水平 预测水稻籽实Se含量 1级(富硒)
    2级(非富硒)
    下载: 导出CSV

    表  6   富Se耕地质量综合等级划分

    Table  6   Quality classification of Se−rich cultivated land

    等级 R∶G∶B 分级 定义
    1等4∶168∶24ⅠA1 ⅠB1 ⅡA1 ⅡB1 ⅢA1 ⅢB1无公害富硒中高产耕地
    2等144∶243∶127ⅠA2 ⅡA2 ⅠB2 ⅡB2无公害中高产耕地
    3等225∶225∶0ⅢA2 ⅢB2无公害低产耕地
    4等225∶153∶0ⅠC1 ⅡC1 ⅢC1安全利用富硒耕地
    5等225∶0∶0ⅠC2 ⅡC2 ⅢC2谨慎利用耕地
    下载: 导出CSV
  • [1]

    Cai Haisheng, Chen Yi, Zhang Xueling. 2020. Suitability evaluation and zoning method research on development and utilization of selenium−rich soil resources based on niche theory[J]. Acta Ecologica Sinica, 40(24): 9208−9219 (in Chinese with English abstract).

    [2]

    Chen Qiuju, Gan Yiqun, Zhang Ruowen. 2019. Distribution characteristics and causes of selenium enrichment in surface soils of the Jianghan Plain[J]. Safety and Environmental Engineering, 26(4): 8−14, 43 (in Chinese with English abstract).

    [3]

    Chen Wenxuan, Li Qian, Wang Zhen, Sun Zhaojun. 2020. Spatial distribution characteristics and pollution assessment of heavy metals in farmland soil in China[J]. Environmental Science, 41(6): 2822−2833 (in Chinese with English abstract).

    [4]

    Chen Xiaohua, Shen Genxiang, Bai Yujie, Guo Chunxia, Qian Xiaoyong, Gu Hairong, Hu Shuangqing, Zhao Qingjie, Wang Zhenqi, Fu Kan. 2019. The enrichment characteristics of Cd in soil by different crops and the selection of low accumulation varieties[J]. Environmental Science, 40(10): 4647−4653 (in Chinese with English abstract).

    [5]

    Chen Xuelong, Wang Xiaolong, Qi Yanping. 2012. Study on the relationship between soil physicochemical properties and selenium distribution in Daqing Longfeng Wetland[J]. Research of Soil and Water Conservation, 19(4): 159−162 (in Chinese with English abstract).

    [6]

    Dou Weiqiang, An Yi, Qin Li, Dong Mingming, Lin Dasong. 2021. Quantitative relationship between bioaccumulation coefficient of cadmium in rice and its influencing factors[J]. Soil, 53(4): 788−793 (in Chinese with English abstract).

    [7]

    Fang Rukang. 2003. Environmental Dictionary [M]. Beijing: Science Press, 127−128 (in Chinese).

    [8]

    Fu Zhongbiao, He Ningjie, Bao Zhengyu, Tian Huan, Ma Ming, Chen Guoguang. 2019. Analysis of influencing factors of selenium content in rice−root soil system in southern Jiangxi[J]. Geological Science and Technology Information, 38(5): 220−229 (in Chinese with English abstract).

    [9]

    Girling C A. 1984. Selenium in agriculture and environment[J]. Agricultural Ecosystem and Environment, 11(1): 37−65. doi: 10.1016/0167-8809(84)90047-1

    [10]

    Gu Q B, Yu T, Yang Z F, Ji J F, Hou Q Y, Wang L, Wei X J, Zhang Q Z. 2019. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China[J]. Environmental Toxicology and Pharmacology, 70: 1−8.

    [11]

    Guo Hongfei. 2019. Application of F test method and T test method in the process of method validation[J]. Shanxi Metallurgy, 42(4): 114−116 (in Chinese with English abstract).

    [12]

    Hou Qingye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. China Environmental Monitoring Station [M]. Beijing: Geological Publishing House, 1428−1431 (in Chinese).

    [13]

    Huang Bingxia, Zhi Tiantian, Zhao Zhigang, He Ning, Han Chengyun. 2019. Selenium and human health[J]. Journal of Yichun University, 41(9): 95−101 (in Chinese with English abstract).

    [14]

    Liao Qilin, Liu Cong, Cai Yuman, Zhu Bowan, Wang Cheng, Hua Ming, Jin Yang. 2013. Preliminary study on element bioconcentration factor (BCF) in grain of rice and wheat in typical areas of Jiangsu[J]. Geology in China, 40(1): 331−340 (in Chinese with English abstract).

    [15]

    Liu Bingquan, Sha Min, Xie Changyu, Zhou Qiangqiang, Wei Xingxing, Zhou Fan. 2021. Soil selenium geochemical characteristics and influencing factors of selenium bioavailability in rice root soil in Qingxi area, Jiangxi Province[J]. Rock and Mineral Analysis, 40(5): 740−750 (in Chinese with English abstract).

    [16]

    Ma Xudong, Yu Tao, Yang Zhongfang, Zhang Husheng, Wu Zhiliang, Wang Jue, Li Minghui, Lei Fenghua. 2022. Geochemical characteristics of zinc in soil and prediction of zinc content in maize and rice grains in Linshui Country, Sichuan Province[J]. Geology in China, 49(1): 324−335 (in Chinese with English abstract).

    [17]

    Wan Y N, Yu Y, Wang Q, Qiao Y, Li H. 2016. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology & Environmental Safety, 133: 127−134.

    [18]

    Wang Jixiu, Gao Xi, Ma Sha, Wu Guoxing. 2013. Bioaccumulation of Cd, Pb and Zn in soil−Eupatorium adenophorum−Eupatorium adenophorum fruit fly system[J]. Chinese Journal of Ecological Agriculture, 21(7): 877−882 (in Chinese with English abstract). doi: 10.3724/SP.J.1011.2013.00877

    [19]

    Wang Q Y, Zhang J B, Zhao B Z, Xin X L, Deng X H, Zhang H L. 2016. Influence of long−term fertilization on selenium accumulation in soil and uptake by crops[J]. Pedosphere, 26(1): 120−129. doi: 10.1016/S1002-0160(15)60028-5

    [20]

    Wang Rui, Deng Hai, Yan Mingshu, Zhang Yongwen, Zhou Jiao, Yu Fei, Li Yu. 2020. Study on bioavailability of selenium based on regression equation[J]. Chinese Journal of Soil Science, 51(5): 1049−1055 (in Chinese with English abstract).

    [21]

    Wang Rui, Hou Wanling, Li Yutong, Yu Tao, Chen Juan. 2019. Land safety zoning method for high selenium and high cadmium areas[J]. Environmental Science, 40(12): 5524−5530 (in Chinese with English abstract).

    [22]

    Wang Rui, Yu Jing, Li Yu, Zhou Jiao, Jia Zhongmin, Yu Fei, Zhang Yunyi, Jiang Yulian. 2022. Zoning method for safe utilization of cultivated land at risk of heavy metal pollution at plot scale[J]. Environmental Science, 43(8): 4190−4198 (in Chinese with English abstract).

    [23]

    Wang Xiaofang, Chen Siyang, Luo Zhang, Huang Qingqing, Qiao Yuhui, Sun Hongjie, Li Huafen. 2014. Mechanisms of selenium uptake, transport and transformation in plants[J]. Journal of Agricultural Resources and Environment, 31(6): 539−544 (in Chinese with English abstract).

    [24]

    Wu Jun. 2018. Geochemical characteristics of selenium−rich soil in Shouning County, Fujian Province[J]. Geophysical and Geochemical Exploration, 42(2): 386−391 (in Chinese with English abstract).

    [25]

    Vries W D, Mclaughlin M J, Groenenberg J E. 2011. Transfer functions for solid–solution partitioning of cadmium for Australian soils[J]. Environmental Pollution, 159(12): 3583−3594. doi: 10.1016/j.envpol.2011.08.006

    [26]

    Xu Xuesheng, Luo Jianlan, Huang Fengqiu, Wang Huanhuan, Xia Xueqi, Lu Jiang, Zhang Zihu, Zhu Lifen. 2022. Construction of the evaluation system for Se−rich arable land and its application in Xinxu Town, Xintian County, Hunan Province[J]. Geology in China, 49(3): 789−801 (in Chinese with English abstract).

    [27]

    Yuan Zhiyang, Xiang Jianqiao, Wu Dongmei, Xu Chunyan, Huang Bin, Duan Bihui, Zou Hui, Li Chuncheng, Zhao Min. 2017. Characteristics of selenium and cadmium in main crops in Enshi selenium−rich soil area and its relationship with selenium and cadmium in root soil[J]. Resource Environment and Engineering, 31(6): 706−712 (in Chinese with English abstract).

    [28]

    Yuan Zhiyang, Zheng Jinlong, Dai Guangzhong, Yang Liangzhe, Xiang Jianqiao. 2019. Study on the relationship between soil selenium and cadmium and their physical and chemical properties in Enshi selenium−rich soil area[J]. Southwest China Journal of Agricultural Sciences, 32(8): 1852−1859, 1967 (in Chinese with English abstract).

    [29]

    Zhang Dong, Shi Lichao, Ye Jun, Hou Zhenan, Wang Cunhu, Wu Yonghai. 2017. Effects of different valences of exogenous selenium on selenium uptake and transport in rice under drip irrigation[J]. Chinese Journal of Rice Science, 31(1): 65−71 (in Chinese with English abstract).

    [30]

    Zhou Guohua. 2020. Research progress and evaluation methods of selenium−rich land resources[J]. Rock and Mineral Analysis, 39(3): 319−336 (in Chinese with English abstract).

    [31]

    Zhou Wenlong, Yang Zhizhong, Zhang Tao, Mang Shicai, Yang Zhengkun. 2022. Analysis of influencing factors of selenium content in rice−root soil system in Libo County, South Guizhou[J]. Geophysical and Geochemical Exploration, 46(2): 502−510 (in Chinese with English abstract).

    [32] 蔡海生, 陈艺, 张学玲. 2020. 基于生态位理论的富硒土壤资源开发利用适宜性评价及分区方法[J]. 生态学报, 40(24): 9208−9219.
    [33] 陈秋菊, 甘义群, 张若雯. 2019. 江汉平原沙洋地区表层土壤中硒的分布特征及富硒原因分析[J]. 安全与环境工程, 26(4): 8−14, 43.
    [34] 陈文轩, 李茜, 王珍, 孙兆军. 2020. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 41(6): 2822−2833.
    [35] 陈小华, 沈根祥, 白玉杰, 郭春霞, 钱晓雍, 顾海蓉, 胡双庆, 赵庆节, 王振旗, 付侃. 2019. 不同作物对土壤中Cd的富集特征及低累积品种筛选[J]. 环境科学, 40(10): 4647−4653.
    [36] 陈雪龙, 王晓龙, 齐艳萍. 2012. 大庆龙凤湿地土壤理化性质与硒元素分布关系研究[J]. 水土保持研究, 19(4): 159−162.
    [37] 窦韦强, 安毅, 秦莉, 董明明, 林大松. 2021. 稻米镉的生物富集系数与其影响因素的量化关系[J]. 土壤, 53(4): 788−793.
    [38] 方如康. 2003. 环境学词典[M]. 北京: 科学出版社, 127−128.
    [39] 付中彪, 何宁洁, 鲍征宇, 田欢, 马明, 陈国光. 2019. 赣南地区水稻−根系土系统中硒含量影响因素分析[J]. 地质科技情报, 38(5): 220−229.
    [40] 郭鸿飞. 2019. F检验法和T检验法在方法验证过程中的应用探究[J]. 山西冶金, 42(4): 114−116.
    [41] 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社, 1428−1431.
    [42] 黄冰霞, 支添添, 赵志刚, 何宁, 韩成云. 2019. 硒元素与人类健康[J]. 宜春学院学报, 41(9): 95−101. doi: 10.3969/j.issn.1671-380X.2019.09.024
    [43] 廖启林, 刘聪, 蔡玉曼, 朱伯万, 王成, 华明, 金洋. 2013. 江苏典型地区水稻与小麦字实中元素生物富集系数(BCF)初步研究[J]. 中国地质, 40(1): 331−340. doi: 10.3969/j.issn.1000-3657.2013.01.023
    [44] 刘冰权, 沙珉, 谢长瑜, 周强强, 魏星星, 周梵. 2021. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 40(5): 740−750.
    [45] 马旭东, 余涛, 杨忠芳, 张虎生, 武芝亮, 王珏, 李明辉, 雷风华. 2022. 四川省邻水县土壤锌地球化学特征及玉米水稻籽实锌含量预测[J]. 中国地质, 49(1): 324−335. doi: 10.12029/gc20220121
    [46] 王吉秀, 高熹, 马沙, 吴国星. 2013. Cd、Pb和Zn在土壤−紫茎泽兰−泽兰实蝇系统中的生物富集效应研究[J]. 中国生态农业学报, 21(7): 877−882.
    [47] 王锐, 邓海, 严明书, 张永文, 周皎, 余飞, 李瑜. 2020. 基于回归方程的硒元素生物有效性研究[J]. 土壤通报, 51(5): 1049−1055.
    [48] 王锐, 侯宛苓, 李雨潼, 余涛, 陈娟. 2019. 高硒高镉区土地安全区划方法[J]. 环境科学, 40(12): 5524−5530.
    [49] 王锐, 余京, 李瑜, 周皎, 贾中民, 余飞, 张云逸, 蒋玉莲. 2022. 地块尺度重金属污染风险耕地安全利用区划方法[J]. 环境科学, 43(8): 4190−4198.
    [50] 王晓芳, 陈思杨, 罗章, 黄青青, 乔玉辉, 孙宏杰, 李花粉. 2014. 植物对硒的吸收转运和形态转化机制[J]. 农业资源与环境学报, 31(6): 539−544.
    [51] 吴俊. 2018. 福建省寿宁县富硒土壤地球化学特征[J]. 物探与化探, 42(2): 386−391.
    [52] 徐雪生, 骆检兰, 黄逢秋, 王欢欢, 夏学齐, 鲁江, 张子虎, 朱丽芬. 2022. 富硒耕地质量评价体系构建及其在湖南省新田县新圩镇的应用[J]. 中国地质, 49(3): 789−801. doi: 10.12029/gc20220308
    [53] 袁知洋, 项剑桥, 吴冬妹, 徐春燕, 黄彬, 段碧辉, 邹辉, 李春诚, 赵敏. 2017. 恩施富硒土壤区主要农作物硒镉特征以及和根系土硒镉关系研究[J]. 资源环境与工程, 31(6): 706−712.
    [54] 袁知洋, 郑金龙, 戴光忠, 杨良哲, 项剑桥. 2019. 恩施富硒土壤区土壤硒镉与其理化性质关系研究[J]. 西南农业学报, 32(8): 1852−1859, 1967.
    [55] 张栋, 史力超, 冶军, 侯振安, 王存虎, 吴永海. 2017. 滴灌条件下不同价态外源硒对水稻硒吸收及转运的影响[J]. 中国水稻科学, 31(1): 65−71.
    [56] 周国华. 2020. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 39(3): 319−336.
    [57] 周文龙, 杨志忠, 张涛, 忙是材, 杨正坤. 2022. 黔南荔波县水稻—根系土系统中硒含量影响因素分析[J]. 物探与化探, 46(2): 502−510.
图(5)  /  表(6)
计量
  • 文章访问数:  2101
  • HTML全文浏览量:  551
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-08-25
  • 网络出版日期:  2025-01-11
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭