• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

西藏甲玛铜多金属矿电气石矿物学特征及其对热液流体演化的指示

唐攀, 唐菊兴, 林彬, 李发桥, 孙渺, 祁婧, 崔浩, 王梦蝶, 熊妍, 傅渊慧, 张忠坤, 杨征坤, 姚晓峰, 谢金玲, 陶刚, 杨欢欢

唐攀,唐菊兴,林彬,李发桥,孙渺,祁婧,崔浩,王梦蝶,熊妍,傅渊慧,张忠坤,杨征坤,姚晓峰,谢金玲,陶刚,杨欢欢. 2024. 西藏甲玛铜多金属矿电气石矿物学特征及其对热液流体演化的指示[J]. 中国地质, 51(4): 1123−1138. DOI: 10.12029/gc20220911001
引用本文: 唐攀,唐菊兴,林彬,李发桥,孙渺,祁婧,崔浩,王梦蝶,熊妍,傅渊慧,张忠坤,杨征坤,姚晓峰,谢金玲,陶刚,杨欢欢. 2024. 西藏甲玛铜多金属矿电气石矿物学特征及其对热液流体演化的指示[J]. 中国地质, 51(4): 1123−1138. DOI: 10.12029/gc20220911001
Tang Pan, Tang Juxing, Lin Bin, Li Faqiao, Sun Miao, Qi Jing, Cui Hao, Wang Mengdie, Xiong Yan, Fu Yuanhui, Zhang Zhongkun, Yang Zhengkun, Yao Xiaofeng, Xie Jinling, Tao Gang, Yang Huanhuan. 2024. Mineralogical characteristics of tourmaline in the Jiama copper polymetallic deposit, Tibet: Insights into hydrothermal evolution[J]. Geology in China, 51(4): 1123−1138. DOI: 10.12029/gc20220911001
Citation: Tang Pan, Tang Juxing, Lin Bin, Li Faqiao, Sun Miao, Qi Jing, Cui Hao, Wang Mengdie, Xiong Yan, Fu Yuanhui, Zhang Zhongkun, Yang Zhengkun, Yao Xiaofeng, Xie Jinling, Tao Gang, Yang Huanhuan. 2024. Mineralogical characteristics of tourmaline in the Jiama copper polymetallic deposit, Tibet: Insights into hydrothermal evolution[J]. Geology in China, 51(4): 1123−1138. DOI: 10.12029/gc20220911001

西藏甲玛铜多金属矿电气石矿物学特征及其对热液流体演化的指示

基金项目: 国家重点研发计划项目(2022YFC2905004)、四川省自然科学基金(23NSFSC4281)、西南科技大学科研基金(22zx7127)、国家自然基金科研项目(41902097、42072313、41902101)、中国地质科学院矿产资源研究所基本科研业务费(KJ2102、KK2017)及大宗紧缺战略性矿产重点调查区块优选(重要矿山深部预测及外围勘查区块优选)(DD20230362)联合资助。
详细信息
    作者简介:

    唐攀,男,1989年生,副教授,主要从事斑岩−矽卡岩矿床勘查和综合研究;E-mail:tangpan168@163.com

    通讯作者:

    唐菊兴,男,1964年生,研究员,主要从事矿产勘查和综合研究;E-mail:tangjuxing@126.com

  • 中图分类号: P618.2

Mineralogical characteristics of tourmaline in the Jiama copper polymetallic deposit, Tibet: Insights into hydrothermal evolution

Funds: Supported by National Key Research and Development Program of China (No.2022YFC2905004), the Natural Science Foundation of Sichuan (No.23NSFSC4281), Research Fund of Southwest University of Science and Technology (No.22zx7127), the National Natural Science Foundation of China (No.41902097, No.42072313, No.41902101), the Basic Research Service Fee of the Chinese Academy of Geological Sciences (No.KJ2102, No.KK2017), and Selection of Key Survey Blocks for Strategic Minerals in Short Supply (Prediction of Deep Part of Important Mines and Selection of Peripheral Exploration Blocks) (No. DD20230362).
More Information
    Author Bio:

    TANG Pan, male, born in 1989, associate professor, mainly engaged in research of exploration and evaluation of porphyry−skarn deposit; E-mail: tangpan168@163.com

    Corresponding author:

    TANG Juxing, male, born in 1964, professor, mainly engaged in study of mineral deposit and exploration; E-mail: tangjuxing@126.com.

  • 摘要:
    研究目的 

    角岩作为甲玛超大型斑岩铜多金属成矿系统的重要组成部分,既是成矿热液的岩性圈闭,也是重要的赋矿围岩,但角岩中的电气石成因不明,对于进一步理解成矿过程有一定制约。

    研究方法 

    本文通过详细的钻孔编录、镜下鉴定和电子探针分析,研究电气石的成因,并探讨其对岩浆热液流体演化过程的启示。

    研究结果 

    电气石在甲玛角岩中较为发育,依据其产状可分为4类:Tur−I,热液角砾岩胶结物中的电气石;Tur−II,石英+电气石±黄铁矿脉;Tur−III,电气石±黄铁矿±黄铜矿脉;Tur−IV,团斑状电气石±黄铁矿;其中前3类电气石较发育环带结构。不同产状电气石均具有较为宽泛的Al2O3、Fe/(Fe+Mg)和Na/(Na+Ca)比值,属于碱基亚类镁电气石和黑电气石,替代机制为X□Al(NaMg)−1、Fe2+Mg−1和Fe3+Al−1

    结论 

    不同产状电气石发育复杂的环带结构,且成分变化极大,表明其是岩浆热液流体和地层流体不同程度混合造成的,且岩浆热液流体与还原性的角岩地层发生的水岩反应可能在甲玛成矿过程中起了重要作用。甲玛不同产状电气石的结构和成分信息记录了岩浆热液演化过程的细节信息,为完善成矿过程提供了重要证据。

    创新点:

    不同产状电气石的结构和成分信息示踪斑岩成矿系统热液演化过程。

    Abstract:

    This paper is the result of mineral exploration engineering.

    Objective 

    Hornfels, as an important part of the Jima porphyry copper polymetallic system, is host rocks and a lithologic trap for ore−forming fluid. However, the origin of tourmaline in hornfels is unknown, which restricts the further understanding of the mineralization.

    Methods 

    We carried out detailed drilling logging, petrographic observations and major element analyses of tourmaline with distinctive occurrences in hornfels from the Jiama deposit to elucidate the genesis of tourmaline and evolution of magmatic hydrothermal fluids.

    Results 

    Four types of tourmalines in hornfels from the Jiama deposit have been identified in this study: 1) Tur−I, tourmaline occurring as cement in hydrothermal breccias; 2) Tur−II, quartz + tourmaline ± pyrite vein; 3) Tur−III, tourmaline ± pyrite ± chalcopyrite vein; 4) porphyritic tourmaline ± pyrite. Tourmaline with distinctive occurrences in hornfels, which belongs to alkali group and dravite−schorl solid solution series, has a wide range of Al2O3, Fe/(Fe+Mg) and Na/(Na+Ca). X□Al(NaMg)−1, Fe2+Mg−1 and Fe3+Al−1 exchange dominates the substitutions of Tur−I−IV.

    Conclusions 

    Tourmaline in hornfels with complicated zoning texture has a very variable compositions, indicating that the tourmaline is caused by different degrees of mixing of magmatic hydrothermal fluid and formation fluid, and the water−rock interaction between magmatic hydrothermal fluid and reduced hornfels may play an important role on the mineralization. The various textures and compositions of tourmaline with distinctive occurrences in hornfels from Jiama record some detailed information related to evolution of magmatic hydrothermal fluid, and can provides evidence for understanding the mineralization.

    Highlights:

    The various textures and compositions of tourmaline trace evolution of magmatic hydrothermal fluid.

  • 塔里木盆地古生界碳酸盐岩储层分布广,厚度大,生储盖空间配置优越(翟光明等, 2004),围绕古隆起发育的塔北油田与塔中油田更是中国陆上碳酸盐岩油气勘探开发研究的重点区块(Yang et al., 2007; 何治亮等, 2016)。塔北油田的开发经历了自北部潜山区向南到顺层改造区的探索,形成了一套以浅层风化壳岩溶及层间岩溶为主控的缝洞体油藏的认识(沈安江等, 2019)。随着勘探开发逐步深入到台缘叠加区,已有油藏体系认知无法对低隆区油藏的开发进行有效指导,开发陷入瓶颈。随着顺北1号与顺北5号深层—超深层奥陶系碳酸盐岩储层取得重大突破(Jiao et al., 2018),受断裂控制的断溶体油气藏逐渐成为油田勘探开发的重点,对油气藏的认识也逐步转变为深大断裂控储、控藏、控富研究(王新新等, 2019; 丁志文等, 2020)。

    塔里木盆地地质历史上构造运动强烈,经历多期构造运动,受区域应力场作用,稳定克拉通内部发育一系列陆内短滑距走滑断裂(Han et al., 2017; 邓尚等, 2021),最新三维地震勘探揭示,多期构造作用形成的走滑断裂继承性发育,形成多种构造样式,导致油气分布具有明显的区段性(邬光辉等, 2011)。同时,受断裂控制的断溶体油气藏特征表现出仅沿断裂带含油、且不均匀富集的特点(Wu et al., 2018; Jiao et al., 2018),表明走滑断裂是控制储层的重要因素(Wang et al., 2021),故进一步认识断裂对岩溶性储层的控制作用对碳酸盐岩油气的勘探具有重要意义。

    跃满区块构造上位于塔里木盆地塔北隆起轮南低凸起的西部斜坡带(图1),轮南低凸起为一大型潜山背斜,面积15100 km2,主体在轮南油田至塔河油田一带,长轴在东部为北东向,西部为北东东向。跃满区块为向西倾没的哈拉哈塘大型鼻状构造一部分,北接轮台凸起,南衔北部坳陷,西邻英买力低凸起。研究区区域构造演化主要经历了中、晚加里东运动差异抬升期,晚海西—印支运动挤压抬升期,燕山—早喜山运动局部调整期,晚喜山运动至今构造反转期(马德波等, 2020)。

    图  1  跃满区块构造位置图
    Figure  1.  Tectonic location map of the Yueman area

    跃满区块地层发育完整,自上而下钻遇新生界第四系,新近系和古近系,中生界白垩系、侏罗系、三叠系,古生界二叠系、石炭系、志留系以及奥陶系。奥陶系可细分为上奥陶统桑塔木组(O3s)、良里塔格组(O3l)、吐木休克组(O3t);中奥陶统一间房组(O2y);中—下奥陶统鹰山组(O1-2y);下奥陶统蓬莱坝组(O1p)(朱光有等, 2011)。勘探开发目的层主要为奥陶系一间房组海相碳酸盐岩地层,上覆吐木休克组为一致密泥灰岩层,可以形成良好的油气封闭条件,有利于下伏一间房组油气成藏。

    岩心、薄片和测井资料表明,跃满地区中奥陶统一间房组储集岩以灰岩为主,岩性主要为生屑灰岩、砂屑灰岩、颗粒灰岩、泥晶灰岩(图2),为开阔台地相的台内砂屑、藻屑滩沉积岩类。岩心孔渗分析结果显示孔隙度平均值1.00%、渗透率平均值1.160×10−3 μm2,均为较低水平,且孔隙度与渗透率相关性不明显。

    图  2  跃满地区奥陶系一间房组储层岩性(染色铸体薄片)
    a—跃满2井,井深:7211.8 m,亮晶生屑灰岩,构造缝;b—跃满2井,井深:7200.6 m,泥晶生屑灰岩;c—跃满2井,井深:7209.7 m,泥亮晶生屑灰岩,构造缝;d—跃满2井,井深:7206.7 m,泥粉晶生屑灰岩,构造缝;e—跃满2井,井深:7215.7 m,亮晶藻团块生屑灰岩,构造缝;f—跃满2井,井深:7209.9 m,泥亮晶生屑灰岩,构造缝与压溶缝;g—跃满2井,井深:7201.7 m,泥晶生屑灰岩,构造缝,压溶缝;h—跃满2井,井深:7210.7 m,方解石和沥青质半充填的构造缝;i—跃满2井,井深:7207.3 m,亮晶藻砂屑灰岩,构造缝,方解石全充填的溶蚀缝;j—跃满2井,井深:7216.7 m,亮晶生屑藻砂屑灰岩,粒内溶孔;k—跃满2井,井深:7217.6 m,泥亮晶生屑藻砂屑灰岩,粒内溶孔;l—跃满2井,井深:7212.6 m,亮晶颗粒灰岩,构造缝,压溶缝;m—跃满2井,井深:7213.7 m,亮晶颗粒灰岩,构造缝,压溶缝;n—跃满2井,井深:7214.5 m,粉晶颗粒灰岩,方解石半充填构造缝;o—跃满2井,井深:7196.5 m,生屑泥晶灰岩,构造缝;p—跃满2井,井深:7197.5 m,生屑泥晶灰岩,收缩缝
    Figure  2.  Reservoir lithology of Ordovician Yijianfang Formation in Yueman area (dyed cast thin section)
    a−Well Yueman 2, depth: 7211.8 m, sparry bioclastic limestone, structural fracture; b−Well Yueman 2, depth: 7200.6 m, micrite bioclast limestone; c−Well Yueman 2, depth: 7209.7 m, micrite−sparry bioclast limestone, structural fracture; d−Well Yueman 2, depth: 7206.7 m, micrite−powder bioclast limestone, structural fracture; e−Well Yueman 2, depth: 7215.7 m, sparry clumpy alga bioclastic limestone, structural fracture; f−Well Yueman 2, depth: 7209.9 m, micrite−sparry bioclast limestone, structural fracture, pressolutional fracture; g−Well Yueman 2, depth: 7201.7 m, micrite bioclast limestone, structural fracture, pressolutional fracture; h−Well Yueman 2, depth: 7210.7 m, structural fracture, half−filled with calcite and asphalt; i−Well Yueman 2, depth: 7207.3 m, sparry algal arenaceous limestone, structural fracture, dissolution fracture, full−filled with calcite; j−Well Yueman 2, depth: 7216.7 m, Sparry bioclastic arenaceous limestone, intragranular dissolved pore; k−Well Yueman 2, depth: 7217.6 m, argillaceous sparry bioclastic arenaceous limestone, intragranular dissolved pore; l−Well Yueman 2, depth: 7212.6 m, sparry granular limestone, structural fracture, pressolutional fracture; m−Well Yueman 2, depth: 7213.7 m, sparry granular limestone, structural fracture, pressolutional fracture; n−Well Yueman 2, depth: 7214.5 m, silt−grained limestone, half−filled with calcite, structural fracture ; o−Well Yueman 2, depth: 7196.5 m, bioclastic micritic limestone, structural fracture; p−Well Yueman 2, depth: 7197.5 m, bioclastic micritic limestone, shrinkage fracture

    薄片、岩心及钻测井资料揭示(图2图3表1),研究区奥陶系碳酸盐岩储集空间宏观上以大型溶蚀洞穴、溶蚀孔洞及构造裂缝为主,微观上以孔隙(粒间孔、粒内孔、晶间孔、晶间溶孔)与微裂缝(构造缝、压溶缝、溶蚀缝)为主。根据洞、孔、缝组合特征,储层类型可分为洞穴型储层、裂缝−孔洞型储层、裂缝型储层与孔洞型储层4类,其中洞穴型储层储集能力最强,裂缝孔洞型储层兼具良好的储集与运移能力,分别为区内重点开发的Ⅰ类、Ⅱ类储层发育段,而裂缝型与孔洞型储层储集能力一般但分布广,多为Ⅲ类储层发育段。

    图  3  跃满地区奥陶系一间房组储层类型(岩心)
    a—跃满2井,1−58−35,生屑砂屑灰岩,溶蚀孔洞;b—跃满2井,2−54−6,生屑砂屑灰岩,溶蚀孔洞,方解石全充填、半充填;c—跃满703井,2−81−37,生屑灰岩,溶蚀孔洞;d—跃满2井,3−56−37,砂屑生屑灰岩,中高角度缝;e—跃满1井,1−51−1,砂屑灰岩,中高角度缝,沿缝发育溶蚀孔;f—跃满6井,1−64−42,砂屑灰岩,直立缝与水平缝近垂直共轭;g—跃满8井,1−64−46,砂屑灰岩,高角度裂缝,沿裂缝溶蚀孔洞发育,见油斑;h—跃满8井,2−63−25,砂屑灰岩,直立缝与水平缝交汇处溶孔扩大;i—跃满1井,1−51−42,砂屑灰岩,中高角度裂缝,沿裂缝溶蚀孔洞发育
    Figure  3.  Reservoir type of the Yijianfang Formation of Ordovician in Yueman area (cores)
    a−Well Yueman 2, 1−58−35, bioclastic calcarenite, dissolved pore; b−Well Yueman 2, 2−54−6, bioclastic calcarenite, dissolved pore, full filled or half filled with calcite; c−Well Yueman 703, 2−81−37, bioclastic limestone, dissolved pore; d−Well Yueman 2, 3−56−37, sandy bioclastic limestone, middle−high angle fracture; e−Well Yueman 1, 1−51−1, calcarenite, middle−high angle fracture, dissolved pore; f−Well Yueman 6, 1−64−42, calcarenite, horizontal and vertical fractures; g−Well Yueman 8, 1−64−46, calcarenite, high Angle fracture, dissolved pore, oil patch; h−Well Yueman 8, 2−63−25, calcarenite, horizontal and vertical fractures, dissolved pore increase at fracture intersections; i−Well Yueman 1, 1−51−42, calcarenite, middle−high angle fracture, dissolved pore
    表  1  跃满区块漏失统计
    Table  1.  Lost circulation statistics in Yueman area
    序号 井号 放空长/m 漏失量/m3 序号 井号 放空长/m 漏失量/m3
    1 跃满1 1.92 355 18 跃满5−4X 6.39 659
    2 跃满10 0 506.12 19 跃满5−5 1.85 148.4
    3 跃满1−1 0 535.7 20 跃满601 0 373.7
    4 跃满1−3 0.12 118.24 21 跃满6C 0 215.5
    5 跃满1−5 0.76 0 22 跃满701 0 260.4
    6 跃满2−2C 0 1200 23 跃满701−H1 1.11 1494.4
    7 跃满2−4X 1.41 2049 24 跃满702 0 133.2
    8 跃满3 0 253.4 25 跃满703 2.72 252.2
    9 跃满3−1 1.49 307.1 26 跃满7−1X 0 1558.11
    10 跃满3−2C 0 1063.2 27 跃满7−2X 0.34 1527.19
    11 跃满3−3 0.93 348.5 28 跃满7JS 19.1 3231.33
    12 跃满3−5 0.74 114.6 29 跃满8 4.02 773.5
    13 跃满3−5C 8 1064.6 30 跃满801 2.79 1389.18
    14 跃满3−6X 0.96 241.6 31 跃满801−H6 2.59 549.4
    15 跃满3−7X 0 9.9 32 跃满802 1.45 329.7
    16 跃满4 0 43.8 33 跃满8−1 6.34 286.2
    17 跃满5−3 0 269.4 34 跃满9 9.25 811
    下载: 导出CSV 
    | 显示表格

    孔洞型、裂缝型、裂缝−孔洞型储层在区内大量发育。其中孔洞型储层以一间房组开阔台地相台内滩和台地边缘相台缘礁滩体等高能相带为发育基础,层状发育且具有较好的孔隙度与渗透率,储层段岩心薄片可见微观粒间溶孔、铸膜孔、粒内溶孔等(图2e、k),可见部分孔洞被方解石充填,岩心可见不规则溶蚀孔洞发育,部分被方解石半充填、全充填(图3a~c)。裂缝型储层区内普遍发育,连通溶蚀洞穴、孔洞或成组发育的裂缝型储层更为有效,薄片可见沥青与泥质全充填的压溶缝,方解石全充填、半充填的溶蚀缝,未充填的构造缝等(图2f、h、i);岩心显示裂缝以中高角度—高角度构造缝为主,形态总体较规则,缝面较平坦,具成组发育特征(图3d~f)。裂缝−孔洞型储层主要分布于一间房组开阔台地相台内滩颗粒灰岩中,兼具良好的运移与储集能力,岩心显示,沿裂缝溶蚀孔洞发育,且多裂缝交汇处溶蚀孔洞发育更佳(图3g~i)。

    洞穴型储层以大型溶蚀洞穴为主要储集空间,洞穴围岩裂缝及洞底碎石孔隙为次要储集空间,新三维地震资料显示,洞穴在地震剖面上表现出强串珠状反射特征,该类储层主要发育于一间房组上部,沿主干断层或断层两侧垂向发育(图4)。

    图  4  跃满3井过井地震剖面及洞穴型储层模式图
    O3t—吐木休克组底界;O1-2y2—鹰山组二段底界
    Figure  4.  Cross−well seismic profile and cavernous reservoir model map of Well Yueman 3
    O3t−Bottom of the Tumuxiuke Formation; O1-2y2−Bottom of the member 2 of Yingshan Formation

    钻井资料上洞穴型储层表现为放空和漏失,跃满区块已有钻井的放空漏失现象统计显示,区内共完钻51口井,放空21井,占比41.2%,平均放空3.537 m,最长放空跃满7JS井,放空长达19.1 m,最短放空跃满1−3井,仅放空0.12 m;同时总计33井有漏失现象,占比64.7%,平均漏失681.0 m3,最小漏失跃满3−7X井共9.9 m3,最大漏失跃满7JS井共3231 m3表1),放空漏失现象普遍。

    综合钻、测井及三维地震资料,对比东西向与南北向相邻井所揭示的岩性、储层及沉积特征,对区内储层分布特征进行厘定,结果表明,在垂向上,储层主要分布于一间房组顶面以下0~120 m范围之内,少量钻井(跃满3、跃满7)揭示上覆吐木休克组与良里塔格组有少量Ⅱ类和Ⅲ类储层发育;在横向剖面上,储层表现出强非均质性以及低连续性:各井储层类型、储层厚度差异较大,东西向连井对比图显示各井储层连续性差,而在近南北断层走向上,连井对比图显示储层具有一定连续性(图5);在一间房组,洞穴型储层沿断裂孤立发育,孔洞型储层与裂缝型储层沿断裂带状发育,同时,不同断裂构造段内储层发育具有显著差异性,特别是洞穴型储层,往往集中于局部断裂大量发育,显示出强烈的断控特征(图6)。

    图  5  跃满地区储层连井对比图
    Figure  5.  Comparison diagram of connected wells of reservoirs in Yueman area
    图  6  跃满地区奥陶系缝洞带划分平面图 1
    Figure  6.  Division plan of Ordovician fracture cave zone in Yueman area 1

    塔里木盆地经历多期不同方向的斜向构造挤压作用,盆内发育多组走滑断裂系统,按形成的力学机制可分为纯剪机制和单剪机制(图7)。研究区受古昆仑洋及阿尔金板块俯冲消解作用,形成多组纯剪机制的“X”型共轭走滑断裂带(Tang et al., 2012; 孙东等, 2015),在此基础上,共轭断层相继滑动、切割调节,形成的不连续断层经过尾端扩张与连接生长,最终形成位移量极少的“小位移”长断裂带。通过断裂带碳酸盐胶结物U−Pb测年结合地震解析,确定塔里木盆地奥陶系碳酸盐岩走滑断裂活动始于距今约460 Ma的中奥陶世末期(Wu et al., 2021)。跃满区块位于塔北哈拉哈塘地区南部,为共轭走滑断裂发育区的边缘地带,区内主要发育一组北北西向与三组北北东向走滑断裂(图7)。

    图  7  塔北至塔中地区(a,据Wu et al., 2021修改)跃满区块(b)走滑断裂体系纲要图
    Figure  7.  Schematic diagram of strike−slip faults in Tabei−Tazhong area (a, modified from Wu et al., 2021) and Yueman area (b)

    北北西向跃满1−3—跃满102断裂带位于跃满区块西北部,为北部金跃地区向南延伸的一号断裂的末端,具有强烈的应力发散特点,研究区可见有另一北北东向走滑断裂(跃满1−1井所在断裂)终止于该马尾断层。北北东向跃满601—跃满2−1断裂带与跃满704—跃满3−3断裂带位于研究区中部,是研究区油气开发的重点,两条断裂均延伸较长,跃满601—跃满2−1断裂带向南延伸至顺北区块后终止,向北穿过金跃、热普等区块,延伸至哈6区块被共轭北北西向断裂截断;跃满704—跃满3−3断裂带向南终止于北东东向的顺北1号断裂带,向北延伸至金跃区块后被截断。跃满801—跃满8走滑断裂仅在研究区发育,延伸较短、连续性差且前期勘探开发尚不完善,故暂不做分析研究。

    在对区内沿断裂走向的高度差异表征断层应力特征研究的基础上,对断裂构造进行分段性研究,结果显示:跃满1−3—跃满102断裂带为一典型马尾段,平面上由主干断层与若干同向弯曲的短分支断层组成,分支断层向南散开形成典型的马尾状构造,最南端转变为扇形排布的雁列断层,地震剖面上,北部可见平行的主干断层与小的花状构造,中部可见半花状构造,南部多为深大半花状构造(图8)。

    图  8  跃满1−3—跃满102断裂带平面图及典型地震剖面
    Figure  8.  Plan and typical seismic profile of Yueman 1−3−Yueman 102 fault zone

    跃满601—跃满2−1断裂带自南向北可划分四段:D1线性段、D2叠覆段、D3斜列段、D4叠覆段。D1线性段为压扭性质,平面上为单条断层线性延伸,剖面上为单条直立断层;D2与D4左行右阶叠覆段均为张扭性质,平面上表现为主干断层错位发育,在断层之间形成条形叠覆区域,叠覆区内受拉张应力作用,发育多条与两主干断层大角度斜交的分支断层,D2段一大一小两个叠覆区连续发育,D4段叠覆区规模居中,剖面上主要表现为两条直立断层伴随半花状构造;D3斜列段中部为压扭性质,靠近叠覆段的两端为张扭性质,平面上由多条断层平行排列组成,剖面上主要表现为两条直立断层(图9)。

    图  9  跃满601—跃满2−1断裂带平面图及典型地震剖面
    Figure  9.  Plan and typical seismic profile of Yueman 601−Yueman 2−1 fault zone

    跃满704—跃满3−3断裂带自南向北可划分为四段:D5斜列段、D6线性段、D7斜列段、D8斜交段。D5斜列段为压扭性质,D7斜列段为张扭性质,平面上均为多条断层平行排列,与断层整体走向呈低角度交错,剖面上为两条直立断层;D6线性段为D5斜列段至D7斜列段间的过渡段,为张扭性质,平面上为单条主干断层,剖面上为单条陡直断层;D8斜交式断层应力性质表现为压扭与张扭交错,平面上为若干R剪切分支断层与主干断层组成,分支断层主要发育于主干断层以西,剖面上显示为发育在奥陶系内的半花状构造(图10)。

    图  10  跃满704—跃满3−3断裂带平面图及典型地震剖面
    Figure  10.  Plan and typical seismic profile of Yueman 704−Yueman 3−3 fault zone

    根据三维地震资料揭示的洞穴及缝洞雕刻结果,区内布置并完成了30余口井的钻探工作,并对27口井进行了试采,在钻测井资料对储层的解析基础上,结合走滑断裂的分段特征对断裂不同构造段内储层发育情况进行统计分析(表2表3表4),结果表明:马尾段内,储层厚度普遍较厚,储层类型以裂缝型与孔洞型储层为主,裂缝孔洞型储层少量发育,未见洞穴型储层,储层发育整体较好;叠覆段与斜列段内,储层厚度普遍较厚,且各类储层均有发育,储层发育最佳;分支断层斜交段储层发育极不均匀,整体认为储层发育一般;线性段储层发育则普遍较差。

    表  2  跃满区块钻井储层统计(跃满1−3—跃满102)
    Table  2.  Reservoir statistics of drilling in Yueman area (Yueman 1−3−Yueman 102)
    分段 井号 顶深/m 底深/m 层厚/m 类型 顶深/m 底深/m 层厚/m 类型
    马尾段 跃满1−3 7209 7224 15 7282 7290 8
    7270 7276 6
    跃满1−1 7217 7223 6 7227.5 7238 10.5
    7223 7227.5 4.5
    跃满1−5 7226 7232 6 7287 7289.5 2.5
    7255 7261.5 6.5 7295.5 7298.5 3
    7275.5 7278 2.5 7301.5 7303.5 2
    7282.5 7285.5 3
    跃满1 7259.5 7265.5 6 7268.5 7277 8.5 III
    7265.5 7268.5 3 II
    跃满1−4 7297 7301 4 7303.5 7307 3.5
    跃满9 7586.8 7588.9 2.1 7591 7598 7
    跃满1−8 7302.5 7305 2.5 7343.5 7350 6.5
    7311 7317.5 6.5
    跃满102 7282 7297 15 7300.5 7306 5.5
    7297 7300.5 3.5 7306 7312.5 6.5
    下载: 导出CSV 
    | 显示表格
    表  4  跃满区块钻井储层统计(跃满704—跃满3−3)
    Table  4.  Reservoir statistics of drilling in Yueman area (Yueman 704−Yueman 3−3)
    分段 井号 顶深/m 底深/m 层厚/m 类型 顶深/m 底深/m 层厚/m 类型
    斜列段 跃满704 7307.5 7311 3.5 7364 7370.5 6.5
    7338.5 7340 1.5 7370.5 7378 7.5
    7340 7344.5 4.5
    跃满703 7277.9 7289.7 11.8 7298 7300.92 2.92
    线性段 跃满701 7315.7 7321.5 5.8
    斜列段 跃满7 7234 7242.5 8.5 7265.5 7270.5 5
    7242.5 7248.5 6 II 7270.5 7275 4.5
    7257 7263 6
    跃满3−1 7224 7229 5 7244 7246.5 2.5
    7234.5 7242.5 8 7246.5 7251 4.5
    7242.5 7244 1.5
    分支断层
    斜交段
    跃满3 7189.5 7198.5 9 7219.4 7223.2 3.8
    7209 7216 7
    跃满3−5 7167.7 7171 3.3 7197.88 7206.96 9.08
    7173.8 7180.9 7.1 7206.96 7212.04 5.08
    7184.04 7197.88 13.84 7212.04 7220 7.96
    跃满3−3 7158.62 7159.55 0.93
    下载: 导出CSV 
    | 显示表格
    表  3  跃满区块钻井储层统计(跃满601—跃满2−1)
    Table  3.  Reservoir statistics of drilling in Yueman area (Yueman 601−Yueman 2−1)
    分段 井号 顶深/m 底深/m 层厚/m 类型 顶深/m 底深/m 层厚/m 类型
    线性段 跃满601 7313 7320 7 7372.5 7379 6.5
    叠覆段 跃满6 7294 7296.28 2.28 7302.04 7304 1.96
    7296.28 7300.6 4.32 7304 7306 2
    7300.6 7302.04 1.44 7308 7310.7 2.7
    跃满5−2 7277 7279 2 7301.5 7304 2.5
    7284 7290.5 6.5 7313 7315 2
    7290.5 7295 4.5 7318 7319.5 1.5
    斜列段 跃满5 7272.5 7276.5 4 7280 7281.5 1.5
    7276.5 7280 3.5 7281.5 7289 7.5
    跃满5−3 7258.5 7271 12.5 7279 7292 13
    跃满5−1 7248.5 7253 4.5 7263 7269.5 6.5
    7253 7255 2 7269.5 7277.5 8
    7255 7258.5 3.5 7280.5 7282.5 2
    叠覆段 跃满2−3X 7274 7301.5 27.5 7319 7323 4
    7313 7316 3 7323 7326.5 3.5
    跃满2 7200.5 7212.5 12 7245 7263 18 III
    7221 7233.5 12.5 7263 7273 10
    7233.5 7245 11.5
    跃满2−1 7304.5 7315.5 11 7329.76 7334.44 4.68
    7315.5 7325 9.5 7338 7341 3
    下载: 导出CSV 
    | 显示表格

    综上所述,跃满区块走滑断裂分段特征与储层的发育规模具有一定的耦合关系,前人研究认为:塔北哈拉哈塘地区岩溶作用对碳酸盐岩储层具有直接控制作用(Dan et al., 2016; 梁乘鹏等, 2019),岩溶体系又主要受控于低水位期海平面下降、先存断裂及裂缝、地表河流体系(Liang and Jones, 2014; 宁超众等, 2020)。塔北奥陶系碳酸盐岩储层发育可分为四个阶段:一间房组准同生阶段、良里塔格组台缘滩沉积阶段、志留系前潜山岩溶阶段与后期埋藏溶蚀阶段(张学丰等, 2012; 赵学钦等, 2015),而非暴露区跃满区块位于塔北隆起最南缘,隆升幅度最小(廖涛等, 2016),故该区奥陶系储层主要受早期准同生岩溶与后三期埋藏岩溶作用,埋藏岩溶作用主要表现为深部溶蚀性流体沿断裂向上运移,改造一间房组碳酸盐岩,形成有效储集体(郑剑等, 2015; 牛君等, 2017)。分析认为断裂主要通过控制岩溶作用间接控制储层的发育,结合钻井与走滑断裂相对位置关系发现:区内储层发育程度受控于走滑断裂的构造样式及应力特征,构造样式越复杂,应力作用越集中,则岩溶作用更强,相应储层发育更好(图11)。

    图  11  跃满区块各段钻井储层统计图
    Figure  11.  Statistical chart of reservoir from drilling in Yueman area

    马尾段是断裂端部应力发散的结果,多条拉张性质的雁列断层与分支断层成组发育,整体构造样式较复杂,中部短马尾分支断层间距小、下切浅,南部长雁列断层间距大、下切深。断层间距越小,单位面积溶蚀作用则越强,而下切越深越有利于溶蚀性流体的上侵,马尾段储层统计显示,整体储层发育较好,平均厚度19.45 m,储层类型多为裂缝型、孔洞型以及裂缝−孔洞型,未见洞穴型储层发育。

    斜列段与叠覆段均为应力集中区,且区内构造样式复杂,斜列的主干断层以及连通主干断层的分支断层均可作为流体的运移通道,溶蚀区域面积增大且溶蚀作用强度大幅增强,以主干断层夹持区溶蚀效果最好。区内钻井揭示,区内斜列段与叠覆段储层发育最佳,储层厚度均较厚,各井平均厚度23.46 m,最厚储层38 m(跃满2−3X井),最薄储层14.7 m(跃满6井),储层类型以裂缝孔洞型为主,各井均有多类储层发育。

    分支断层斜交段局部应力集中,密集程度不一,多条分支断层逆向发育于断层西侧,分支断层长度不一,与马尾段类似,长分支断层具有更长的流体运移通道,分支断层密集区单位面积溶蚀作用更强,储层统计显示长分支断层储层厚度异常厚,例如跃满3−5井,储层厚46.36 m,各类储层均发育,短分支断层上储层发育一般,且非密集分支断层上的跃满3−3井储层发育极差,整体认为储层发育一般。

    线性段均无构造应力集中,且构造样式简单,断层仅作为流体的运移通道,岩溶作用对该段内碳酸盐岩改造作用较弱。线性段内储层发育较差,厚度较薄且储层类型单一。

    研究区一间房组整体为开阔台地相,加里东中期—晚奥陶纪早期(加里东中期Ⅰ幕),塔北发生了一次较大规模的海退,一间房组短暂暴露,准同生岩溶大面积发育(倪新锋等, 2009),中奥陶世末期,走滑断裂开始活动并控制着区内微地貌(Wu et al., 2021),断裂挤压段易形成正地貌,有利于高能礁滩体发育,该类礁滩体受准同生期岩溶作用及自身结构影响,具有更好的孔隙度、渗透率(Zeng et al., 2018; 高达等, 2022),也更易受埋藏岩溶作用溶蚀改造,从而形成有效储集体。

    新三维地震资料上不同沉积相带具有不同的地震响应特征:开阔台地相地震反射时差横向变化稳定,成平行、亚平行结构,振幅较强、连续,能量稳定;台内滩地震反射时差增大,反射杂乱,具有下超、上隆的特征,振幅变弱(聂杞连等, 2015)。连井地震剖面显示,区内一间房组顶部发育不规则的高能相带(图12),主要覆盖了跃满601—跃满2−1断裂带北部D3斜列段与D4叠覆段,跃满704—跃满3−3断裂带中北部D6线性段与D7斜列段。对比高能相带叠合区与非叠合区发现,在断裂分段性控制储层发育的基础上,高能相带的叠加区储层发育更好,与高能相带叠加的D4叠覆段相较D2叠覆段储层厚度更厚,叠加高能相带的D3斜列段和D7斜列段储层厚度相近,且储层厚度均高于D5斜列段。

    图  12  跃满区块地震剖面(a)及沉积相图(b)
    Figure  12.  Seismic section (a) and sedimentary facies map (b) in Yueman area

    (1)跃满区块奥陶系一间房组储层发育,储集岩以生屑灰岩、砂屑灰岩、颗粒灰岩、泥晶灰岩为主。根据储集空间组合特征储层可分为洞穴型储层、裂缝−孔洞型储层、裂缝型储层和孔洞型储层四类。各类储层集中发育于一间房组顶部,沿走滑断裂带状分布。

    (2)跃满区块位于塔北南坡纯剪走滑区,发育一组北北西向与三组北北东向走滑断裂。区内断裂具有分段性,按平面构造样式可分为马尾段、斜列段、叠覆段、分支断层斜交段和线性段。断裂不同段内平面组合特征、剖面构造特征和应力特征均有区别,马尾段应力发散,构造样式复杂,斜列段与叠覆段应力集中、构造样式复杂,分支断层斜交段局部应力集中、构造样式单一,线性段无构造应力集中,构造样式最简单。

    (3)走滑断裂分段性影响埋藏岩溶作用强度及规模,从而控制储层发育程度与分布情况。研究区内马尾段、斜列段和叠覆段储层发育最佳,分支断层斜交段储层发育受控于分支断层长度,整体发育一般,线性段储层发育较差。此外,在断裂分段性控制储层发育的基础上,高能相带叠加区储层更为发育。

    致谢: 项目研究过程中,中国石油塔里木油田勘探开发研究院的张银涛高级工程师、康鹏飞工程师,以及西南石油大学地球科学与技术学院的赵星星、崔晓庆、宋玉婷等在前期资料收集、数据处理上提供了指导和帮助,审稿专家与编辑对稿件提出了宝贵的修改意见。在此一并致以诚挚谢意!

  • 图  1   甲玛矿区大地构造位置简图(a)及地质图(b)(据唐菊兴等,2010修改)

    1—第四系残坡积物;2—多底沟组大理岩、灰岩;3—林布宗组板岩、角岩;4—花岗闪长斑岩;5—花岗斑岩;6—石英闪长玢岩;7—煌斑岩;8—细晶岩;9—矽卡岩;10—矽卡岩矿体;11—钻孔及编号;12—滑覆构造;13—矿段;14—隐伏岩体范围;JSS—金沙江缝合带;BNSZ—班公湖—怒江缝合带;SNMZ—狮泉河—嘉黎蛇绿岩混杂岩带;LMF—洛巴堆—米拉山断裂带;IYS—印度—雅鲁藏布江缝合带;SL—南拉萨地体;CL—中拉萨地体;NL—北拉萨地体

    Figure  1.   Tectonic location (a) and geological map (b) of Jiama ore district (modified from Tang Juxing et al., 2010)

    1−Quaternary; 2−Marble and limestone of Duodigou Formation; 3−Slatew and hoenfels of Linbuzong Formation; 4−Granodiorite porphyry; 5−Granite porphyry; 6−Quartz diorite porphyry; 7−Lamprophyre; 8−Aplite; 9−Skarn; 10−Skarn ore−body; 11−Drilling and number; 12−Slip fault; 13−Segment of mining; 14−Concealed intrusive outline; JSS−Jinsha suture zone; BNSZ−Bangong−Nujiang suture zone; SNMZ−Shiquan River−Nam Tso mélange zone; LMF−Luobadui−Milashan Fault; IYS−Indus−Yarlung Zangbo suture zone; SL−Southern Lhasa subterrane; CL−Centhern Lhasa subterrane; NL−Northern Lhasa subterrane

    图  2   甲玛矿区0号勘探线地质剖面图

    Figure  2.   Geological cross section along No.0 prospecting line of Jiama ore district

    图  3   甲玛矿区不同产状电气石手标本照片

    a~b—热液角砾岩胶结物中电气石(Tur−I);c—石英+电气石脉(Tur−II),切穿早期的石英+黑云母+黄铜矿脉;d—石英+电气石脉(Tur−II),切穿早期的石英+辉钼矿脉;e—石英+电气石+黄铁矿脉(Tur−II);f—石英+电气石+黄铁矿脉(Tur−II)和电气石+黄铁矿脉(Tur−III);g—电气石脉(Tur−III),被后期的黄铁矿脉切穿;d—电气石脉(Tur−III),被后期的无矿石英脉切穿;i—团斑状电气石+黄铁矿(Tur−IV);Tur—电气石;Py—黄铁矿;Cp—黄铜矿;Q—石英;Bt—黑云母;Mol—辉钼矿

    Figure  3.   Hand specimens of tourmalines with different occurrences of Jiama deposit

    a−b−Tourmaline occurring as cement in hydrothermal breccias (Tur−I); c−Quartz + tourmaline vein (Tur−II) cutting quartz + biotite + chalcopyrite vein; d−Quartz + tourmaline vein (Tur−II) cutting quartz + molybdenite vein; e−Quartz + tourmaline + pyrite vein (Tur−II); f−Quartz + tourmaline + pyrite vein (Tur−II) and tourmaline + pyrite vein (Tur−III); g−Tourmaline vein (Tur−III) cut by pyrite vein; h−Tourmaline vein (Tur−III) cut by quartz vein; i−Porphyritic tourmaline + pyrite (Tur−IV); Tur−Tourmaline; Py−Pyrite; Cp−Chalcopyrite; Q−Quartz; Bt−Biotite; Mol−Molybdenite

    图  4   甲玛矿区不同产状电气石镜下照片

    a—热液隐爆角砾岩胶结物中放射状电气石;b—石英+电气石脉,电气石半自形—自形,具有环带结构;c—电气石脉;d—电气石+黄铁矿脉,电气石半自形—自形,具有环带结构;e—电气石脉,电气石呈放射状;f—电气石+黄铁矿脉,电气石呈他形—半自形;g—团斑状电气石+黄铁矿,电气石呈他形;h~i—团斑状电气石+黄铁矿,电气石呈半自形—自形

    Figure  4.   Microphotos of tourmalines with different occurrences of Jiama deposit

    a−Tur−I with radial texture; b−Euhedral to subhedral Tur−II shows distinct zoning texture; c−Fine−grained Tur−III; d−Euhedral to subhedral Tur−III shows distinct zoning texture and coexist with pyrite; e−Tur−III with radial texture; f−Fine−grained, subhedral and anhedral Tur−III coexist with pyrite; g−Anhedral Tur−IV coexist with pyrite; h−i−Subhedral and anhedral Tur−IV coexist with pyrite

    图  5   甲玛矿区不同产状电气石分类图解

    a—Ca−X□−(Na+K)三元图解(底图据Henry et al., 2011);b—Al−Fe−Mg图解(底图据Henry and Guidotti, 1985),图中1、2区分别代表富Li和贫Li花岗岩和伟晶岩、细晶岩,3区为富Fe3+的石英−电气石岩(热液蚀变花岗岩),4、5区分别代表含Al饱和矿物相和不含Al饱和矿物相的变泥质岩和变砂屑岩,6区代表富Fe3+的石英−电气石岩、钙质硅酸岩和变泥质岩,7区代表贫Ca变质超镁铁岩和富Cr、V的变质沉积岩,8区代表变质碳酸盐和变质辉石;c—Fe/(Fe+Mg)−X□/(Na+K+ X□)图解(底图据Henry et al., 2011);d—Fe/(Fe+Mg)−Na/(Na+Ca)图解(底图据Henry et al., 2011

    Figure  5.   Tourmaline discrimination diagrams with different occurrences of Jiama deposit

    a−Ca−X□−(Na+K) diagram for tourmaline discrimination (after Henry et al., 2011); b−Plot Al−Fe−Mg for tourmaline from various rock types (after Henry and Guidotti, 1985), 1−Li−rich granitoid pegmatites and aplites; 2−Li−poor granitoid rocks and associated pegmatites and aplites, 3−Fe3+−rich quartz–tourmaline rocks (hydrothermally altered granites); 4−Metapelites and metapsammites coexisting with an Alsaturating phase; 5−Metapelites and metapsammites not coexisting with an Al−saturating phase; 6−Fe3+−rich quartz–tourmaline rocks, calcsilicate rocks, and metapelites; 7−Low−Ca metaultramafic rocks and Cr, V−rich metasediments; 8−Metacarbonates and meta−pyroxenites; c−Fe/(Fe+Mg)−X□/(Na+K+ X□) diagram for tourmaline discrimination (after Henry et al., 2011); d−Fe/(Fe+Mg)−Na/(Na+Ca) diagram for tourmaline discrimination (after Henry et al., 2011)

    图  6   甲玛不同产状电气石中阳离子占位及元素置换趋势图解

    a—Al−Fe图解;b—Y位置Mg−Fe置换图解;c—Al−Na图解

    Figure  6.   Binary plot cation occupancies and exchange vectors in different types of tourmaline in Jiama deposit

    a−Plot of Fe vs. Al; b−Plot of Fe vs. Mg in Y−site; c−Plot of Na vs. Al

    图  7   甲玛电气石环带成分趋势图及对应的背散射电子照片

    Figure  7.   Compositional profiles and the backscattered electronic images of tourmaline zones in Jiama deposit

    图  8   甲玛电气石脉背散射电子照片

    Figure  8.   Backscattered electronic image of tourmaline vein

    表  1   甲玛矿区不同产状电气石电子探针分析结果(%)

    Table  1   Compositions of tourmalines (%) with different occurrences of Jiama deposit

    编号 JM-
    233-1
    JM-
    233-2
    028-
    330-
    1A
    028-
    330-
    1B
    028-
    330-
    1C
    028-
    357-
    1
    028-
    357-
    1A
    028-
    357-
    11A
    028-
    357-
    11B
    028-
    357-
    11C
    028-
    357-
    2
    028-
    357-
    3
    JM-
    155-
    1A
    JM-
    155-
    1B
    JM-
    155-
    2A
    JM-
    155-
    2B
    JM-
    275-
    1A
    JM-
    275-
    1B
    JM-
    275-
    1C
    JM-
    275-
    2A
    产状 Tur−I Tur−II
    点位     核部 幔部 边部     核部 边部       核部 边部 核部 边部 核部 幔部 边部 核部
    SiO2 30.29 30.3 36.03 33.38 35.52 35.76 33.43 32.84 33.4 36.64 34.9 34 36.09 35.89 35.84 35.14 34.53 31.35 33.1 34.87
    TiO2 0.9 0.56 0.25 1.49 0.38 0.05 0.29 0.23 0.41 0.27 0.75 0.15 0.7 0.56 0.62 1.2 1.85 1.29 1.57 2.05
    Al2O3 24.37 24.88 34.87 32.52 33.31 31.26 25.07 22.95 23.89 34.69 33.36 31.41 33.11 37.61 32.77 32.7 22.14 32.04 27.08 25.84
    FeO 17.23 16.81 6.98 5.79 6.38 16.91 21.78 15.68 20.62 6.72 9.62 17.68 13.12 3.19 13.17 9.94 13.64 3.06 10.31 12.52
    MgO 5.1 5.14 6.43 9.71 6.95 2.88 2.51 5 2.53 8.3 6.25 2.53 3.7 8.51 2.05 5.21 8.46 9.53 8.21 8.61
    CaO 1.05 0.97 0.71 1.05 0.67 0.44 0.88 0.4 1.04 0.3 0.82 0.97 0.04 0.47 0.09 0.33 0.92 1.2 1.1 1.05
    MnO 0 0 0 0 0.02 0.05 0.05 0 0.03 0.02 0 0.08 0.03 0 0 0 0 0 0 0
    Na2O 2.32 2.42 2.33 2.47 2.33 2.58 2.49 2.71 2.22 2.58 2.24 2.35 2.41 2.52 2.2 2.5 2.53 2.16 2.4 2.4
    K2O 0.03 0.06 0.01 0.02 0.04 0.03 0.04 0.09 0.03 0.03 0.03 0.05 0.03 0.01 0.04 0.04 0.03 0.02 0.03 0.06
    F 0.16 0.04 0.18 0.17 0 0 0.01 0.05 0.02 0 0 0.09 0.09 0.22 0.02 0 0 0.08 0.08 0
    Cl 0 0 0 0 0 0 0.01 0 0.01 0 0.01 0 0 0 0 0 0 0 0 0.02
    H2O* 3.11 3.18 3.66 3.58 3.66 3.63 3.35 3.25 3.27 3.82 3.68 3.52 3.65 3.76 3.6 3.65 3.39 3.42 3.41 3.55
    B2O3* 9.25 9.26 10.85 10.6 10.62 10.52 9.72 9.47 9.51 11.06 10.67 10.34 10.69 11.19 10.47 10.58 9.82 10.03 10 10.31
    O=F 0.07 0.01 0.07 0.07 0 0 0 0.02 0.01 0 0 0.04 0.04 0.09 0.01 0 0 0.03 0.03 0
    Total* 93.74 93.61 102.38 100.71 100.15 104.12 99.68 95.37 96.98 104.44 102.38 103.15 103.66 103.98 101.25 101.46 97.38 94.2 97.33 101.39
    根据31 个阴离子(O, OH, F)计算
    T: Si 5.69 5.69 5.77 5.48 5.81 5.91 5.98 6.03 6.11 5.76 5.68 5.72 5.87 5.58 5.95 5.77 6.11 5.43 5.76 5.88
    Al 0.31 0.31 0.23 0.52 0.19 0.09 0.02 0 0 0.24 0.32 0.28 0.13 0.42 0.05 0.23 0 0.57 0.24 0.12
    B 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
    Z: Al 5.09 5.19 6 5.76 6 5.99 5.26 4.96 5.15 6 6 5.94 6 6 6 6 4.62 5.97 5.31 5.01
    Mg 0.91 0.81 0 0.24 0 0.01 0.67 1.04 0.69 0 0 0.06 0 0 0 0 1.38 0.03 0.69 0.99
    Fe3+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Y: Al 0 0 0.35 0 0.24 0 0 0 0 0.18 0.09 0 0.21 0.46 0.36 0.11 0 0 0 0
    Ti 0.13 0.08 0.03 0.18 0.05 0.01 0.04 0.03 0.06 0.03 0.09 0.02 0.09 0.07 0.08 0.15 0.25 0.17 0.21 0.26
    Fe3+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Mg 0.51 0.62 1.54 2.14 1.7 0.7 0 0.33 0 1.94 1.52 0.57 0.9 1.97 0.51 1.28 0.85 2.43 1.43 1.17
    Mn 0 0 0 0 0 0.01 0.01 0 0.01 0 0 0.01 0 0 0 0 0 0 0 0
    Fe2+ 2.71 2.64 0.93 0.79 0.87 2.34 3.26 2.41 3.15 0.88 1.31 2.49 1.78 0.41 1.83 1.37 2.02 0.44 1.5 1.76
    ΣY 3.35 3.34 3 3.12 3 3.05 3.31 3.16 3.22 3.05 3.02 3.09 3 3 3 3 3.11 3.04 3.15 3.2
    X: Ca 0.21 0.19 0.12 0.18 0.12 0.08 0.17 0.08 0.2 0.05 0.14 0.17 0.01 0.08 0.02 0.06 0.17 0.22 0.21 0.19
    Na 0.84 0.88 0.72 0.79 0.74 0.83 0.86 0.96 0.79 0.79 0.71 0.77 0.76 0.76 0.71 0.79 0.87 0.73 0.81 0.79
    K 0.01 0.01 0 0 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0 0.01 0.01
    X 0 0 0.15 0.03 0.13 0.09 0 0 0 0.16 0.14 0.05 0.23 0.16 0.27 0.14 0 0.05 0 0.01
    OH 3.9 3.98 3.91 3.91 4 4 3.99 3.97 3.98 4 4 3.95 3.96 3.89 3.99 4 4 3.96 3.96 3.99
    F 0.1 0.02 0.09 0.09 0 0 0.01 0.03 0.01 0 0 0.05 0.04 0.11 0.01 0 0 0.04 0.04 0
    Cl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01
    Fe/(Mg+Fe) 0.65 0.65 0.38 0.25 0.34 0.77 0.83 0.64 0.82 0.31 0.46 0.8 0.67 0.17 0.78 0.52 0.47 0.15 0.41 0.45
    X□ /(X□+Na+K) 0 0 0.17 0.03 0.15 0.1 0 0 0.01 0.17 0.17 0.06 0.23 0.17 0.27 0.15 0 0.06 0 0.01
    编号 JM-
    275-

    2B
    JM-
    275-
    2C
    JM-
    415-
    2A
    JM-
    415-
    2B
    035-
    848-
    1
    035-
    848-
    2A
    035-
    848-
    2B
    035-
    848-
    2C
    035-
    848-
    2D
    035-
    848-
    2E
    035-
    767-
    1
    035-
    767-
    2
    035-
    803-
    1
    039-
    1112-
    1
    039-
    1112-
    2
    039-
    1112-
    21
    JM-
    415-
    3
    JM-
    415-
    1A
    JM-
    415-
    1B
    产状 Tur−III Tur−IV
    点位 幔部 边部       核部 核部 幔部 幔部 边部 边部             核部 边部
    SiO2 33.86 33.87 32.15 26.34 37.19 37.71 36.97 36.54 36.66 36.53 37.05 36.7 36.76 36.16 36.32 36.77 34.42 35.37 29.33
    TiO2 1.03 1.46 2.89 0.55 0.52 0.59 0.42 0.61 0.58 0.61 0.41 0.44 0.43 0.44 0.36 0.29 0.58 0.47 0.61
    Al2O3 31.66 24.39 18.88 33.04 32.71 35.79 38.5 33.22 35.23 31.17 37.19 31.71 34.36 31.14 28.21 27.9 30.71 31.48 34.93
    FeO 3.15 11.28 19.64 10.15 6.77 4.94 6.02 9.05 8.92 8.12 4.1 6.97 6.93 7.84 10.03 8.1 10.27 9.13 12.17
    MgO 10.47 8.32 6.69 4.99 8.26 8.72 7.48 6.83 6.85 8.01 8.06 7.99 7.92 7.29 6.26 7.5 4.34 7.35 4.59
    CaO 0.48 1.07 0.83 1.44 0.2 0.2 0.33 0.56 0.38 0.32 0.08 0.19 0.16 0.05 0.14 0.04 1 0.88 1.38
    MnO 0.02 0.02 0 0 0 0.04 0.06 0 0 0.03 0 0 0.01 0 0.03 0.02 0 0 0
    Na2O 2.2 2.43 2.71 1.86 2.52 2.33 2.42 2.31 2.5 2.66 2.71 2.61 2.3 2.44 2.5 2.44 2.15 2.59 2.02
    K2O 0.02 0.02 0.07 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.03 0.03 0.05
    F 0 0.16 0 0 0 0.1 0.03 0 0 0.2 0.03 0.18 0 0.01 0 0.1 0.16 0 0
    Cl 0 0 0.01 0 0 0 0 0.01 0 0 0 0 0 0 0.01 0 0.01 0 0
    H2O* 3.58 3.31 3.23 3.21 3.76 3.85 3.94 3.75 3.84 3.6 3.88 3.61 3.79 3.61 3.53 3.5 3.42 3.65 3.47
    B2O3* 10.37 9.82 9.36 9.31 10.9 11.3 11.46 10.88 11.14 10.7 11.28 10.7 10.99 10.49 10.23 10.27 10.14 10.58 10.06
    O=F 0 0.07 0 0 0 0.04 0.01 0 0 0.08 0.01 0.07 0 0.01 0 0.04 0.07 0 0
    Total* 96.82 96.14 96.47 90.97 102.84 105.59 107.68 103.81 106.16 101.89 104.99 101.17 103.7 99.57 98.12 97.49 97.49 101.53 98.6
    根据31 个阴离子(O, OH, F)计算
    T: Si 5.68 5.99 5.97 4.92 5.93 5.8 5.6 5.84 5.72 5.94 5.71 5.96 5.81 5.99 6.17 6.22 5.9 5.81 5.07
    Al 0.32 0.01 0.03 1.08 0.07 0.2 0.4 0.16 0.28 0.06 0.29 0.04 0.19 0.01 0 0 0.1 0.19 0.93
    B 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
    Z: Al 5.93 5.08 4.1 6 6 6 6 6 6 5.91 6 6 6 6 5.65 5.56 6 5.9 6
    Mg 0.07 0.92 1.85 0 0 0 0 0 0 0.09 0 0 0 0 0.35 0.44 0 0.1 0
    Fe3+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Y: Al 0 0 0 0.18 0.08 0.29 0.48 0.09 0.2 0 0.46 0.04 0.21 0.07 0 0 0.1 0 0.18
    Ti 0.13 0.19 0.4 0.08 0.06 0.07 0.05 0.07 0.07 0.07 0.05 0.05 0.05 0.06 0.05 0.04 0.07 0.06 0.08
    Fe3+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Mg 2.55 1.27 0 1.39 1.96 2 1.69 1.63 1.59 1.84 1.85 1.93 1.87 1.8 1.23 1.46 1.11 1.7 1.18
    Mn 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0
    Fe2+ 0.44 1.67 3.05 1.58 0.9 0.64 0.76 1.21 1.16 1.1 0.53 0.95 0.92 1.09 1.42 1.15 1.47 1.25 1.76
    ΣY 3.12 3.15 3.45 3.24 3.01 3 3 3 3.03 3.03 3 3 3.05 3.01 3 3 3 3.02 3.2
    X: Ca 0.09 0.2 0.16 0.29 0.03 0.03 0.05 0.1 0.06 0.06 0.01 0.03 0.03 0.01 0.03 0.01 0.18 0.16 0.25
    Na 0.71 0.83 0.97 0.67 0.78 0.7 0.71 0.71 0.76 0.84 0.81 0.82 0.71 0.78 0.82 0.8 0.72 0.82 0.68
    K 0 0 0.02 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01
    X 0.19 0 0 0.03 0.18 0.27 0.23 0.18 0.17 0.1 0.17 0.14 0.26 0.2 0.14 0.19 0.1 0.01 0.06
    OH 4 3.91 4 4 4 3.95 3.99 4 4 3.9 3.99 3.91 4 3.99 4 3.95 3.91 4 4
    F 0 0.09 0 0 0 0.05 0.01 0 0 0.1 0.01 0.09 0 0.01 0 0.05 0.09 0 0
    Cl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Fe/(Mg+Fe) 0.14 0.43 0.62 0.53 0.31 0.24 0.31 0.43 0.42 0.36 0.22 0.33 0.33 0.38 0.47 0.38 0.57 0.41 0.6
    X□ /(X□+Na+K) 0.21 0 0 0.05 0.19 0.28 0.24 0.2 0.19 0.11 0.17 0.14 0.27 0.2 0.15 0.19 0.12 0.02 0.08
    下载: 导出CSV
  • [1]

    Allegre J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Scharer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariepy C, Gopel C, Li T, Xiao X C, Chang C F. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0

    [2]

    Baksheev I A, Prokofev V Y, Zaraisky G P, Chitalin A F, Yapaskurt V O, Nikolaev Y N, Tikhomirov P L, Nagornaya E V, Rogacheva L l, Gorelikova N V, Kononov O V. 2012. Tourmaline as a prospecting guide for the porphyry−styledeposits[J]. European Journal of Mineralogy, 24(6): 957−979. doi: 10.1127/0935-1221/2012/0024-2241

    [3]

    Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post−collisional magmatism[J]. Earth−Science Reviews, 68: 173−196.

    [4]

    Codeço M S, Weis P, Trumbull R B, Pinto F, Lecumberri−Sanchez P, Wilke F D H. 2017. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W−Sn–Cu deposit, Portugal[J]. Chemical Geology, 468: 1−16. doi: 10.1016/j.chemgeo.2017.07.011

    [5]

    Dutrow B L, Henry D J. 2011. Tourmaline: A geologic DVD[J]. Elements, 7: 301−306. doi: 10.2113/gselements.7.5.301

    [6]

    Feng Yonggang, Liang Ting, Wang Mengxi, Zhang Ze, Hao Yuanyuan, Cen Jubiao, Dong Ziyan. 2022. Geochemistry of tourmaline from granitic pegmatites in East Qinling and its implications for mineralization[J]. Acta Petrologica Sinica, 38(2): 428−444 (in Chinese with English abstract).

    [7]

    Griffin W L, Slack J F, Ramsden A R, Qin T T, Ryan C G. 1996. Trace elements in tourmalines from massive sulfides deposits and tourmalinites: Geochemical controls and exploration applications[J]. Economic Geology, 91(4): 657−675. doi: 10.2113/gsecongeo.91.4.657

    [8]

    Guo Jia, Yan Haibo, Ling Mingxing, Zhang Rongqing. 2020. Chemical composition of tourmaline in the biotite granite, the Dachang district: Insights into magmatic−hydrothermal evolution[J]. Acta Petrologica Sinica, 36(1): 171−183 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.16

    [9]

    Guo Wenbo, Zheng Wenbao, Tang Juxing, Ying Lijuan, Wang Yiyun, Lin Bin. 2014. Geochemical constraints on the source of metallogenic fluids and materials in the Jiama polymetallic Cu deposit, Tibet[J]. Geology in China, 41(2): 510−528 (in Chinese with English abstract).

    [10]

    Gupta S, Jayananda M, Fareeduddin. 2014. Tourmaline from the Archean G. R. Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny[J]. Geoscience Frontiers, 5(6): 877−892. doi: 10.1016/j.gsf.2013.12.004

    [11]

    Han J S, Hollings P, Jourdan F, Zeng Y C, Chen H Y. 2020. Inherited Eocene magmatic tourmaline captured by the Miocene Himalayan leucogranites[J]. American Mineralogist, 105: 1436−1440. doi: 10.2138/am-2020-7608

    [12]

    Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli O, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontbot´e L. 2020. Tourmaline as a tracer of late−magmatic to hydrothermal fluid evolution: The world−class San Rafael tin (−copper) deposit, Peru[J]. Economic Geology, 115: 1665−1697. doi: 10.5382/econgeo.4762

    [13]

    Henry D J, Guidotti C V. 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite−grade metapelites of NW Maine[J]. American Mineralogist, 70: 1−15.

    [14]

    Henry D J, Dutrow B L. 1996. Metamorphic tourmaline and its petrologic applications[J]. Reviews in Mineralogy and Geochemistry, 33: 503−558.

    [15]

    Henry D J, Novák M, Hawthorne F C, Ertl A, Dutrow B L, Uher P, Pezzotta F. 2011. Nomenclature of the tourmaline−supergroup minerals[J]. American Mineralogist, 96: 895−913. doi: 10.2138/am.2011.3636

    [16]

    Hinsberg V J V, Henry D J, Marschall H R. 2011. Tourmaline: An ideal indicator of its host environment[J]. The Canadian Mineralogist, 49: 1−16. doi: 10.3749/canmin.49.1.1

    [17]

    Hou Z Q, Ma H W, Zaw K, Zhang Y Q. 2003. The Himalayan Yulong porphyry copper belt: Product of large−scale strike−slip faulting in Eastern Tibet[J]. Economic Geology, 98(1): 125−145.

    [18]

    Hou Zengqian, Yang Zhusen, Xu Wenyi, Mo Xuanxue, Ding Lin, Gao Yongfeng, Dong Fangliu, Li Guangming, Qu Xiaoming, Zhao Zhidan, Jiang Sihong, Meng Xiangjin, Li Zhenqing, Qin Kezhang, Yang Zhiming. 2006. Metallogenesis in Tibetan collisional orogenic belt: I. Mineralization in main−collisional transformation setting[J]. Mineral Deposits, 25 (4): 337–358 (in Chinese with English abstract).

    [19]

    Jia R X, Fang W X, Hu R Z. 2010. Mineral geochemical compositions of tourmalines and their significance in the Gejiu Tin polymetallic deposits, Yunnan, China[J]. Acta Geologica Sinica, 84(1): 155−166. doi: 10.1111/j.1755-6724.2010.00177.x

    [20]

    Lang X H, Tang J X, Li Z J, Huang Y, Ding F, Yang H H, Zhou Y. 2014. U–Pb and Re–Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences, 79: 608−622. doi: 10.1016/j.jseaes.2013.08.009

    [21]

    Launay G, Sizareta S, Guillou−Frottier L, Gloaguen E, Pinto F. 2018. Deciphering fluid flow at the magmatic−hydrothermal transition: A case study from the world−class Panasqueira W–Sn–(Cu) ore deposit (Portugal)[J]. Earth and Planetary Science Letters, 499: 1−12. doi: 10.1016/j.jpgl.2018.07.012

    [22]

    Li Zhenzhen, Qin Kezang, Pei Bin, Zhao Junxing, Shi Ruize, Zhao Zelong, Han Ri. 2020. Mineralogical features of tourmaline in Baiyinchagan Sn−Ag−Pb−Zn deposit, southern Great Xing'an Range, and its implications for magmatic−hydrothermal evolution[J]. Acta Petrologica Sinica, 36(12): 3797−3812 (in Chinese with English abstract).

    [23]

    Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen GuoLiang, Zhang Zhongkun. 2019. Polycentric complex mineralization model of porphyry system: A case study of Jiama superlarge deposit in Tibet[J]. Mineral Deposits, 38(6): 1204−1222 (in Chinese with English abstract).

    [24]

    Lin Bin, Tang Juxing, Tang Pan, Zhou Aorigele, Sun Miao, Qi Jing, Chen Guoliang, Zhang Zhongkun, Zhang Zebin, Wu Chunneng, Tian Zhichao, Dai Jingjing, Yang Zhengkun, Yao Xiaofeng. 2021. Preliminary study of first 3000 m scientific drilling in Jiama porphyry metallogenic system, Tibet[J]. Mineral Deposits, 40(6): 1119−1134 (in Chinese with English abstract).

    [25]

    London D, Manning D A C. 1995. Chemical variation and significance of tourmaline from Southwest England[J]. Economic Geology, 90(3): 495−519. doi: 10.2113/gsecongeo.90.3.495

    [26]

    Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D, Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 96: 225−242. doi: 10.1016/j.lithos.2006.10.005

    [27]

    Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollision felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong vocanic succession in southern Tibet[J]. Chemical Geology, 250: 49−67. doi: 10.1016/j.chemgeo.2008.02.003

    [28]

    Novák M, Koda R, Filip J, Macek I, Vaculovi T. 2011. Compositional trends in tourmaline from intragranitic NYF pegmatites of the terbic pluton, Czech Republic: An electron microprobe, Mossbauer and LA−ICP−MS study[J]. The Canadian Mineralogist, 49(1): 359−380.

    [29]

    Qiu K F, Yu H C, Hetherington C, Huang Y Q, Yang T, Deng J. 2021. Tourmaline composition and boron isotope signature as a tracer of magmatic−hydrothermal processes[J]. American Mineralogist, 106: 1033−1044. doi: 10.2138/am-2021-7495

    [30]

    Slack J F, Trumbull R B. 2011. Tourmaline as a recorder of oreforming processes[J]. Elements, 7: 321−326.

    [31]

    Tang Juxing, Deng Shilin, Zheng Wenbao, Ying Lijuan, Wang Xiongwu, Zhong Kanghui, Qin Zhipeng, Ding Feng, Li Fengji, Tang Xiaoqian, Zhong Yufeng, Peng Huijuan. 2011. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet[J]. Mineral Deposits, 30(2): 179−196 (in Chinese with English abstract).

    [32]

    Tang Juxing, Duo Ji, Liu Hongfei, Lang Xinghai, Zhang Jinshu, Zheng Wenbao, Ying Lijuan. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt[J]. Acta Geoscientia Sinica, 33(4): 393−410 (in Chinese with English abstract).

    [33]

    Tang Juxing, Wang Denghong, Wang Xiongwu, Zhong Kanghui, Ying Lijuan, Zheng Wenbao, Li Fengjie, Guo Na, Qin Zhipeng, Yao Xiaofeng, Li Lei, Wang You, Tang Xiaoqian. 2010. Geological features and metallogenic model of the Jiama copper−polymetallic deposit in Tibet[J]. Acta Geoscientica Sinica, 31(4): 495−506 (in Chinese with English abstract).

    [34]

    Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bin. 2017. Mineralization, exploration and resource potential of porphyry−skarn−epithermal copper polymetallic deposits in Tibet[J]. Acta Geoscientica Sinica, 38(5): 571−613 (in Chinese with English abstract).

    [35]

    Tang P, Tang J X, Lin B, Wang L Q, Zheng W B, Leng Q F, Gao X, Zhang Z B, Tang X Q. 2019. Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet[J]. Ore Geology Reviews, 115: 103122.

    [36]

    Tang P, Tang J X, Wang Y, Lin B, Zheng W B, Leng Q F, Zhang Z B, Yang Y, Wu C N, Qi J, Li Y X. 2020. Zircon U−Pb geochronology, geochemistry, S−Pb−Hf isotopic compositions, and mineral chemistry of the Xin'gaguo skarn Pb−Zn deposit, Tibet, China[J]. Geological Journal, 55(6): 4790−4809. doi: 10.1002/gj.3713

    [37]

    Tang P, Tang J X, Wang Y, Lin B, Leng Q F, Zhang Q Z, He L, Zhang Z B, Sun M, Wu C N, Qi J, Li Y X, Dai S J. 2021. Genesis of the Lakang’e porphyry Mo (Cu) deposit, Tibet: Constraints from geochemistry, geochronology, Sr−Nd−Pb−Hf isotopes, zircon and apatite[J]. Lithos, 380–381: 1−38.

    [38]

    Tang Pan, Tang Juxing, Zheng Wenbao, Leng Qiufeng, Lin Bin, Tang Xiaoqian, Wang Hao, Gao Xin, Zhang Zebin, Zhou Hongbing. 2017. Is Tongshan orebody in the Jiama copper−polymetallic Deposit Manto−type ore?[J]. Acta Geoscientica Sinica, 38(5): 829−838 (in Chinese with English abstract).

    [39]

    Tang Pan, Chen Yuchuan, Tang Juxing, Zheng Wenbao, Leng Qiufeng. 2016. Characteristics and geological signifi−cance of biotites in Jiama porphyry deposit system, Tibet[J]. Mineral Deposits, 35(4): 846−866 (in Chinese with English abstract).

    [40]

    van Hinsberg V J, Henry D J, Marschall H R. 2011. Tourmaline: An ideal indicator of its host environment[J]. The Canadian Mineralogist, 49: 1−16. doi: 10.3749/canmin.49.1.1

    [41]

    Wang Denghong, Tang Juxing, Ying Lijuan, Lin Bin, Ding Shuai. 2011. Hornfels feature in the Jiama ore deposit, Tibet and its significance on deep prospecting[J]. Acta Petrologica Sinica, 27(7): 2103−2108 (in Chinese with English abstract).

    [42]

    Wang L Q, Tang J X, Yang Y, Li Z, Lin B. 2018. Zircon U−Pb geochronology, geochemistry, and S−Pb isotopic compositions of the Lietinggang iron polymetallic deposit, Tibet, China[J]. Ore Geology Review, 98: 62−79. doi: 10.1016/j.oregeorev.2018.05.017

    [43]

    Wang Weiping, Tang Juxing. 2011. Rock types and genetic significance of hornfels and location prediction of concealed porphyry bodies in Jiama copper polymetallic deposit, Tibet[J]. Mineral Deposits, 30(6): 1017−1038 (in Chinese with English abstract).

    [44]

    Wang Yiyun, Zheng Wenbao, Chen Yuchuan, Tang Juxing, Leng Qiufeng, Tang Pan, Ding Shuai, Zhou Yun. 2017. Descussion on the mechanism of seperation of copper and molybdenum in Jima porphyry deposit system, Tibet[J]. Acta Petrologica Sinica, 33(2): 495−514 (in Chinese with English abstract).

    [45]

    Xie F W, Tang J X, Chen Y C, Lang X H. 2018. Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: Implications for petrogenesis and mineralization[J]. Ore Geology Reviews, 96: 98−114. doi: 10.1016/j.oregeorev.2018.04.013

    [46]

    Xue Jianling, Xu Hong, Gao Yiming, Huang Jingyi. 2006. Mineralogical characteristics of tourmaline in the Houxianyu boron deposit in Liaoning and their significance for rock and ore formation[J]. Geology in China, 33(6): 1386−1392 (in Chinese with English abstract).

    [47]

    Yang S Y, Jiang S Y, Zhao K D, Jiang Y H, Ling H F, Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A−type granites in the Gan−Hang Belt, Southeast China[J]. Lithos, 150: 155−170. doi: 10.1016/j.lithos.2012.01.028

    [48]

    Yang Z M, Cooke D R. 2019. Porphyry copper deposits in China[J]. Society of Economic Geologists Special Publication, 22: 133−187.

    [49]

    Yang Z M, Hou Z Q, White N C, Chang Z S, Li Z Q, Song Y. 2009. Geology of the post−collisional porphyry copper–molybdenum deposit at Qulong, Tibet[J]. Ore Geology Review, 36: 133−159. doi: 10.1016/j.oregeorev.2009.03.003

    [50]

    Yao Xiaofeng, Ye Tianzhu, Tang Juxing, Zheng Wenbao, Ding Shuai, Li Yongsheng, Zheng Shimin. 2014. The effect of Si−Ca interface on skarn formation and pollymetallic mineralization in the Jiama deposit, Tibet[J]. Geology in China, 41(5): 1577−1593 (in Chinese with English abstract).

    [51]

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan−Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211−280. doi: 10.1146/annurev.earth.28.1.211

    [52]

    Ying Lijuan, Tang Juxing, Wang Denghong, Zheng Wenbao, Qin Zhipeng, Zhang Li. 2011. Zircon shrimp U−Pb dating of porphyry vein from the Jiama copper polymetallic deposit in Tibet and its significance[J]. Acta Petrologica Sinica, 27(7): 2095−2102 (in Chinese with English abstract).

    [53]

    Ying Lijuan, Wang Denghong, Tang Juxing, Chang Zhesheng, Qu Wenjun, Zheng Wenbao, Wang Huan. 2010. Re−Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 84(8): 1165−1174 (in Chinese with English abstract).

    [54]

    Yu J M, Jiang S Y. 2003. Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: Implications for ore genesis and mineral exploration[J]. Mineralogy and Petrology, 77(1): 67−84.

    [55]

    Yu M, Feng C Y, Mao J W, Zhao Y M, Li D X. 2017. Multistage skarn−related tourmaline from Galinge deposit, Qiman Tagh, western China: A fluid evolution perspective[J]. The Canadian Mineralogist, 55: 3−19. doi: 10.3749/canmin.1600043

    [56]

    Yu Miao, Feng Chengyou, Liu Hongchuan, Li Dingwu, Zhao Yiming, Li Daxin, Liu Jiannan, Wang Hui. 2016. Mineralogy, element geochemistry and genesis of tourmaline from Galinge skarn deposit, Qinghai Province[J]. Mineral Deposits, 35(1): 69−84 (in Chinese with English abstract).

    [57]

    Zhang S T, Lu J J, Zhang R Q, Liang X L, Ma D S, Li R C, Wu J W. 2021. Tourmaline as an indicator for late−magmatic to hydrothermal fluid evolution of the Neoproterozoic Baotan tin deposit, South China[J]. Ore Geology Review, 139: 104504.

    [58]

    Zhang Z M, Dong X, Santosh M, Zhao G C. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet[J]. Gondwana Research, 25: 170−189.

    [59]

    Zhang Zebin, Tang Juxing, Tang Pan, Chen Guoliang, Zhang Zhongkun, Gao Xin, Yang Yang. 2019. The origin of the mafic microgranular enclaves from Jiama porphyry Cu polymetallic deposit, Tibet: Implications for magma mixing/mingling and mineralization[J]. Acta Petrologica Sinica, 35(3): 934−952 (in Chinese with English abstract).

    [60]

    Zhang Zhongkun, Lin Bin, Chen Guoliang, Zou Bing, Yang Zhengkun, Tang Pan, Gao Xin, Qi Jing, Li Faqiao, Gao Futai, Jiao Haijun, Sun Jianjun, Li Yajun, Su Wei. 2021. The diagenesis−mineralization−structure coupling relationship of South−Pit skarn thick ore body in the Jiama super large−sized deposit, Tibet[J]. Geology in China, 48(6): 1804−1817 (in Chinese with English abstract).

    [61]

    Zhao X Y, Yang Z S, Zheng Y C, Liu Y C, Tian S H, Fu Q. 2015. Geology and genesis of the post−collisional porphyry–skarn deposit at Bangpu, Tibet[J]. Ore Geology Reviews, 70: 486−509. doi: 10.1016/j.oregeorev.2014.09.014

    [62]

    Zheng W B, Tang J X, Zhong K H, Ying L J, Leng Q F, Ding S, Lin B. 2016. Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China[J]. Ore Geology Reviews, 74: 151−169. doi: 10.1016/j.oregeorev.2015.11.024

    [63]

    Zhong Kanghui, Li Lei, Zhou Huiwen, Bai Jingguo, Li Wei, Zhong Wanting, Zhang Yongqiang, Lin Jiqing, Zheng Fanshi, Huang Xiaoyu, Lu Biao, Lei Bo. 2012. Features of Jiama (Gyama)−Kajunguo thrust−gliding nappe tectonic[J]. Acta Geoscientica Sinica, 33(4): 411−423 (in Chinese with English abstract).

    [64]

    Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre−Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23: 1429−1454. doi: 10.1016/j.gr.2012.02.002

    [65] 凤永刚, 梁婷, 王梦玺, 张泽, 郝媛媛, 岑炬标, 董紫. 2022. 东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义[J]. 岩石学报, 38(2): 428−444. doi: 10.18654/1000-0569/2022.02.08
    [66] 郭佳, 严海波, 凌明星, 章荣清. 2020. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示[J]. 岩石学报, 36(1): 171−183. doi: 10.18654/1000-0569/2020.01.16
    [67] 郭文铂, 郑文宝, 唐菊兴, 应立娟, 王艺云, 林彬. 2014. 西藏甲玛铜多金属矿床流体、成矿物质来源的地球化学约束[J]. 中国地质, 41(2): 510−528. doi: 10.3969/j.issn.1000-3657.2014.02.015
    [68] 侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 25(4): 337−358. doi: 10.3969/j.issn.0258-7106.2006.04.001
    [69] 李真真, 秦克章, 裴斌, 赵俊兴, 施睿哲, 赵泽龙, 韩日. 2020. 大兴安岭南段白音查干Sn−Ag−Zn−Pb矿床电气石矿物学特征及对岩浆−热液演化过程的启示[J]. 岩石学报, 36(12): 3797−3812. doi: 10.18654/1000-0569/2020.12.14
    [70] 林彬, 唐菊兴, 唐攀, 郑文宝, Greg Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型—以西藏甲玛超大型矿床为例[J]. 矿床地质, 38(6): 1204−1222.
    [71] 林彬, 唐菊兴, 唐攀, 周敖日格勒, 孙渺, 祁婧, 陈国良, 张忠坤, 张泽斌, 吴纯能, 田志超, 代晶晶, 杨征坤, 姚晓峰. 2021. 青藏高原甲玛斑岩成矿系统首例3000 m科学深钻的初步认识[J]. 矿床地质, 40(6): 1119−1134.
    [72] 唐菊兴, 邓世林, 郑文宝, 应立娟, 汪雄武, 钟康惠, 秦志鹏, 丁枫, 黎枫佶, 唐晓倩, 钟裕峰, 彭慧娟. 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 30(2): 179−196. doi: 10.3969/j.issn.0258-7106.2011.02.002
    [73] 唐菊兴, 多吉, 刘鸿飞, 郎兴海, 张金树, 郑文宝, 应立娟. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393−410.
    [74] 唐菊兴, 王登红, 汪雄武, 钟康惠, 应立娟, 郑文宝, 黎枫佶, 郭娜, 秦志鹏, 姚晓峰, 李磊, 王友, 唐晓倩, 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J]. 地球学报, 31(4): 495−506.
    [75] 唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩−矽卡岩−浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J]. 地球学报, 38(5): 571−613. doi: 10.3975/cagsb.2017.05.02
    [76] 唐攀, 陈毓川, 唐菊兴, 郑文宝, 冷秋锋, 林彬 方向. 2016. 西藏甲玛斑岩矿床系统黑云母特征及其地质意义[J]. 矿床地质, 35(4): 846−866.
    [77] 唐攀, 唐菊兴, 郑文宝, 冷秋锋, 林彬, 唐晓倩, 王豪, 高昕, 张泽斌, 周洪兵. 2017. 西藏甲玛铜多金属矿床铜山矿体为manto型矿体?[J]. 地球学报, 38(5): 829−838. doi: 10.3975/cagsb.2017.05.21
    [78] 王登红, 唐菊兴, 应立娟, 林彬, 丁帅. 2011. 西藏甲玛矿区角岩特征及其对深部找矿的意义[J]. 岩石学报, 27(7): 2103−2108.
    [79] 王崴平, 唐菊兴. 2011. 西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测[J]. 矿床地质, 30(6): 1017−1038. doi: 10.3969/j.issn.0258-7106.2011.06.004
    [80] 王艺云, 郑文宝, 陈毓川, 唐菊兴, 冷秋锋, 唐攀, 丁帅, 周云. 2017. 西藏甲玛斑岩成矿系统铜钼元素分离机制探讨[J]. 岩石学报, 33(2): 495−514.
    [81] 薛建玲, 许虹, 高一鸣, 黄静宜. 2006. 辽宁后仙峪硼矿床中电气石的矿物学特征及其成岩成矿意义[J]. 中国地质, 33(6): 1386−1392. doi: 10.3969/j.issn.1000-3657.2006.06.023
    [82] 姚晓峰, 叶天竺, 唐菊兴, 郑文宝, 丁帅, 李永胜, 甄世民. 2014. 西藏甲玛矿床硅钙界面对矽卡岩成岩及多金属成矿的影响[J]. 中国地质, 41(5): 1577−1593. doi: 10.3969/j.issn.1000-3657.2014.05.014
    [83] 应立娟, 唐菊兴, 王登红, 郑文宝, 秦志鹏, 张丽. 2011. 西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系[J]. 岩石学报, 27(7): 2095−2102.
    [84] 应立娟, 王登红, 唐菊兴, 畅哲生, 屈文俊, 郑文宝, 王焕. 2010. 西藏甲玛铜多金属矿辉钼矿Re−Os定年及其成矿意义[J]. 地质学报, 84(8): 1165−1174.
    [85] 于淼, 丰成友, 刘洪川, 李定武, 赵一鸣, 李大新, 刘建楠, 王辉. 2016. 青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J]. 矿床地质, 35(1): 69−84.
    [86] 张泽斌, 唐菊兴, 唐攀, 陈国良, 张忠坤, 高昕, 杨阳. 2019. 西藏甲玛铜多金属矿床暗色包体岩石成因: 对岩浆混合和成矿的启示[J]. 岩石学报, 35(3): 934−952.
    [87] 张忠坤, 林彬, 陈国良, 邹兵, 杨征坤, 唐攀, 高昕, 祁婧, 李发桥, 高福太, 焦海军, 孙建军, 李亚军, 苏伟. 2021. 西藏甲玛超大型矿床南坑厚大矽卡岩矿体的成岩−成矿−构造耦合关系[J]. 中国地质, 48(6): 1804−1817. doi: 10.12029/gc20210612
    [88] 钟康惠, 李磊, 周慧文, 白景国, 李伟, 钟婉婷, 张勇强, 蔺吉庆, 郑凡石, 黄小雨, 陆彪, 雷波. 2012. 西藏甲玛−卡军果推−滑覆构造系特征[J]. 地球学报, 33: 411−423. doi: 10.3975/cagsb.2012.04.03
  • 期刊类型引用(0)

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  2701
  • HTML全文浏览量:  876
  • PDF下载量:  548
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-09-10
  • 修回日期:  2022-10-27
  • 刊出日期:  2024-07-24

目录

/

返回文章
返回
x 关闭 永久关闭