• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

川西苏地二长花岗岩地球化学、锆石年代学及Lu-Hf同位素特征——对松潘—甘孜地块构造背景的限定

周玉, 周雄, 张贻, 秦志鹏, 贾志泉, 梁兵

周玉, 周雄, 张贻, 秦志鹏, 贾志泉, 梁兵. 川西苏地二长花岗岩地球化学、锆石年代学及Lu-Hf同位素特征——对松潘—甘孜地块构造背景的限定[J]. 中国地质, 2022, 49(6): 1984-2001. DOI: 10.12029/gc20220620
引用本文: 周玉, 周雄, 张贻, 秦志鹏, 贾志泉, 梁兵. 川西苏地二长花岗岩地球化学、锆石年代学及Lu-Hf同位素特征——对松潘—甘孜地块构造背景的限定[J]. 中国地质, 2022, 49(6): 1984-2001. DOI: 10.12029/gc20220620
ZHOU Yu, ZHOU Xiong, ZHANG Yi, QIN Zhipeng, JIA Zhiquan, LIANG Bing. Geochemistry, zircon geochronology and Lu-Hf isotopic characteristics of the Sudi monzogranite in the Western Sichuan: Implications for tectonic setting of the Songpan-Ganze terrane[J]. GEOLOGY IN CHINA, 2022, 49(6): 1984-2001. DOI: 10.12029/gc20220620
Citation: ZHOU Yu, ZHOU Xiong, ZHANG Yi, QIN Zhipeng, JIA Zhiquan, LIANG Bing. Geochemistry, zircon geochronology and Lu-Hf isotopic characteristics of the Sudi monzogranite in the Western Sichuan: Implications for tectonic setting of the Songpan-Ganze terrane[J]. GEOLOGY IN CHINA, 2022, 49(6): 1984-2001. DOI: 10.12029/gc20220620

川西苏地二长花岗岩地球化学、锆石年代学及Lu-Hf同位素特征——对松潘—甘孜地块构造背景的限定

基金项目: 

中国地质调查局二级项目 DD20160074

中国地质调查局二级项目 DD20190185

中国地质调查局二级项目 DD20211550

中国地质调查局二级项目 ZD20220316

国家青年自然科学基金项目 41602072

西藏自治区科技厅重大科技专项 XZ201801-GB-01

新疆维吾尔自治区自然科学基金资助项目 2022D01A148

详细信息
    作者简介:

    周玉, 男, 1984年, 博士, 主要从事岩浆岩及其成矿作用的研究工作; E-mail: zhouyu46@163.com

  • 中图分类号: P581;P591

Geochemistry, zircon geochronology and Lu-Hf isotopic characteristics of the Sudi monzogranite in the Western Sichuan: Implications for tectonic setting of the Songpan-Ganze terrane

Funds: 

the projects of China Geological Survey DD20160074

the projects of China Geological Survey DD20190185

the projects of China Geological Survey DD20211550

the projects of China Geological Survey ZD20220316

National Natural Science Foundation of China 41602072

Science and Technology Department of Tibet XZ201801-GB-01

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2022D01A148

More Information
    Author Bio:

    ZHOU Yu, born in 1984, doctor, majors in the research of magmatic rock and its mineralization; E-mail: zhouyu46@163.com

  • 摘要:
    研究目的 

    查明松潘—甘孜地块东南部花岗岩地球化学及构造演化特征,对在该区寻找稀有金属矿产具有重要意义。

    研究方法 

    在野外地质调查基础上,采集了地块东南部前人研究未涉及的苏地岩体二长花岗岩样品开展了镜下鉴定、岩石地球化学及锆石LA-(MC)-ICP-MS U-Pb和Lu-Hf同位素测试工作。

    研究结果 

    结果表明,苏地岩体二长花岗岩SiO2含量为63.72%~66.48%,中—高钾、富钠、贫钙,AR值为1.44~1.83,A/CNK值为0.98~1.16,为中—高钾钙碱性系列;岩石相对富集K、Rb、Cs等大离子亲石元素(LILE),亏损Nb、Ta、Ti等高场强元素(HFSE);岩石稀土总量为157.16×10-6~187.88×10-6,LREE/HREE为6.26~9.46,δEu为0.62~0.74,具有弱—中等的负铕异常;锆石U-Pb定年结果为(221.1±1.5)Ma(MSWD=0.30,n=22)和(214.5±1.5)Ma(MSWD=0.22,n=22),表明苏地岩体原始岩浆初始结晶时代为晚三叠世中期;锆石Lu-Hf同位素εHf(t)和TDM2分别为-6.56~-4.12和1.67~1.51 Ga。

    结论 

    综合分析认为苏地二长花岗岩为较为典型的I型花岗岩,其可能为源于下地壳的初始岩浆于晚三叠世中期在造山碰撞闭合转入伸展体制下上升侵位过程中形成。松潘—甘孜地块东南部在晚三叠世中期处于后碰撞造山环境。

    创新点:松潘—甘孜地块东南部在晚三叠世中期处于地壳挤压向伸展转换过程的地球动力学背景,岩浆活动有从南东向北西演化的趋势;苏地岩体可能是由于地幔基性岩浆上侵就位于下地壳,在造山碰撞闭合转 入伸展体制下,热软流圈地幔上涌导致壳幔物质相互作用而形成。

    Abstract:

    This paper is the result of geological survey engineering.

    Objective 

    It is of great significance to find out the geochemical and tectonic evolution characteristics of granite in the southeast of the Songpan-Ganze terrane for searching for rare metal minerals in this area.

    Methods 

    we have carried out field geological survey and conducted whole-rock geochemistry and zircons LA-(MC)-ICP-MS U-Pb and Lu-Hf isotope analyses on the monzogranite of the Sudi pluton in the southeast part of the Songpan-Ganze terrane.

    Results 

    The results show that the samples were medium-high potassium, sodium rich and calcium deficiency. The values of AR were 1.44-1.83 and values of A/CNK were 0.98-1.16, which were medium-high potassium calcareous alkaline series. The rocks show relatively enriched large ion lithophile element (LILE), negative high field-strength elements (HFSE), and high REE content (the total amount of REE = 157.16×10-6-187.88×10-6) with the LREE enrichement (LREE/HREE = 6.26-9.46) and weak negative Eu anomaly europium anomaly (δEu = 0.62-0.74). The results of zircon U-Pb dating were (221.1±1.5) Ma (MSWD=0.30, n=22) and (214.5±1.5) Ma (MSWD=0.22, n=22), indicating that the primitive magma of the Sudi pluton crystallized in the middle of the Late Triassic. Its zircon Lu-Hf isotope εHf(t) and TDM2 are -6.56--4.12 and 1.67-1.51 Ga.

    Conclusions 

    According to the comprehensive analysis, we believe that the monzogranite in Sudi pluton is a typical I-type granite and it may be formed by the upwelling and emplacement of the initial magma from the lower crust in the middle of Late Triassic in the process of orogenic collision to post-collisional extensional tectonic setting. The southeastern margin of Songpan-Ganze terrane was under post-collisional orogenic environment in Late Triassic.

  • 赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989陈郑辉等,2006毛景文等,2007郭春丽等,2007许建祥等,2008刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989张文兰等,2006王登红,2019杨斌等,2021秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981李建康,2012李建康等,2014王登红等,2017王成辉等,2019Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。

    赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007裴荣富和熊群尧,1999刘善宝等,2010)。

    图  1  赣南石雷钨锡矿地质简图
    Figure  1.  Simplified geological map of Shilei tungsten and tin deposits in the Southern Jiangxi Province

    石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。

    矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。

    表  1  ZKn11-11云英岩W、Sn、Li测试分析结果
    Table  1.  The W, Sn, Li analysis results of greisen samples of ZKn11-11
    下载: 导出CSV 
    | 显示表格

    (1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。

    图  2  石雷矿区钨锡锂多金属矿体特征
    a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿
    Figure  2.  Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining area
    a, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite

    (2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。

    本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-Al-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。

    图  3  石雷矿区11号勘探线简图
    Figure  3.  No.11 Sketch map of exploration line in the Shilei mining area
    表  2  石雷矿区云英岩中云母LA-ICP-MS原位分析结果
    Table  2.  LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area
    下载: 导出CSV 
    | 显示表格
    图  4  石雷矿区云英岩中云母的Fetot+Mn+Ti+Al-Mg-Li判别图解(据Guggenhim and Bailey, 1977)
    Figure  4.  Fetot+Mn+Ti+Al vs. Mg-Li discriminant diagram of the mica of greisen in the Shilei mining area (after Guggenhim and Bailey, 1977)

    云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018王正军等,2018张勇等,2020Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。

    随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。

    以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。

    总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019陈其慎等,2021王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。

    南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。

    致谢: 参加野外工作的还有高占军、郝娇和骆志红等同志,样品锆石LA-(MC)-ICP-MS U-Pb和Lu-Hf同位素测试得到了西北大学大陆动力学国家重点实验室弓化栋老师大力支持,成文过程中与谭洪旗高级工程师和朱志敏研究员进行了有益探讨,匿名审稿专家对本文修改提出了建设性意见,在此一并表示感谢!
  • 图  1   松潘-甘孜地块东南部区域地质简图(a,据侯立玮和付小方, 2002修改)及苏地岩体地质图(b)

    A1—四川前陆盆地;A2—龙门山—盐源前陆逆冲楔;B1—龙门后山—锦屏山腹陆滑脱-推覆叠置岩片;B2—松潘—甘孜地块主体;C—义敦岛弧带;1—甘孜—理塘碰撞结合带;2—滑脱带;3—逆冲推覆带;4—平移断层;5—前震旦纪变质杂岩;6—飞来峰;7—变质核杂岩;8—岩浆核杂岩;9—片麻岩穹隆;10—构造穹窿;11—雅江组二段地层;12—雅江组一段地层;13—两河口组三段地层;14—两河口组二段地层;15—二长花岗岩;16—地层产状;17—断层;18—锆石测年样品位置;19—剖面位置;20—岩浆岩锆石U-Pb年龄/Ma

    Figure  1.   Geological map of the southeast part of the Songpan-Ganze terrane (a, modified from Hou Liwei and Fu Xiaofang, 2002) and Geological map of the Sudi pluton (b)

    A1-Sichuan foreland basin; A2-Longmenshan-Yanyuan foreland thrust wedge; B1-Longmen houshan-Jingpingshan ventral slip-nappe superposition sheet; B2-the main part of Songpan-Ganze terrane; C-Yidun island arc; 1-Ganze-Litang suture zone; 2-Slip zone; 3-Thrust nappe belt; 4-Strike slip fault; 5-Presinian period metamorphic complex; 6-Klippe; 7-Metamorphic core complex; 8-Magmatic core complex; 9-Gneiss dome; 10-Tectonic dome; 11-The Second Member of Yajiang Formation; 12-The First Member of Yajiang Formation; 13-The Third Member of Lianghekou Formation; 14-The Second Member of Lianghekou Formation; 15-Monzogranite; 16-Occurrence of strata; 17-Fault; 18-Zircon dating sample location; 19-Section location; 20-Zircon U-Pb ages of magmatic rock/Ma

    图  2   苏地岩体地质剖面图

    Figure  2.   The geological section of the Sudi pluton

    图  3   苏地岩体二长花岗岩特征

    Afs—碱性长石;Pl—斜长石;Qtz—石英;Bt—黑云母;Hbl—普通角闪石

    Figure  3.   The characteristics of the monzogranite of the Sudi pluton

    Afs-Alkaline feldspar; Pl-Plagioclase; Qtz-Quartz; Bt-Biotite; Hbl-Hornblende

    图  4   SiO2-K2O图解(底图据Le Maitre, 1989

    Figure  4.   The diagram of SiO2 vs. K2O (after Le Maitre, 1989)

    图  5   花岗岩类Shand指数图解(底图据Maniar and Piccoli, 1989

    Figure  5.   The diagram of Shand index for the granite (modified from Maniar and Piccoli, 1989)

    图  6   苏地岩体样品原始地幔标准化微量元素蛛网图(原始地幔值标准化据McDonough, 1992)

    Figure  6.   The Primitive-mantle normalized trace-elemental spider diagram of the Sudi sample (standardization of primitive mantle values from McDonough, 1992)

    图  7   苏地岩体样品球粒陨石标准化稀土配分图解(球粒陨石值标准化据Boynton, 1984

    Figure  7.   Chondrite-normalized REE patterns of the Sudi sample (standardization of chondrite values from Boynton, 1984)

    图  8   苏地岩体二长花岗岩典型锆石阴极发光图像

    白色实线圆代表U-Pb测年点位;白色虚线圆代表Hf同位素点位,圈外数字代表εHf(t)值;U-Pb年龄值/Ma

    Figure  8.   The typical zircon cathodoluminescence image of monzogranite in the Sudi sample

    The white solid circle represents U-Pb dating point, white dotted circle represents Hf isotope point and the number outside the circle represents the value of εHf(t), U-Pb age/Ma

    图  9   苏地岩体PM009-2-1(a)和PM009-5-1(b)样品锆石LA-ICPMS U-Pb年龄

    Figure  9.   The U-Pb isotopic concordia plots of zircon grains for PM009-2-1 (a) and PM009-5-1 (b) of the Sudi pluton

    图  10   松潘—甘孜地块东南部花岗质岩体活动时限规律图

    Figure  10.   The time regularity of crystallization of granitoids in the southeast margin of Songpan-Ganze terrane

    图  11   苏地岩体二长花岗岩样品SiO2-Ce (a)和SiO2-Zr (b) 图解(底图据Collins et al., 1982修改)

    Figure  11.   SiO2 vs. Ce (a) and SiO2 vs. Zr (b) diagrams of monzogranite samples in the Sudi pluton (modified from Collins et al., 1982)

    图  12   苏地岩体花岗岩源区判别图解(底图据Sylvester, 1998修改)

    Figure  12.   The discrimination diagram of source region of the Sudi pluton (modified from Sylvester, 1998)

    图  13   苏地岩体花岗岩εHf(t)-t 图解

    Figure  13.   εHf(t)-t diagram of the granite of the Sudi pluton

    图  14   花岗岩类构造环境图解(底图据Pearce and Mei, 1988; Pearce, 1996

    VAG—火山弧花岗岩;ORG—洋中脊花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩;post-COLG—后碰撞花岗岩

    Figure  14.   The diagrams of tectonic setting of granites (modified from Pearce and Mei, 1988; Pearce, 1996)

    VAG-Volcanic arc granite; ORG-Mid oceanic ridge granite; WPG-Within-plate granites; syn-COLG-Syn-collisional granite; post-COLG-Post collision granite

    图  15   花岗岩构造环境Hf-Ta-Rb图解(底图据Harris and Inger, 1992

    Figure  15.   The Hf-Ta-Rb diagram of tectonic setting of granites (modified from Harris and Inger, 1992)

    表  1   苏地二长花岗岩元素分析结果(常量元素/%;微量、稀土元素/10-6

    Table  1   Major (%) and trace and rare element (10-6) compositions of the monzogranite of the Sudi pluton

    下载: 导出CSV

    表  2   苏地岩体PM009-2-1和PM009-5-1锆石LA-ICP-MS U-Pb定年测试结果

    Table  2   The result of zircon LA-ICP-MS U-Pb dating for PM009-2-1 and PM009-5-1 samples of the Sudi pluton

    下载: 导出CSV

    表  3   苏地岩体二长花岗岩PM009-5-1锆石LA-MC-ICP-MS Lu-Hf同位素组成

    Table  3   Zircon LA-MC-ICP-MS Lu-Hf isotopic composition of PM009-5-1 sample of the Sudi pluton

    下载: 导出CSV

    表  4   松潘—甘孜地块东南部花岗质岩体形成年龄统计表

    Table  4   The crystallization age statistics of granitoids in the southeast margin of Songpan-Ganze terrane

    下载: 导出CSV
  • Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79.

    Belousova E, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    Bi Benteng, Hu Xiangyun, Li Liqing, Zhang Henglei, Liu Shuang, Cai Jianchao. 2016. Multi-scale analysis to the gravity field of the northeastern Tibetan plateau and its geodynamic implications[J]. Chinese Journal of Geophysics, 59(2): 543-555(in Chinese with English abstract).

    Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114.

    Chen Qiong, Sun Min, Zhao Guochun, Yang Fengli, Long Xiaoping, Li Jianhua, Wang Jun, Yu Yang. 2017. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean[J]. Lithos, 64(290-291): 1-17.

    Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to SE Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189-200. doi: 10.1007/BF00374895

    Deng Jinfu, Mo Xuanxue, Zhao Hailing, Luo Zhaohua, Du Yangsong. 1994. Lithosphere root/de-rooting and activation of the east china continent[J]. Geoscience, 8(3): 349-356(in Chinese with English abstract).

    De Sigoyer J, Vanderhaeghe O, DuchêNe S, Billerot A. 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China[J]. Journal of Asian Earth Sciences, 88: 192-216. doi: 10.1016/j.jseaes.2014.01.010

    Dostal J, Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 163(1): 207-218.

    Ding L, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Tectonics, 32(1): 34-48. doi: 10.1002/tect.20013

    Fan Wenyuan, Chen Yonghun, Tang Youcai, Zhou Shiyong, Feng Yongge, Yue Han, Wang Haiyang, Jin Ge, Wei Songqiao, Wang Yanbin, Ge Zengxi, Ning Jieyuan. 2015. Crust and upper mantle velocity structure of the eastern Tibetan Plateau and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics, 58(5): 1568-1583(in Chinese with English abstract).

    Fu Xiaofang, Hou Liwei, Wang Denghong, Yuan Linping, Liang Bin, Hao Xuefeng, Pan Meng. 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China[J]. Geological Survey of China, 1(3): 37-43(in Chinese with English abstract).

    Gu Chenghui. 2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field, Sichuan Province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 59-65(in Chinese with English abstract).

    Hao Xuefeng, Fu Xiaofang, Liang Bin, Yuan Linping, Pan Meng, Tang Yi. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199-1208(in Chinese with English abstract).

    Harris N B W, Inger S. 1992. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46-56. doi: 10.1007/BF00310881

    Hou Liwei, Fu Xiaofang. 2002. The Dome Shaped Metamorphic Geological Body in the Eastern Margin of Songpan-Garze Orogenic Belt of China[M]. Chengdu: Sichuan University Press, 1-159(in Chinese).

    Hou Zengqian, Qu Xiaoming, Zhou Jirong, Yang Yueqing, Huang Dianhao, Lü Qingtian, Tang Shaohua, Yu Jinjie, Wang Haiping, Zhao Jinhua. 2001. Collision-orogenic processes of the Yidun Arc in the Sanjiang region: record of granites[J]. Acta Geologica Sinica, 75(4): 484-497(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.04.008

    Hu Jianmin, Meng Qingren, Shi Yuruo, Qu Hongjie. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications[J]. Acta Petrologica Sinica, 21(3): 867-880(in Chinese with English abstract).

    Küster D, Harms U. 1998. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: A review[J]. Lithos, 45(1/4): 177-195.

    Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms[M]. Oxford: Black Well.

    Li Dewei. 2008. Continental lower crustal flow: Channel flow or laminar flow?[J]. Earth Science Frontiers, 15(3): 130-139(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60065-2

    Li Shuguang, He Yongsheng, Wang Shuijiong. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen: Constraints from geochronology and geochemistry of post-collisional igneous rocks[J]. Chinese Science Bulletin, 58(23): 2316-2322(in Chinese with English abstract). doi: 10.1360/csb2013-58-23-2316

    Liang Bin, Fu Xiaofang, Li Shihong, Tang Yi, Pan Meng, Hao Xuefeng. 2022. Distribution and occurrence of Cs and other rare elements in contact metamorphic rocks of X03 supergiant deposit in Jiajika, Sichuan and its comprehensive utilization suggestion[J]. Geology in China, 49(4): 1214-1223(in Chinese with English abstract).

    Liang Bin, Fu Xiaofang, Tang Yi, Pan Meng, Yuan Linping, Hao Xuefeng. 2016. Granite geochemical characteristics in Jiajika rare metal deposit, western Sichuan[J]. Journal of Guilin University of Technology, 36(1): 42-49(in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2016.01.007

    Ludwig K R. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication 4, 71.

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders A D, ed. Magmatism in the Oceanic Basins[M]. London: Special Publication, 1992.

    Pearce J A. 1996. Sources and Settings of Granitic Rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    Pearce J A, Mei H. 1988. Volcanic Rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London, 327(1594): 169-201. doi: 10.1098/rsta.1988.0125

    Peng T P, Zhao G C, Fan W M, Peng B X, Mao Y S. 2014. Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, Eastern Tibetan Plateau: Petrogenesis and their bearings with Cu mineralization[J]. Journal of Asian Earth Sciences, 80: 18-33. doi: 10.1016/j.jseaes.2013.10.028

    Reid A, Wilson C J L, Shun L, Pearson N, Belousova E. 2007. Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature[J]. Ore Geology Reviews, 31(1/4): 88-106.

    Roger F, Malavieille J, Leloup P H, Calassou S, Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Ganzi fold belt (eastern Tibetan plateau) with tectonic implications[J]. Journal of Asian Earth Sciences. 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0

    Rushmer T. 1991. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions[J]. Contributions to Mineralogy and Petrology, 107(1): 41-59. doi: 10.1007/BF00311184

    Sacks P E, Secor D T. 1990. Delamination in collisional orogens[J]. Geology, 18(10): 999-1002. doi: 10.1130/0091-7613(1990)018<0999:DICO>2.3.CO;2

    Simon E J, Norman J P, William L G. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology[J]. Chemical Geology, 211: 47-69. doi: 10.1016/j.chemgeo.2004.06.017

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29-44.

    Tang X C, Zhang J, Pang Z H, Hu S B, Tian J, Bao S J. 2017. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system[J]. Tectonophysics, 717: 433-448. doi: 10.1016/j.tecto.2017.08.035

    Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwel.

    Wang Quanwei, Wang Kangming, Kan Zezhong, Fu Xiaofang. 2008. Granite and Its Metallogenic Series in Western Sichuan[M]. Beijing: Geological Publishing House, 1-305(in Chinese).

    Weislogel A L. 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleo-Tethys from the Songpan-Ganzi complex, central China[J]. Tectonophysics, 451(1/4): 331-345.

    Williamson B J, Shaw A, Downes H, Thirlwall M F. 1996. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France[J]. Chemical Geology, 127(1/3): 25-42.

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).

    Wu Tao. 2015. Early Mesozoic Magmatism and Tectonic Evolution of Yidun Arc Belt, Eastern Tibet Plateau[D]. Wuhan: China University of Geosciences, 1-153(in Chinese with English abstract).

    Wu Yuanbao, Zheng Yongfei. 2004. Genetic mineralogy of Zircons and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589

    Xia Lei, Yan Quanren, Xiang Zhongjin, Jiang Wen, Song Bo, Chen Huiming. 2017. Late Triassic andesitic accretionary arc in the central Songpan-Ganzi terrane and its tectonic significance[J]. Acta Petrologica Sinica, 33(2): 579-604(in Chinese with English abstract).

    Xiao L, Zhang H F, Clemens J D, Wang Q W, Kan Z Z, Wang K M, Ni P Z, Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 96(3/4): 436-452.

    Xu Zhiqin, Hou Liwei, Wang Zongxiu, Fu Xiaofang, Huang Minghua. 1992. Orogenic Processes of the Songpan-Garzê Orogenic Belt of China[M]. Beijing: Geological Publishing House, 1-190(in Chinese).

    Xu Zhiqin, Yang Jingsui, Li Huaqi, Wang Ruirui, Cai Zhihui. 2012. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica, 28(6): 1697-1709(in Chinese with English abstract).

    Yang Haijun, Xiao Long, Wu Tao, Yang Gang. 2013. Petrogenesis and tectonic implication of Gongbana, Daocheng, Peraluminous Granitoids in Yidun island arc belt[J]. Geological Science and Technology Information, 32(4): 55-63(in Chinese with English abstract).

    Yan Songtao, Wu Qingsong, Tan Changhai, Liu Longqiang, Zhang Yong, Li Yusheng. 2022. Characteristics of granodiorite in the Litang area of Sichuan and its volcanic arc magmatism accretionary wedge[J]. Geology in China, 49(4): 1295-1308(in Chinese with English abstract).

    Ye Yakang. 2019. Petrogeochemistry, Zircon U-Pb Geochronology and Tectonic Significance of the Songlinkou Granite in the Eastern Margin of the Songpan-Ganzi Orogenic Belt[D]. Chengdu: Chengdu University of Technology, 1-75(in Chinese with English abstract).

    Yuan Chao, Zhou Meifu, Sun Min, Zhao Yongjiu, Wilde Simon, Long Xiaoping, Yan Danping. 2010. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 290(3/4): 481-492.

    Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping, Sun Deyou. 2003. Zircon laser probe U-Pb dating and REE analysis of Cenozoic intrusions in Northeast China[J]. Chinese Science Bulletin, 48(14): 1511-1520(in Chinese with English abstract). doi: 10.1360/csb2003-48-14-1511

    Yuan H L, Gao S, Dai M N, Zong C L, Detlef G, Fontaine G H, Liu X M, Diwu C R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 247(1/2): 100-118.

    Yuan Jing, Xiao Long, Wan Chuanhui, Gao Rui. 2011. Petrogenesis of Fangmaping-Sanyanlong granites in Southern Songpan-Garzê Fold Belt and its tectonic implication[J]. Acta Geologica Sinica, 85(2): 195-206(in Chinese with English abstract).

    Zhang H F, Parrish R, Zhang L, Xu W C, Yuan H L, Gao S, Crowley Q G. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 97: 323-335. doi: 10.1016/j.lithos.2007.01.002

    Zhang H F, Zhang L, Harris N, Jin L L, Yuan H L. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152(1): 75-88. doi: 10.1007/s00410-006-0095-2

    Zhao Yongjiu. 2007. Mesozoic Granitoids in Eastern Songpan-Garze: Geochemistry, Petrogenesis and Tectonic Implications[D]. Guangzhou: School of the Chinese Academy of Sciences, 1-101(in Chinese with English abstract).

    Zhao Yongjiu, Yuan Chao, Zhou Meifu, Yan Danping, Long Xiaoping, Li Jiliang. 2007. Geochemistry and petrogenesis of Laojungou and Mengtonggou granites in western Sichuan, China: Constraints on the nature of Songpan-Ganzi basement[J]. Acta Petrologica Sinica, 23(5): 995-1006(in Chinese with English abstract).

    Zhou Xiong, Zhou Yu, Luo Liping, Zhang Yi, Xu Yunfeng, Ye Yakang. 2018a. Zircon LA-ICP-MS U-Pb dating and its tectonic implications of quartz diorite from Rongxuka lithium deposit, Western Sichuan[J]. Journal of Mineralogy and Petrology, 38(4): 88-97(in Chinese with English abstract).

    Zhou Xiong, Zhou Yu, Zhang Yi, Li Mingze, Xu Yunfeng, Ye Yakang. 2018b. Zircon LA-ICPMS U-Pb ages and geological significance of Nianlunsi rock, middle Songpan-Ganze fold belt[J]. Journal of Guilin University of Technology, 38(4): 647-653(in Chinese with English abstract).

    Zhou Yu, Zhou Xiong. 2017. The discovery of a large-sized potential rubidium and beryllium deposit in Yazhong area, Daofu County, Sichuan Province[J]. News Letters of China Geological Survey, 3(21): 35-38(in Chinese).

    Zhou Yu, Zhou Xiong, Zhang Yi, Qin Zhipeng, Jia Zhiquan. 2019. Geochemistry, zircon geochronology and Lu-Hf isotopic characteristics of highly fractionated granite from Changzheng dome in western Sichuan and their constraint on mineralization setting of rare metal deposit[J]. Mineral Deposits, 38(4): 815-836(in Chinese with English abstract).

    毕奔腾, 胡祥云, 李丽清, 张恒磊, 刘双, 蔡建超. 2016. 青藏高原东北部多尺度重力场及其地球动力学意义[J]. 地球物理学报, 59(2): 543-555. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602014.htm
    邓晋福, 莫宣学, 赵海玲, 罗照华, 杜杨松. 1994. 中国东部岩石圈根/去根作用与大陆"活化"——东亚型大陆动力学模式研究计划[J]. 现代地质, 8(3): 349-356. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ403.017.htm
    范文渊, 陈永顺, 唐有彩, 周仕勇, 冯永革, 岳汉, 王海洋, 金戈, 魏松峤, 王彦宾, 盖增喜, 宁杰远. 2015. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报, 58(5): 1568-1583. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505010.htm
    付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果[J]. 中国地质调查, 1(3): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201403007.htm
    古城会. 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 29(1): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401007.htm
    郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 34(6): 1199-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506009.htm
    侯立玮, 付小方. 2002. 松潘-甘孜造山带东缘穹隆状变质地质体[M]. 成都: 四川大学出版社, 1-159.
    胡健民, 孟庆任, 石玉若, 渠洪杰. 2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义[J]. 岩石学报, 21(3): 867-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503027.htm
    侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余今杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录[J]. 地质学报, 75(4): 484-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200104012.htm
    李德威. 2008. 大陆下地壳流动: 渠流还是层流?[J]. 地学前缘, 15(3): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803011.htm
    李曙光, 何永胜, 王水炯. 2013. 大别造山带的去山根过程与机制: 碰撞后岩浆岩的年代学和地球化学制约[J]. 科学通报, 58(23): 2316-2322. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323014.htm
    梁斌, 付小方, 黎诗宏, 唐屹, 潘蒙, 郝雪峰. 2022. 四川甲基卡X03号脉接触变质岩中Cs等稀有元素赋存状态及其综合利用建议[J]. 中国地质, 49(4): 1214-1223. http://geochina.cgs.gov.cn/geochina/article/abstract/20220412?st=search
    梁斌, 付小方, 唐屹, 潘蒙, 袁蔺平, 郝雪峰. 2016. 川西甲基卡稀有金属矿区花岗岩岩石地球化学特征[J]. 桂林理工大学学报, 36(1): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601007.htm
    王全伟, 王康明, 阚泽忠, 付小方. 2008. 川西地区花岗岩及其成矿系列[M]. 北京: 地质出版社, 1-305.
    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
    吴涛. 2015. 藏东义敦岛弧带早中生代岩浆活动与构造演化过程[D]. 武汉: 中国地质大学, 1-153.
    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
    夏磊, 闫全人, 向忠金, 江文, 宋博, 陈辉明. 2017. 松潘-甘孜地体中部晚三叠世安山质增生弧的确定及其意义[J]. 岩石学报, 33(2): 579-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702017.htm
    许志琴, 侯立玮, 王宗秀, 付小芳, 黄明华. 1992. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1-190.
    许志琴, 杨经绥, 李化启, 王瑞瑞, 蔡志慧. 2012. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 28(6): 1697-1709. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206002.htm
    严松涛, 吴青松, 谭昌海, 刘陇强, 张勇, 李余生. 2022. 四川理塘地区花岗闪长岩特征及其增生楔弧岩浆活动[J]. 中国地质, 49(4): 1295-1308. http://geochina.cgs.gov.cn/geochina/article/abstract/20220419?st=search
    杨海军, 肖龙, 吴涛, 杨钢. 2013. 义敦岛弧带稻城贡巴纳过铝质花岗岩成因及构造意义[J]. 地质科技情报, 32(4): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304011.htm
    叶亚康. 2019. 松潘-甘孜造山带东缘松林口岩体岩石地球化学、锆石U-Pb年代学及其构造意义[D]. 成都: 成都理工大学, 1-75.
    袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 48(14): 1511-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314007.htm
    袁静, 肖龙, 万传辉, 高睿. 2011. 松潘-甘孜南部放马坪-三岩龙花岗岩的成因及其构造意义[J]. 地质学报, 85(2): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102006.htm
    赵永久. 2007. 松潘-甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D]. 广州: 中国科学院广州地球化学研究所, 1-101.
    赵永久, 袁超, 周美夫, 颜丹平, 龙晓平, 李继亮. 2007. 川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约[J]. 岩石学报, 23(5): 995-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705014.htm
    周雄, 周玉, 罗丽萍, 张贻, 徐云峰, 叶亚康. 2018a. 川西容须卡锂辉石矿床石英闪长岩锆石LA-ICPMS测年及构造意义[J]. 矿物岩石, 38(4): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201804011.htm
    周雄, 周玉, 张贻, 李名则, 徐云峰, 叶亚康. 2018b. 松潘甘孜造山带中部年轮寺北岩体锆石LA-ICPMS年代学及地质意义[J]. 桂林理工大学学报, 38(4): 647-653. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201804005.htm
    周玉, 周雄. 2017. 四川道孚县亚中地区发现具有大型规模潜力铷铍矿[J]. 中国地质调查成果快讯, 3(21): 35-38.
    周玉, 周雄, 张贻, 秦志鹏, 贾志泉. 2019. 川西长征穹窿高分异花岗岩地球化学、锆石U-Pb定年、Lu-Hf同位素特征: 对区域稀有金属成矿背景的限定[J]. 矿床地质, 38(4): 815-836. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904009.htm
  • 期刊类型引用(3)

    1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
    2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
    3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术

    其他类型引用(1)

图(15)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2020-04-19
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-12-24

目录

/

返回文章
返回
x 关闭 永久关闭