高级检索

    全球淡色花岗岩的地球化学特征及其与稀有金属的成矿联系

    赵晨辉, 王登红, 王成辉, 刘善宝, 秦锦华, 诸泽颖, 赵云彪, 刘泽, 刘金宇, 李阳, 刘新星

    赵晨辉,王登红,王成辉,刘善宝,秦锦华,诸泽颖,赵云彪,刘泽,刘金宇,李阳,刘新星. 2024. 全球淡色花岗岩的地球化学特征及其与稀有金属的成矿联系[J]. 中国地质, 51(5): 1601−1616. DOI: 10.12029/gc20230309006
    引用本文: 赵晨辉,王登红,王成辉,刘善宝,秦锦华,诸泽颖,赵云彪,刘泽,刘金宇,李阳,刘新星. 2024. 全球淡色花岗岩的地球化学特征及其与稀有金属的成矿联系[J]. 中国地质, 51(5): 1601−1616. DOI: 10.12029/gc20230309006
    Zhao Chenhui, Wang Denghong, Wang Chenghui, Liu Shanbao, Qin Jinhua, Zhu Zeying, Zhao Yunbiao, Liu Ze, Liu Jinyu, Li Yang, Liu Xinxing. 2024. Geochemical characteristics of global leucogranite and their mineralized relationship with rare metals[J]. Geology in China, 51(5): 1601−1616. DOI: 10.12029/gc20230309006
    Citation: Zhao Chenhui, Wang Denghong, Wang Chenghui, Liu Shanbao, Qin Jinhua, Zhu Zeying, Zhao Yunbiao, Liu Ze, Liu Jinyu, Li Yang, Liu Xinxing. 2024. Geochemical characteristics of global leucogranite and their mineralized relationship with rare metals[J]. Geology in China, 51(5): 1601−1616. DOI: 10.12029/gc20230309006

    全球淡色花岗岩的地球化学特征及其与稀有金属的成矿联系

    基金项目: 国家重点研发计划项目(2021YFC2901900、2021YFC2901905)、中国地质调查项目(DD20221684、DD20190379、DD20221695)和国家自然科学青年基金项目(41902037)联合资助。
    详细信息
      作者简介:

      赵晨辉,男,1996年生,博士生,矿产普查与勘探专业;E-mail: GEOChenhui@163.com

      通讯作者:

      王登红,男,1967年生,研究员,主要从事矿产资源研究;E-mail: wangdenghong@vip.sina.com

    • 中图分类号: P618.6; P588.121; P597.3

    Geochemical characteristics of global leucogranite and their mineralized relationship with rare metals

    Funds: Supported by the projects of National Key Research and Development Program (No.2021YFC2901900, No.2021YFC2901905), China Geological Survey (No.DD20221684, No.DD20190379, No.DD20221695) and the National Natural Science Foundation of China (No.41902037).
    More Information
      Author Bio:

      ZHAO Chenhui, male, born in 1996, doctoral candidate, majors in the mineral resources prospecting and exploration; E-mail: GEOChenhui@163.com

      Corresponding author:

      WANG Denghong, male, born in 1967, researcher, mainly engaged in mineral resource; E-mail: wangdenghong@vip.sina.com.

    • 摘要:
      研究目的 

      近年来,淡色花岗岩成为岩石学和稀有金属成矿学研究的热点,但全球淡色花岗岩的时空分布特征尚不明确。本文旨在探讨全球淡色花岗岩的时空分布特征及其成矿专属性,进而指导勘查实践。

      研究方法 

      文章系统梳理了全球115个淡色花岗岩体1155组地球化学数据,并结合项目组在南岭、川西、藏南、阿尔泰等地的工作,对数据开展综合分析研究。

      研究结果 

      在成分上,淡色花岗岩的SiO2含量较全球花岗岩平均值高1%以上,发生稀有金属矿化的岩体稀土含量极低。在空间上,中西欧海西造山带淡色花岗岩的SiO2和ALK(Na2O+K2O)含量低于喜马拉雅淡色花岗岩,也低于中国西部淡色花岗岩,而中国西部淡色花岗岩的SiO2和ALK含量又低于中国东部的淡色花岗岩,中西欧和北美地区的淡色花岗岩富集P2O5;样品中Li、Be、Nb、Ta、Ga、Rb和Sn含量的最高平均值均出现在中西欧地区,W含量最高平均值出现在中国东部。在时间上,新生代淡色花岗岩的SiO2和ALK含量高于古生代,低于中生代;古生代淡色花岗岩富集P2O5;电气石是新元古代淡色花岗岩的一个重要矿物特征。

      结论 

      成矿的淡色花岗岩一般不含岩浆型石榴子石,A/CNK>1.2,与Sn–W–Nb–Ta成矿有关的淡色花岗岩的Rb/Sr>1,ΣREE>10×10−6,与Li–Sn–Nb–Ta–Be成矿有关的淡色花岗岩的Rb/Sr>1,ΣREE<10×10−6。相比之下,中国东部中生代淡色花岗岩演化程度最高,成矿潜力最好。

      创新点:

      中国东部中生代淡色花岗岩与全球其他地区相比演化程度更高,淡色花岗岩中石榴子石的含量、A/CNK值、Rb/Sr值及稀土元素含量可以作为成矿专属性的定量指标,有助于评价岩体的潜力。

      Abstract:

      This paper is the result of mineral exploration engineering.

      Objective 

      Recently, leucogranites have become a hot spot in the study of petrogenesis and rare metal metallogeny. However, the spatiotemporal distribution characteristics of global leucogranite are still unclear. For further prospecting of rare metals in China, it is essentially to clarify the spatiotemporal distribution of leucogranite and the metallogenic specialization between leucogranite and rare metal deposits.

      Methods 

      We collect 1155 geochemical data from 115 leucogranites worldwide, and combine with our recently achievements from the Nanling Region, Western Sichuan, Southern Tibet, and Altai.

      Results 

      In reference to the composition, this study reveals that the content of SiO2 in leucogranite is exceed 1% higher than the global average value of granite, while the REE content of the rocks with rare metal mineralization is extremely low. Spatially, the content of SiO2 and ALK (Na2O+K2O) of leucogranites in the Hercynian orogenic belt in Central and Western Europe are lower than those of the Himalayan leucogranites, as well as those of Western China. Meanwhile, the SiO2 and ALK content of leucogranite in Western China are lower than Eastern China. Both leucogranites in Central and Western Europe and North America are rich in P2O5. The highest values of Li, Be, Nb, Ta, Ga, Rb and Sn in the samples appear in Central and Western Europe, while the highest values of W present in eastern China. Cenozoic SiO2 and ALK content of leucogranite were higher than Paleozoic but lower than Mesozoic. Notablely, Paleozoic leucogranite are enriched in P2O5. Besides, tourmaline is a vital indicator of Neoproterozoic leucogranite.

      Conclusions 

      The mineralized leucogranite are generally lack of magmatic garnet. Those leucogranite with feature of A/CNK>1.2. Rb/Sr>1, ΣREE>10×10−6 are mostly related to Sn–W–Nb–Ta mineralization, while Rb/Sr>1, ΣREE<10×10−6 of leucogranite more akin to Li–Sn–Nb–Ta–Be mineralization. All the data indicate that the Mesozoic leucogranites in Eastern China are the most evolved leucogranites worldwide and the best mineralization potential.

      Highlights:

      The Mesozoic leucogranites in Eastern China have the highest degree of evolution compared with other regions; The content of garnet, A/CNK, Rb/Sr, and ΣREE of leucogranite can be used as quantitative indicators of metallogenic specialization to evaluate the potential of the leucogranite.

    • 图  1   淡色花岗岩样品点空间分布图(全球地形图来源www.ngdc.noaa.gov/mgg/global

      Figure  1.   Spatial distribution of leucogranite samples (Global topographic map is from www.ngdc.noaa.gov/mgg/global)

      图  2   不同地区淡色花岗岩主量元素哈克图解(数据来源同表1)

      Figure  2.   Harker diagram of the main elements of leucogranites in the different regions (Data source is the same as Table 1)

      图  3   不同时代淡色花岗岩主量元素哈克图解(数据来源同表1)

      Figure  3.   Harker diagram of the main elements of leucogranites in the different age (Data source same as Table 1)

      图  4   不同地区淡色花岗岩中稀有金属元素含量平均值变化曲线图

      地壳数据引自Rudnick and Gao (2014),其他数据来源同表1

      Figure  4.   Curve chart of average variation of rare metal elements in leucogranites of different regions

      The crustal data is quoted from Rudnick and Gao (2014); Other data from Table 1

      图  5   不同时代淡色花岗岩中稀有金属元素含量平均值变化曲线图

      地壳数据引自Rudnick and Gao (2014),其他数据来源同表1

      Figure  5.   Curve chart of average variation of rare metal elements in leucogranites from different ages

      The crustal data is quoted from Rudnick and Gao (2014); Other data are from Table 1

      图  6   全球淡色花岗岩Rb–Sr–Ba图解和(Nb+Zr+Ce+Y)–(Ba+Sr)–Rb图解

      数据来源同表1,S型和I型花岗岩的数据来自Chappell and White(1992

      Figure  6.   Diagrams of Rb–Sr–Ba and (Nb+Zr+Ce+Y)–(Ba+Sr)–Rb of global leucogranites

      Data source same as Table 1; The data of S−type and I−type granite from Chappell and White (1992)

      图  7   不同地区淡色花岗岩中Rb/Sr比值与稀有金属元素比值和稀土元素相关性图解(地壳数据引自Rudnick and Gao, 2014

      Figure  7.   Diagrams of Rb/Sr versus several rare metal element ratios and rare rare earth elements in leucogranites in the different regions (The crustal data from Rudnick and Gao, 2014)

      图  8   稀有金属元素的Rb/Sr–ΣREE判别图解

      Figure  8.   Discrimination diagram of Rb/Sr versus ΣREE in rare metal elements

      表  1   淡色花岗岩分布及岩石化学成分

      Table  1   Location and petrochemical composition of leucogranites

      地理位置 岩石化学成分平均值
      SiO2/% ALK/% A/
      CNK
      TiO2/% MgO/% P2O5/%
      全球花岗岩
      Le Maitre, 1976
      71.30 7.75 1.04 0.31 0.17 0.12
      中国花岗岩
      黎彤和饶纪龙, 1963
      71.27 7.87 1.05 0.25 0.80 0.16
      I−型花岗岩
      Chappell and White, 1992
      69.50 6.64 0.98 0.41 1.38 0.11
      S−型花岗岩
      Chappell and White, 1992
      70.91 6.60 1.17 0.44 1.24 0.15
      中国西部(n=633) 73.17 8.17 1.16 0.11 0.25 0.12
       西北(n=34) 74.91 8.33 1.08 0.05 0.16 0.12
       西南(n=599) 73.20 8.16 1.17 0.11 0.28 0.12
      中国东部(n=277) 74.22 8.31 1.15 0.07 0.14 0.11
       东北(n=39) 75.10 8.20 1.12 0.07 0.16 0.05
       华北(n=27) 74.95 8.78 1.11 0.03 0.08 0.07
       华东(n=135) 73.83 8.30 1.19 0.05 0.11 0.15
       中南(n=76) 74.19 8.19 1.13 0.13 0.19 0.07
      中西欧地区(n=134) 72.11 8.06 1.29 0.12 0.19 0.55
      北美地区(n=91) 74.02 7.91 1.27 0.08 0.64 0.39
      非洲(n=14) 74.34 7.44 1.20 0.09 0.19 0.03
      印度(n=2) 73.17 8.76 1.11 0.04 0.23 0.14
      日本(n=4) 74.15 8.35 1.34 0.12 0.34 0.20
      下载: 导出CSV

      表  2   淡色花岗岩时代及岩石化学成分

      Table  2   Age and petrochemical composition of leucogranites

      时代岩石化学成分平均值
      SiO2/%ALK/%A/CNKTiO2/%MgO/%P2O5/%
      新生代(n=518)73.358.151.150.110.270.11
      中生代(n=311)73.428.451.170.080.140.10
      古生代(n=243)73.048.101.250.100.300.41
      新元古代(n=81)75.367.581.250.060.190.19
      古元古代(n=2)73.508.281.200.050.140.17
      下载: 导出CSV

      表  3   不同地区淡色花岗岩中稀有金属元素含量平均值

      Table  3   Average content of rare metal elements in leucogranites in the different regions

      地理位置 稀有金属含量/10−6
      Li Be Nb Ta Zr Hf Ga Rb Sr Cs Th U W Sn
      地壳 17.0 1.9 8.0 0.7 132 3.7 16 49 320 0.7 5.6 1.3 1.0 1.7
      中国西部 166 27.8 12.1 3.0 58.5 2.4 24.1 321 109 25.2 8.9 6.1 3.3 17.9
      中国东部 1074 56.1 39.3 19.8 66.0 4.3 26.8 872 80 215 17.4 29.9 347 37.1
      北美地区 214 16.2 5.10 57.2 1.9 23.1 394 128 6.4 5.6 4.7 210 21.9
      中西欧地区 1848 59.5 49.2 74.7 58.4 3.1 40.7 1291 121 160 8.3 13.5 27 544
      非洲 57.5 17.1 77.8 21.5 189 97 18.5 4.0
      印度 2.0 39.0 23.0 190 310 5.5
      日本 3.2 1.35 32.2 124 157 2.3 4.0
       注:地壳数据引自Rudnick and Gao(2014),其他数据来源同表1
      下载: 导出CSV

      表  4   不同时代淡色花岗岩中稀有金属元素含量平均值

      Table  4   Average content of rare metal elements in leucogranites in the different ages

      时代 稀有金属含量/10−6
      Li Be Nb Ta Zr Hf Ga Rb Sr Cs Th U W Sn
      新生代 140 12.1 10.2 2.22 62.2 2.27 24.2 289 133 21.4 9.10 5.77 1.53 11.1
      中生代 924 81.5 36.0 18.1 63.9 4.11 27.8 803 85.3 194 15.7 26.1 271 41.5
      古生代 1278 58.3 34.4 41.7 55.2 2.94 31.9 887 96.4 128 9.00 24.3 87.7 359
      新元古代 198 1.45 20.7 7.63 52.2 2.59 20.9 458 31.0 35.9 8.76 31.4 10.6 42.1
      古元古代 2.65 33.0 1.80 214 35.5 7.00 9.00 4.35
       注:地壳数据引自Rudnick and Gao(2014),其他数据来源同表1
      下载: 导出CSV

      表  5   不同地区淡色花岗岩稀土元素含量及相关比值

      Table  5   Rare earth element content and related ratios of leucogranites in the different regions

      地理位置 REE/
      10−6
      LREE/
      10−6
      HREE/
      10−6
      LREE/
      HREE
      La/
      Yb
      δEu δCe
      地壳 125 92.9 32.3 2.88 10.50 0.87 1.03
      中国西部 82.8 57.9 24.9 3.33 19.32 0.61 1.03
      中国东部 147 90.2 57.0 2.05 16.80 0.34 1.01
      中西欧地区 64.2 48.2 16.0 19.20 17.40 0.66 1.35
      北美地区 53.0 32.0 21.0 3.52 16.34 0.38 1.61
       注:地壳数据引自Rudnick and Gao(2014),其他数据来源同表1
      下载: 导出CSV

      表  6   不同时代淡色花岗岩稀土元素含量及相关比值

      Table  6   Rare earth element content and related ratios of leucogranites in the different ages

      时代 REE/
      10−6
      LREE/
      10−6
      HREE/
      10−6
      LREE/
      HREE
      La/
      Yb
      δEu δCe
      新生代 86.89 64.97 21.92 3.96 22.16 0.59 1.01
      中生代 144.86 87.57 57.29 2.17 12.09 0.36 0.98
      古生代 65.64 40.14 25.50 12.04 13.93 0.47 1.38
      新元古代 43.58 23.62 19.96 1.15 6.55 0.14 0.15
       注:地壳数据引自Rudnick and Gao(2014),其他数据来源同表1
      下载: 导出CSV
    • [1]

      Braun I, Raith M, Kumar G R, Ravindra. 1996. Dehydration–melting phenomena in Leptynitic gneisses and the generation of leucogranites: A case study from the Kerala Khondalite Belt, Southern India[J]. Journal of Petrology, 37(6): 1285−1305. doi: 10.1093/petrology/37.6.1285

      [2]

      Breiter K, Ďurišová J, Hrstka T, Korbelová Z, Vaňková M, Galiová M V, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M. 2017. Assessment of magmatic vs. metasomatic processes in rare–metal granites: A case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe[J]. Lithos, 292–293: 198–217.

      [3]

      Bucholz C E. 2022. Coevolution of sedimentary and strongly peraluminous granite phosphorus records[J]. Earth and Planetary Science Letters, 596: 117795. doi: 10.1016/j.jpgl.2022.117795

      [4]

      Cao H W, Pei Q M, Santosh M, Li G M, Zhang L K, Zhang X F, Zhang Y H, Zou H, Dai Z W, Lin B, Tang L, Yu X. 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth–Science Reviews, 234: 104229.

      [5]

      Cawood P A, Martin E L, Murphy J B, Pisarevsky S A. 2021. Gondwana’s interlinked peripheral orogens[J]. Earth and Planetary Science Letters, 568: 117057. doi: 10.1016/j.jpgl.2021.117057

      [6]

      Chappell B W, White A J R. 1992. I– and S–type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1−26. doi: 10.1017/S0263593300007720

      [7]

      Chen B, Jahn B M, Wilde S, Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China petrogenesis and tectonic implications[J]. Tectonophysics, 328(1/2): 157−182.

      [8]

      Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W–Sn–Nb–Ta–bearing granites in the Nanling Range and their relationship to metallogengesis[J]. Geological Journal of China Universites, 14(4): 459−473 (in Chinese with English abstract).

      [9]

      Clarke, D B, Macdonald, M A, Reynolds, P H, Longstaffe, F J. 1993. Leucogranites from the eastern part of the South Mountain Batholith, Nova Scotia[J]. Journal of Petrology, 34(4): 653−679. doi: 10.1093/petrology/34.4.653

      [10]

      Čuneý M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz–lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn–Li–Ta–Nb–Be mineralization[J]. Economic Geology, 87: 1766−1794. doi: 10.2113/gsecongeo.87.7.1766

      [11]

      Fan Wenbo, Jiang Neng, Zhai Mingguo, Hu Jun. 2019. Phanerozoic garnet–bearing leucogranite in the northern margin of North China Craton: Characters, timing and preliminary petrogenesis study[J]. Acta Petrologica Sinica, 35(7): 2237−2258 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.18

      [12]

      Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid–absent versus fluid–fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39−42. doi: 10.1130/G38336.1

      [13]

      Gao L E, Zeng L S, Zhao L H, Gao J H, Shang Z. 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources[J]. China Geology, 4(1): 44−55. doi: 10.31035/cg2021009

      [14]

      Guo Sushu, Li Shuguang. 2007. Petrology and geochemical constraints on the origin of leucogranites[J]. Earth Science Frontiers, 14(6): 290−298 (in Chinese with English abstract).

      [15]

      Harrison T M, Oscar M L, Marty G. 1997. New insights into the origin of two contrasting Himalayan granite belts[J]. Geology, 25(10): 899−902. doi: 10.1130/0091-7613(1997)025<0899:NIITOO>2.3.CO;2

      [16]

      Hua Renmin, Zhang Wenlan, Chen Peirong, Wang Rucheng. 2003. Comparison in the characteristics, origin, and relation metallogeny between granites in Dajishan and Piaotang, Southern Jiangxi, China[J]. Geological Journal of China Universities, 9(4): 609−619 (in Chinese with English abstract).

      [17]

      Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H, Wang Y X. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 59(4): 171−198. doi: 10.1016/S0024-4937(01)00066-4

      [18]

      Kawakami T, Kobayashi T. 2006. Trace element composition and degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan: Implications for the source region of tourmaline[J]. Gondwana Research, 9: 176−188. doi: 10.1016/j.gr.2005.06.009

      [19]

      Le Maitre. 1976. The chemical variability of some common igneous rocks[J]. Journal of Petrology, 17(4): 589−637. doi: 10.1093/petrology/17.4.589

      [20]

      Le Maitre. 2002. Igneous rocks: A Classification and Glossary of Terms[M]. Cambridge: Cambridge University Press, 1–104.

      [21]

      Linnen R L, Čuneý M. 2005. Granite–related rare–element deposits and experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. In: Linnen R L, Samson I M, eds. Rare–Element Geochemistry and Mineral Deposits[J]. Geol Ass Can GAC Short Course Notes, 17: 45−67.

      [22]

      Li Jie, Huang Xiaolong. 2013. Mechanism of Ta–Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China[J]. Acta Petrologica Sinica, 29(12): 4311−4322 (in Chinese with English abstract).

      [23]

      Li Tong, Yao Jilong. 1963. The average chemical composition of igneous rocks in China[J]. Acta Geologica Sinica, 43(3): 271−280 (in Chinese with English abstract).

      [24]

      Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y, Wingate M T D. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research, 122(1/4): 45−83.

      [25]

      Liu Hongtao, Zhai Mingguo, Liu Jianming, Sun Shihua. 2002. The Mesozoic granitoids in the northern marginal region of North China Craton: Evolution from post–collisional to anorogenic settings[J]. Acta Petrologica Sinica, 18(4): 433−448 (in Chinese with English abstract).

      [26]

      Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Elemental Geochemistry[M]. Beijing: Science Press, 1–204 (in Chinese).

      [27]

      Liu Zhichao. 2013. Geochoronology and Petrogenesis of the Ramba Leucogranite, Tethyan Himalya, Tibet[D]. Beijing: Universtiy of Chinese Academy of Sciences, 1–114 (in Chinese with English abstract).

      [28]

      Moghazi A M, Hassanen M A, Mohamed F H, Ali S. 2004. Late Neoproterozoic strongly peraluminous leucogranites, South Eastern Desert, Egypt: Petrogenesis and geodynamic significance[J]. Mineralogy and Petrology, 81(1/2): 19−41.

      [29]

      Mohamed F H, Hassanen M A. 1997. Geochemistry and petrogenesis of Sikait leucogranite, Egypt: An example of S–type granite in a metapelitic sequence[J]. Geologische Rundschau, 86(1): 81−92. doi: 10.1007/s005310050123

      [30]

      Murphy M A, Yin A, Kapp P, Harrison T M, Manning C E, Ryerson F J, Ding L, Guo J H. 2002. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 114: 428−447. doi: 10.1130/0016-7606(2002)114<0428:SEOTGM>2.0.CO;2

      [31]

      Nabelek P I, Bartlett C D. 1998. Petrologic and geochemical links between the post–collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 45(1/4): 71−85.

      [32]

      Nabelek P I, Liu M. 1999. Leucogranites in the Black Hills of South Dakota: The consequence of shear heating during continental collision[J]. Geology, 27(6): 523−526. doi: 10.1130/0091-7613(1999)027<0523:LITBHO>2.3.CO;2

      [33]

      Qin Jinhua, Wang Denghong, Wang Yan, Guo Zhiqiang, Liu Shanbao, Huang Fan, Zhao Ruyi. 2024. Metallogenic law and exploration prospect of the middle part of Nanling metallogeny belt[J]. Geology in China, 51(4): 1095−1122 (in Chinese with English abstract).

      [34]

      Raimbault L, Cuney M, Azencott C, Duthou J, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 90(3): 548−576. doi: 10.2113/gsecongeo.90.3.548

      [35]

      Romer R L, Kroner U, Schmidt C, Legler C. 2022. Mobilization of tin during continental subduction–accretion processes[J]. Geology, 50: 1361−1365.

      [36]

      Rub A K, Stemprok M, Rub M G. 1998. Tantalum mineralization in the apical part of the Cínovec (Zinnwald) granite stock[J]. Mineral Petrology, 63: 199−222. doi: 10.1007/BF01164151

      [37]

      Rudnick R L, Gao S. 2014. Composition of the Continental Crust[M]. Treatise on Geochemistry, 43.

      [38]

      Shen Xiaoming, Zhang Haixiang, Ma Lin. 2013. Discovery of the Late Carboniferous leucogranite in the Southern Altay Range and its tectonic implications[J]. Geotectonica et Metallogenia, 37(4): 721−729 (in Chinese with English abstract).

      [39]

      Sun Y, Gao R H, Li Z W, Wang A D, Han R, Xi Y F, Liu J G. 2022. Composition and evolution of continental crust at orogenic belts: Constraints from a 3–D crustal model of Southeast China[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB025057. doi: 10.1029/2022JB025057

      [40]

      Sylvester P J. 1998. Post–collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3

      [41]

      Wang Chenhui, Wang Denghong, Sun Yan, Zhao Zhi, Li Peng, Chen Lei, Li Jiankang, Zhou Fangchun, Yu Yang, Liu Shanbao, Lu Lei, Liu Xinxing, Zhao Ting, Yang Yueqing, Wang Gang, Chen Chen, Chen Zhenyu, Peng Linlin, Chen Binfeng, Wen Chunhua, Feng Wenjie, Huang xinpeng, Cao Shenghua, Leng Shuangliang, Fan Xiyin, Zhou Hui, Huang Huagu, Dang Xiaoliang, Huang Zhibiao, Huang Hongxin. 2022. Investigation and Research Progress of Rare and Rare Earth Minerals in Key Ore–concentrated Areas of South China[M]. Beijing: Science Press, 1–357 (in Chinese).

      [42]

      Wang Denghong, Chen Zhenyu, Haung Fan, Wang Chenghui, Zhao Zhi, Chen Zhenghui, Zhao Zheng, Liu Xinxing. 2014. Disscusion on metallogenic specialization of the magmatic rocks and related issues in the Nanling Region[J]. Geotectonica et Metallogenia, 38(2): 230−238 (in Chinese with English abstract).

      [43]

      Wang Denghong, Dai Hongzhang, Yu Yang, Liu Lijun, Dai Jingjing, Liu Shanbao, Xiong Xin, Wang Yuxian, Fu Xiaofang, Hao Xuefeng, Yang Rong, Pan Meng, Qin Yan, Wang Chenghui, Hou Jianglong, Yuan Linping, Wang Wei, Tang Qi, Feng Yonglai, Rao Kuiyuan, Luo Guanghua, Tian Shihong, Zhao Yue. 2021. Theory, Method and Practice of Investigation and Evaluation of Large Lithium Resource Base: Example for Jiajika Large Lithium Mine in West Sichuan[M]. Beijing: Science Press, 1–458 (in Chinese).

      [44]

      Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743−764 (in Chinese with English abstract).

      [45]

      Wu F Y, Sun D Y, Jahn B M, Wilde S. 2004. A Jurassic garnet–bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 23(5): 731–744, 731–744.

      [46]

      Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015 Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1–36 (in Chinese with English abstract).

      [47]

      Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60: 1201−1219. doi: 10.1007/s11430-016-5139-1

      [48]

      van de Flierdt T, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H. 2003. Lower crustal melting and the role of open–system processes in the genesis of syn–orogenic quartz diorite–granite–leucogranite associations constraints from Sr–Nd–O isotopes from the Bandombaai Complex, Namibia[J]. Lithos, 67: 205−226. doi: 10.1016/S0024-4937(03)00016-1

      [49]

      Wei S D, Liu H, Zhao J H. 2018. Tectonic evolution of the western Jiangnan Orogen Constraints from the Neoproterozoic igneous rocks in the Fanjingshan region, South China[J]. Precambrian Research, 318: 89−102. doi: 10.1016/j.precamres.2018.10.006

      [50]

      Xiang L, Wang R C, Romer R L, Che X D, Hu H, Xie L, Tian E N. 2020. Neoproterozoic Nb–Ta–W–Sn bearing tourmaline leucogranite in the western part of Jiangnan Orogen: Implications for episodic mineralization in South China[J]. Lithos, 360–361: 105450.

      [51]

      Yao J L, Shu L S, Santosh M., Zhao G C. 2014. Neoproterozoic arc–related mafic–ultramafic rocks and syn–collision granite from the western segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 243: 39−62. doi: 10.1016/j.precamres.2013.12.027

      [52]

      Yuan Zhongxin, Bai Ge, Yang Yueqing. 1987. A discussion on petrogenesis of rare metal granite[J]. Mineral Deposit, 6(1): 88−96 (in Chinese with English abstract).

      [53]

      Zeng Lingsen, Gao Li’e. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 33(5): 1420−1444 (in Chinese with English abstract).

      [54]

      Zhao Zhi, Wang Denghong, Wang Chenghui, Wang Zhen, Zou Xinyong, Feng Wenjie, Zhou hui, Huang Xinpeng, Huang Huagu. 2019. Progress in prospecting and research of ion– adsorption type REE deposits[J]. Acta Geologica Sinica, 93(6): 1454−1465 (in Chinese with English abstract).

      [55]

      Zhu Xiaohui, Zhu Tao, Zhang Xin, Xi Rengang, Meng Yong, Wang Kai, 2018. Petrogenesis and geological implications of Late Carboniferous leucogranites in Harlik Area, Eastern Tianshan[J]. Earth Science, 43(12): 4443–4458 (in Chinese with English abstract).

      [56] 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 14(4): 459−473. doi: 10.3969/j.issn.1006-7493.2008.04.001
      [57] 范文博, 姜能, 翟明国, 胡俊. 2019. 华北克拉通北缘显生宙含石榴石淡色花岗岩: 特征、时代及成因初探[J]. 岩石学报, 35(7): 2237−2258. doi: 10.18654/1000-0569/2019.07.18
      [58] 郭素淑, 李曙光. 2007. 淡色花岗岩的岩石学和地球化学特征及其成因[J]. 地学前缘, 14(6): 290−298. doi: 10.3321/j.issn:1005-2321.2007.06.036
      [59] 华仁民, 张文兰, 陈培荣, 王汝成. 2003. 赣南大吉山与漂塘花岗岩及有关成矿作用特征对比[J]. 高校地质学报, 9(4): 609−619. doi: 10.3969/j.issn.1006-7493.2003.04.013
      [60] 李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta–Nb富集机制[J]. 岩石学报, 29(12): 4311−4322.
      [61] 黎彤, 饶纪龙. 1963. 中国岩浆岩的平均化学成分[J]. 地质学报, 43(3): 271−280.
      [62] 刘红涛, 翟明国, 刘建明, 孙世华. 2002. 华北克拉通北缘中生代花岗岩: 从碰撞后到非造山[J]. 岩石学报, 18(4): 433−448. doi: 10.3969/j.issn.1000-0569.2002.04.001
      [63] 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 1–517.
      [64] 刘志超. 2013. 喜马拉雅然巴淡色花岗岩时代与成因[D]. 北京: 中国科学院大学, 1–114.
      [65] 秦锦华, 王登红, 王岩, 郭志强, 刘善宝, 黄凡, 赵如意. 2024. 南岭成矿带中段成矿规律与找矿前景分析[J]. 中国地质, 51(4): 1095−1122.
      [66] 沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义[J]. 大地构造与成矿学, 37(4): 721−729.
      [67] 王成辉, 王登红, 孙艳, 赵芝, 李鹏, 陈雷, 李健康, 周芳春, 于扬, 刘善宝, 陆蕾, 刘新星, 赵汀, 杨岳清, 王刚, 陈晨, 陈振宇, 彭琳琳, 陈斌峰, 文春华, 冯文杰, 黄新鹏, 曹圣华, 冷双梁, 樊锡银, 周辉, 黄华谷, 党晓亮, 黄志飚, 黄鸿新. 2022. 华南重点矿集区稀有和稀土矿产调查研究进展[M]. 北京: 科学出版社, 1–357.
      [68] 王登红, 陈振宇, 黄凡, 王成辉, 赵芝, 陈郑辉, 赵正, 刘新星. 2014. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 38(2): 230−238.
      [69] 王登红, 代鸿章, 于扬, 刘丽君, 代晶晶, 刘善宝, 熊欣, 王裕先, 付小芳, 郝雪峰, 杨荣, 潘蒙, 秦燕, 王成辉, 侯江龙, 袁蔺平, 王伟, 唐屹, 冯永来, 饶魁元, 罗光华, 田世洪, 赵悦. 2021. 大型锂资源基地调查评价的理论方法与实践—以川西甲基卡超大型锂矿为例[M]. 北京: 科学出版社, 1–458.
      [70] 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743−764. doi: 10.12090/j.issn.1006-6616.20222811
      [71] 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1−36.
      [72] 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.
      [73] 袁忠信, 白鸽, 杨岳清. 1987. 稀有金属花岗岩型矿床成因讨论[J]. 矿床地质, 6(1): 88−96.
      [74] 曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 33(5): 1420−1444.
      [75] 赵芝, 王登红, 王成辉, 王瑧, 邹新勇, 冯文杰, 周辉, 黄新鹏, 黄华谷. 2019. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 93(6): 1454−1465. doi: 10.3969/j.issn.0001-5717.2019.06.021
      [76] 朱小辉, 朱涛, 张欣, 奚任刚, 孟勇, 王凯, 2018. 东天山哈尔里克地区晚石炭世淡色淡色花岗岩成因及其地质意义[J]. 地球科学, 43(12): 4443–4458.
    • 期刊类型引用(1)

      1. 许阳阳. 盾构穿越岩溶和土洞发育区地质安全施工技术研究. 建筑机械. 2024(12): 203-207+212+8 . 百度学术

      其他类型引用(0)

    图(8)  /  表(6)
    计量
    • 文章访问数:  2068
    • HTML全文浏览量:  686
    • PDF下载量:  741
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-03-08
    • 修回日期:  2023-05-16
    • 刊出日期:  2024-09-24

    目录

      /

      返回文章
      返回
      x 关闭 永久关闭