Metallogenic law and exploration prospect of the middle part of Nanling metallogeny belt
-
摘要:研究目的
南岭中段是中国重要的有色金属、能源矿产、非金属和水气矿产资源基地,成矿地质条件优越、矿产类型丰富、成矿作用类型复杂,深入理解其成矿规律是开展区域成矿理论研究和实现找矿突破的关键。
研究方法本文基于前人丰硕的成果资料,对南岭成矿带中段成矿规律和找矿方向进行了总结分析。
研究结果此次研究明确了南岭中段主要控矿地质条件,厘定了区域两种构造格架体系的控矿作用;依据矿产资源特征,总结了成矿特征、规律及其演化,进一步探讨了区域岩浆演化和成矿潜力;整理出了南岭成矿带中亚带目前发育的50个矿种、872处矿产地和15种矿床类型,并探讨了主成岩作用特征、演化及其成矿潜力。
结论南岭中段找矿的主攻方向为:寻找接触带附近的铀矿、煤矿的滑覆构造、受变质和硫铁矿区风化型铁矿、有色金属组合的综合预测和寻找缺位类型,寻找新类型稀有、稀散矿和独立金矿,保护和开发伴生宝石矿。围绕着骑田岭及周边、乐昌—韶关—翁源远景区,有望实现钨锡钼铋铜铅锌铀稀土等矿产的找矿突破。
创新点:全面系统地总结分析了南岭成矿带中段成矿特征与成矿规律,探讨了能源矿产、黑色金属、有色金属、稀有稀散和贵金属以及宝玉石矿的找矿方向,并提出了骑田岭及周边和乐昌—韶关—翁源两个重要的远景区。
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveThe middle part of Nanling metallogeny belt, an important resource base of non–ferrous metal, energy minerals, non–metallic minerals, groundwater and gas minerals, has superb metallogenic geological conditions, abundant mineral types and complex mineralization types. In depth understanding of the metallogenic law is the key to carry out regional metallogenic theory research and to achieve prospecting breakthrough.
MethodsIn this paper, the metallogenic regularity and prospecting direction of the middle part of Nanling metallogenic belt are summarized and studied on the basis of the abundant previous data.
ResultsThe main ore–controlling geological conditions are identified and the two ore–controlling structure frameworks are determined in the middle part of Nanling metallogeny belt. Depending on the characteristics of mineral resources, the metallogenic characteristics, rules and evolution are summarized, and regional magmatic evolution and metallogenic potential are further discussed. Moreover, 50 minerals, 872 ore deposits and 15 deposit types developed in the middle part of Nanling metallogeny belt are sorted out, and the predominant magmatism characteristics, evolution and metallogenic potential are discussed.
ConclusionsThe prospecting of the middle part of Nanling metallogeny belt should be focused on: comprehensive prediction of U ore near the contact zone, sliding overburden structure of coal mine, metamorphic and weathering type Fe ore in pyrite mining areas, comprehensive prediction and exploration of missing types of non–ferrous metals, exploration new types of rare and scattered metals and independent Au ore, protection and exploitation the associated gem mine. Two important prospecting potential areas, which include Qitianling and its surrounding, and Lechang–Shaoguan–Wengyuan, are proposed for the key region for prospecting breakthrough of tungsten, tin, molybdenum, bismuth, copper, zinc, uranium, rare earth, etc.
Highlights:The metallogenic characteristics and law of the middle part of Nanling metallogenic belt are summarized comprehensively and systematically. The prospecting directions of energy minerals, ferrous metals, non–ferrous metals, rare and rare metals, precious metals and gem are discussed. Two important prospective areas, Qitianling and its surroundings and Lecchang–Shaoguan–Wengyuan, are put forward.
-
1. 引 言
世界卫生组织及中国饮用水标准规定砷浓度不可超过10 μg/L(WHO, 2017)。长期饮用高砷地下水可导致慢性砷中毒及皮肤癌等疾病,全球有70多个国家,超过1.5亿人的饮用水安全受到高砷地下水的威胁(韩双宝等,2010;郭华明等,2013;Wang et al., 2020;曹文庚等,2022; 张卓等,2023a)。沉积物中的固相砷是地下水中砷的主要来源。多数岩石中砷含量范围为0.5~2.5 μg/g(Mandal and Suzuki, 2002),松散沉积物中砷的含量范围通常为3~10 μg/g(Smedley and Kinniburgh, 2002; 何锦等,2020;马雪梅等,2020),富含砷矿物的沉积物中砷含量可达170 μg/g(Cook et al., 1995)。研究含水层中砷的迁移转化,除了查明沉积物总固态砷的含量,还需分析砷在沉积物中的赋存形态(van Herreweghe et al., 2003;朱丹尼等,2021;Drahota et al., 2021)。沉积物中固相砷赋存形态的微小差别可能引起地下水砷浓度的显著差异(Meharg et al., 2006; 张卓等,2023b)。分步提取实验是获取沉积物中砷赋存状态信息的主要手段。在之前的研究中,已经在分步提取过程中研究了萃取剂溶液的最优选择性(Paul et al., 2009;Eiche et al., 2010)。国外学者就河流三角洲沉积物中砷的赋存形态开展了大量研究。Eiche et al.(2008)研究表明,磷酸盐提取释放的强吸附砷是越南红河三角洲沉积物中砷的主要赋存形态。印度孟加拉三角洲平原的含水层中也发现了类似的结果(Neidhardt et al., 2014)。然而在内陆盆地,有关沉积物砷赋存形态的系统性研究相对缺乏。
河套盆地是中国西北地区典型的内陆盆地,地下水As浓度高达857 μg/L,远超中国饮用水标准(Guo et al., 2008)。因此,本研究选取河套盆地,通过刻画岩性与地球化学特征和开展砷的分步提取与解吸附实验,对比分析低砷和高砷含水层中沉积物砷的赋存形态与吸附特征。研究结果将有助于查明内陆盆地高砷地下水的形成机理,为合理开发可饮用地下水提供科学依据。
2. 研究区概况
河套盆地地处阴山隆起与鄂尔多斯台地之间,西界和北界均为狼山山前断裂,南界为鄂尔多斯北缘断裂,东界为乌梁素海断裂。研究区位于河套盆地西北侧,地处狼山山脉与主排干渠之间,包括山前冲洪积扇区和南部平原区,地理坐标为40°55′31″N~41°08′15″N,106°46′30″E~107°03′28″E(图1)。受沉积条件制约,研究区含水层具有明显的分带性。山前冲洪积扇区含水层沉积物主要由中砂、细砂组成,黏土在其中所占比重小于5%;平原区含水层沉积物主要由细砂、粉砂、粉质黏土和偶有泥炭夹层的淤泥质黏土组成,粉土和不同种类的黏土是其中的主要组成部分。
研究区浅层地下水受到大气降雨入渗补给、灌溉水补给和渠水的侧渗补给,深层地下水受到山前裂隙水的侧向补给和浅层地下水的垂向入渗。浅层地下水的排泄途径是蒸发作用、人工抽取、流入排干沟和垂向入渗到深层地下水,深层地下水的排泄路径是农业开采。原来研究区地下水流向大体是由西北向东南,但过度开采导致地下水流向逐渐转变为山前冲洪积扇由北向南、平原区由南向北的流动方向。地下水水化学类型受地势地貌、气候条件影响明显,具有显著的差异性。浅层地下水受强烈蒸发运移影响,水化学类型有HCO3−(Cl)−Na、Cl−HCO3−Na·Mg和Cl−SO4(HCO3)−Na·Mg型。深层地下水由山前冲洪积扇的Cl−HCO3−Ca·Mg型转变为平原区的Cl−Na型。高砷地下水主要分布在平原区(Zhang et al., 2020)。
3. 材料与方法
3.1 沉积物样品采集与测试
本研究从钻孔K02和K01中分别取出25和26个沉积物样品(图1)。其中,K2钻孔位于山前冲洪积扇区,坐标为41°01′07.37″N、106°57′41.41″E,钻孔深度约为80 m;K1钻孔位于平原区,位置坐标为41°00′13.73″N、106°58′16.85″E,钻孔深度约为81 m。获取的沉积物去掉外层沉积物后,马上用锡箔纸包裹,密封在装有纯N2(> 99.999%)的无菌塑料袋中,尽可能减少与O2的接触,并在−20℃的条件下保存。带回到实验室后,样品分装为两份,一份储存于−20℃的冰箱中,另一份进行冷冻干燥。
在色度分析和含水率测试之前,−20 ℃条件下保存的样品放入厌氧箱解冻。色度分析采用光谱色度计(CM-700d,Konica Minolta),测试之前对光谱色度计进行白板校正和零点校正。测试过程中保证切面平整,并在切口表面铺上一层高净度聚乙烯薄膜,每个样品测试3次。测试结束后计算出530 nm和520 nm的光谱反射差(R530-520),该差值能够指示沉积物的氧化还原环境(Horneman et al., 2004)。含水率测试采用通用的烘干法,用铝盒准确称取烘干前的原状土样质量,放入105℃恒温干燥箱中烘干后放入干燥器冷却,准确称量烘干后的土样质量,通过计算得出含水率。
沉积物电导率和pH的测量采用Bélanger and VanRees(2007)的方法。冷冻干燥后的沉积物与去离子水以1∶5的比例置于PE离心管中,25℃状态下以150 rpm转速震荡1 h。震荡完毕后,将离心管置于离心机中以5000 rpm转速离心20 min并取上清液用0.22 μm纤维滤膜过滤。所得部分滤液通过电导率仪(DDS-307A, SHKY)进行电导率的检测,所得电导率值可以反映出沉积物的可溶性组分含量。沉积物样品与超纯水以1∶2.5比例充分混合后,摇匀,静置1 h使用pH检测仪(HI 8424,HANNA)对其进行pH测定。
沉积物样品中的主量和微量元素的测定采用手持便携式XRF仪(XL3t800, Thermo Niton)进行测定,测试元素主要包括Ca、Sr、As、Fe和Mn。测试之前将样品冷冻干燥,并研磨至200目,取适量于专用测量杯中,压实后放置在手持XRF仪光源处,每个样品测试3次。2个标准物质(GBW07303,GBW07305)用于确保数据的准确性,测试偏差均小于20%,其中As元素的测试偏差均小于5%。
3.2 室内实验
3.2.1 分步提取实验
为查明沉积物中砷的赋存状态,本研究开展了分步提取实验(Sequential extraction procedure,SEP)。分步提取方法参照Eiche et al.(2008, 2010)的研究,该提取方法也是基于Keon et al.(2001)和Wenzel et al.(2001)等研究的改进(表1)。每个新鲜沉积物样称取0.5 g,放入离心管中,加入适量的提取剂。由于分步提取后提取液盐度较高,需稀释测试,这就要求测试仪器需要较低的检出限和较高的分析精度。ICP−MS的分析精度为±3.0%,检出限为0.01 μg/L,能够满足测试要求。其中分步提取第六步(F6)的提取液中含有高浓度的HF,会损坏仪器影响测试精度。因此,F6的提取液在测试之前,需要在电热板加热进行赶酸处理。
表 1 分步提取实验具体步骤Table 1. Sequential extraction procedure步骤 目标物 提取剂 条件 F1 弱吸附态砷 0.05 mol/L (NH4)2SO4 25 mL,25℃,4 h,重复一次,水洗一次 F2 强吸附态砷 0.5 mol/L NaH2PO4 40 mL,25℃,16 h及24 h各一次,每个时间段重复一次,水洗一次 F3 与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷 1 mol/L HCl 40 mL,25℃,1 h,重复一次,水洗一次 F4 与无定形态铁氧化物或氢氧化物共存的砷 0.2 mol/L NH4H2C2O3 40 mL,25℃,2 h,pH=3,黑暗条件下,重复一次,水洗一次 F5 与结晶态铁氧化物或氢氧化物
共存的砷0.5 mol/L NaC6H8O7
1 mol/L NaHCO3,Na2S2O4XH2O35 mL NaC6H8O7+2.5 mL NaHCO3(加热至85℃),加0.5 g Na2S2O4XH2O,15 min在85℃,重复一次,水洗一次 F6 与硅酸盐有关的砷 10 mol/L HF,H3BO3 40 mL,25℃,1 h、24 h、16 h后各加5 g硼酸,每个时间段重复一次,热水洗一次 F7 含砷硫化物,与硫化物和有机质
共沉淀的砷16 mol/L HNO3,30% H2O2 先加入10 mL HNO3,反应过后加入多次30%过氧化氢,加热,冷却后稀释到100 mL,离心、过滤、测试 3.2.2 解吸附实验
本研究从钻孔K02和K01各选取一个典型沉积物进行pH和反离子效应对砷的解吸附影响的批实验。该实验主要包括三部分内容:解吸附动力学实验、pH对解吸附影响的实验、反离子效应(Na/Ca0.5(M/M))对砷解吸附影响的实验。
(1)解吸附动力学实验
为查明砷解吸附达到平衡的时间,本研究开展了解吸附动力学实验。分别称取0.6 g新鲜沉积物放入厌氧瓶中,然后加入24 mL、125 mmol/L NaCl和1.5 mmol/L CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。混合溶液离子强度约为130 mmol/L,Na/Ca0.5比值约为102,pH值为7.6。为保证沉积物颗粒与溶液均匀混合,超声15 min后放入150 r/min的恒温振荡箱中。取样间隔为1 h、3 h、5 h、7 h、10 h、14 h、20 h、28 h、36 h、48 h和60 h。取样之前保证溶液混合均匀,每次取样量为2 mL,用0.22 μm过滤器过滤到2 mL离心管中,放入4℃冰箱中保存,一周之内完成测试工作。
(2)pH对解吸附影响的实验
控制Na/Ca0.5(M/M)比值约为102和离子强度约为130 mmol/L,探究不同pH值对沉积物中砷解吸附的影响。将Na/Ca0.5比值为102的NaCl和CaCl2的混合溶液分装为5份,并将溶液pH值分别调到5.4、6.7、7.6、8.6和9.6。在5个厌氧瓶中,分别称取0.6g新鲜沉积物,并加入24 mL不同pH值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。
(3)反离子效应对砷解吸附影响的实验
控制离子强度为(130±5)mmol/L,通过改变NaCl和CaCl2的浓度来改变Na/Ca0.5比值(表2)。在7个厌氧瓶中,分别称取0.6 g新鲜沉积物,并分别加入24 mL不同Na/Ca0.5比值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。
表 2 离子强度为(130±5)mmol/L条件下,不同浓度NaCl和CaCl2混合液的Na/Ca0.5(M/M)比值Table 2. Na/Ca0.5(M/M) ratio of the mixed solution of different concentrations of NaCl and CaCl2 under the condition of ionic strength of about (130±5) mmol/LNaCl/(mmol/L) CaCl2/(mmol/L) Na/Ca0.5 2 43 0.3 5 42 0.7 10 40 1.6 30 35 5.0 60 23 13 110 7 42 125 1.5 102 4. 结果与讨论
4.1 沉积物的岩性特征
研究区的山前冲洪积扇区钻孔K02和平原区钻孔K01沉积物的岩性特征如图2所示。钻孔K02沉积物的组成是从粗砂到黏土,而钻孔K01主要从中砂到黏土。对于钻孔K02,14 m以上的沉积物主要由砂质黏土和粉质黏土组成,14~42 m主要以砂质含水层为主。在42~44 m存在约2 m厚的黏土层,42 m以下主要以砂质含水层为主同时伴有砂质黏土互层(图2a)。与钻孔K02不同,位于平原区的钻孔K01沉积物颗粒整体较细且含有大量的黏土互层。其中,8 m以上主要以黏土为主,8~40 m则主要以砂质含水层为主并且常常伴有砂质黏土互层,40~42 m出现黏土层,42 m以下为颗粒较细的细砂含水层,这个研究结果与Shen et al.(2018)一致。总体来看,研究区近表层沉积物主要以粉质黏土为主,地表以下10~40 m是砂质含水层,地表以下40 m处存在1~2 m厚的相对连续的黏土层将40 m以上和约42 m以下的含水层隔开。
沉积物的色度特征能够指示沉积物的氧化还原环境和铁氧化物的还原程度(Horneman et al., 2004)。钻孔K02和K01沉积物色度随深度的变化均是由浅黄色变为深灰色,说明深部含水层处于一个相对还原的环境当中,铁氧化物的还原程度也较强。而从整体来看,两个钻孔的色度特征有较大差异,相对于钻孔K02,钻孔K01的沉积物色度更深,这可能是因为平原沉积物颗粒较细,含水层处于更封闭的还原环境,铁锰氧化物的还原程度更强(van Geen et al., 2013)。
沉积物含水率主要受其岩性控制。两个钻孔表层5 m以上沉积物尽管颗粒较细,含水率仍然较低,主要由于其处于非饱和带。而在饱和带,沉积物含水率随深度的变化主要受岩性影响,沉积物岩性颗粒越细,含水率越高。两个钻孔沉积物电导率在近地表较高(图2),主要是因为研究区为干旱半干旱气候,蒸发蒸腾作用较强,使得近地表沉积物含有大量的可溶盐(Yuan et al., 2017)。沿深度随沉积物岩性的变化而波动,沉积物岩性越细,电导率越大,这是由于颗粒较细的黏土颗粒表面有大量可交换的离子。此外,由于钻孔K01位于平原区,沉积物颗粒整体较细且地下水水位埋深较浅蒸发作用强,导致其沉积物电导率(均值为395 μS/cm)大于钻孔K02(均值为308 μS/cm)。
4.2 沉积物的地球化学特征
研究区沉积物中0~10 m、40~45 m和75~80 m含水层位的Ca和Sr的含量明显高于其他含水层(图3)。微量元素As、Fe和Mn也有相似的分布特征。沉积物的岩性特征表明,10 m以上的沉积物主要以黏土和粉质黏土为主,40~45 m是不连续的黏土层,而75~80 m也是颗粒较细的黏土层。对比钻孔的黏土层和砂层沉积物的地球化学特征发现,K02钻孔黏土层沉积物Ca含量中值为53.6 mg/g,而砂层沉积物Ca含量中值为33.0 mg/g;K01钻孔中两者中值分别为48.3 mg/g和31.6 mg/g。黏土层和砂层沉积物中微量元素的含量差异更为明显,K02钻孔黏土层沉积物As含量中值为17.6 μg/g,而砂层沉积物As含量中值为8.6 μg/g;K01钻孔中两者中值分别为20.1 μg/g和7.9 μg/g。这主要是因为砂层沉积物中富含石英,含Ca和Sr矿物的含量低于黏土层(李晓峰,2018)。其次是因为黏土层表面吸附能力强,能够吸附As、Fe和Mn等微量元素(崔邢涛等,2015)。
两个钻孔沉积物的地球化学特征也有一定的差异。普遍表现为钻孔K02的Ca、Sr、As、Fe和Mn含量大于钻孔K01,且在深层沉积物中表现更为明显(图3)。钻孔K02沉积物中Ca的含量范围为12.2~86.9 mg/g,平均值为37.9 mg/g,钻孔K01沉积物中Ca的含量范围为9.6~68.7 mg/g,平均值为35.7 mg/g。K02钻孔沉积物中As的浓度范围为4.6~33.1 μg/g,平均值13.1 μg/g;K01钻孔沉积物中As的浓度范围为5.3~34.0 μg/g,平均值12.9 μg/g,表明冲洪积扇边缘地区沉积物总As的含量略大于平原区。两个钻孔沉积物中Fe和Mn含量的差异更为明显,钻孔K02沉积物中Fe的含量比K01高13.7%,其Mn的含量比K01高14.1%。这主要是由于钻孔K01位于平原区,沉积物经历了更强的风化作用,且积物颗粒整体较细,地下水流速慢,水岩作用强烈,有利于沉积物中化学组分向地下水中释放(张文凯等,2020)。此外,平原区含水层较为封闭,沉积物的色度特征也表明含水层长期处于较为还原的环境中,变价微量元素被还原为较低价态,易于向地下水中迁移。因此,钻孔K02和K01沉积物地球化学的微小差异主要受沉积环境和水动力条件控制。
4.3 沉积物中砷的赋存形态
山前冲洪积扇的含水层的沉积物岩性主要以中砂、细砂和黏土为主,平原区含水层的沉积物则以细砂、粉砂和黏土为主。因此,本研究从钻孔K02和K01各选取3个不同岩性的代表性沉积物用于分步提取实验(SEP)(表3)。实验过程选用GBW07303和GBW07305作为标准样品检验回收率,结果表明:对于GBW07303不同状态As的提取实验的回收率分别为81%,GBW07305不同状态As的提取实验的回收率分别为88%。分步提取实验获取的7种形态砷的总和与XRF测得的总固相砷的相对偏差均小于10%。
表 3 用于分步提取的沉积物信息Table 3. Sediment information for SEP编号 岩性 采样深度/m K02−M 中砂 38.35 K02−F 细砂 62.25 K02−C 黏土 41.95 K01−F 细砂 55.15 K01−S 粉砂 30.95 K01−C 黏土 37.85 分步提取结果表明,K02钻孔中砂、细砂和黏土沉积物固相砷主要以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷(F4)为主,占比分别为33%、40%和43%(图4a、b、c)。其次是结晶态铁氧化物或氢氧化物结合态(F5)和强吸附态砷(F2)。砂层沉积物中与无定形态铁氧化物或氢氧化物结合的固相砷(F3)占比大于与硅酸盐结合的砷(F6),前者占比均大于10%,后者均小于5%,而黏土沉积物中两者的占比分别为7%和12%。最容易释放到地下水中的弱吸附态砷(F1)和最顽固的与硫化物和有机质共沉淀的固相砷(F7)占比较小,均低于5%。钻孔K01细砂沉积物的固相砷以F4为主(35%),其次分别是F2(32%)和F6(16%)(图4d)。粉砂和黏土沉积物则以F2为主(分别为43%和40%),其次以F4为主(分别为12%和18%);两个沉积物中F3所占的比例均超过10%(图4e、f)。细砂、粉砂和黏土沉积物中F1和F7均小于5%。
对比山前冲洪积扇的钻孔K02和平原区的钻孔K01发现,前者沉积物中固相砷主要以F4为主,后者则主要以F2为主。钻孔K02黏土沉积物中F4达到11.3 μg/g,明显高于K01的4.6 μg/g。而钻孔K02黏土沉积物中F2仅有5.8 μg/g,低于钻孔K01的10.3 μg/g(图4c、f)。钻孔K01砂层沉积物中的F2也明显大于K02。此外,平原区沉积物的F3含量也大于山前冲洪积扇沉积物。这说明平原区沉积物经历更强的风化侵蚀作用后,固相砷活性增强,向更具迁移性的吸附态和完全无定形铁氧化物或氢氧化物结合态转化。大量研究表明吸附态的砷迁移性较强,通过竞争解吸附或者弱碱条件下的解吸附,更容易释放到地下水中,而无定形态铁氧化物或氢氧化物结合态砷相对稳定,需要通过还原性溶解才能释放到地下水中(Smedley and Kinniburgh, 2002)。这也解释了为何平原区地下水砷浓度普遍高于山前冲洪扇的地下水(李晓峰,2018; Zhang et al., 2020)。除了含水层沉积物本身物源的影响,含水层所处的环境和地下水的化学特征也会影响砷的解吸附。
4.4 砷的解吸附
以往的研究表明,研究区地下水pH和Na/Ca0.5(M/M)与砷浓度均有较好的正相关关系(Zhang et al., 2020),因此,本研究选取钻孔K02和K01的沉积物(表3),分别探讨了pH和Na/Ca0.5(M/M)对砷解吸附的影响。动力学实验结果表明,在pH为7.6、离子强度为130 mmol/L和Na/Ca0.5比值为102的条件下,砷解吸附能够48 h时基本达到平衡(图5a)。为确定砷解吸附达到平衡,实验设定反应时间为60 h。
4.4.1 pH的影响
实验设定离子强度为130 mmol/L,Na/Ca0.5比值为102。pH条件分别设定为5.4、6.7、7.6、8.6和9.6。当pH为5.4时,K02−F和K01−F沉积物释放的砷占总吸附砷的比值分别为0.54和0.44;当pH升高至6.7时,砷释放量所占总吸附砷比值分别降为0.32和0.30(图5b),这可能是因为较低的pH可能使铁氧化物发生少量溶解导致砷的释放。pH从6.7上升至8.6的过程中,沉积物砷的释放量并没有明显增加,仅上升0.03左右。而pH由8.6上升至9.6,沉积物砷的释放量显著增加,释放量上升0.15。这是由于随着pH升高沉积物颗粒表面带负电荷,与含砷阴离子形成静电斥力导致吸附态的砷发生解吸附,进入水溶液中(Masue et al., 2007)。
4.4.2 反离子效应的影响
许多学者认为,沉积物颗粒表面存在扩散双电子层(Dzombak and Morel, 1990; 刘新敏,2014),相比于以Na+为主的地下水系统,以Ca2+为主的地下水系统能够导致带负电的沉积物颗粒表面与带负电的含砷弱阴离子之间的斥力减小,有利于砷的吸附,这种现象被称为反离子效应(Masue et al., 2007; Fakhreddine et al., 2015)。当水中离子强度一定时,带有两个正电荷Ca2+被单电荷Na+替换时,即Na/Ca0.5比值增加时,这种反离子效应就会减弱,促进吸附态的砷释放到地下水中。
实验过程中保持pH和离子强度不变,通过调节溶液中Na+和Ca2+浓度改变Na/Ca0.5比值。结果表明,砷解吸附的量随Na/Ca0.5比值的增加而增加(图5c)。当Na/Ca0.5比值为0.3时,K02−F和K01−F沉积物砷的解吸附量占总吸附态砷的比值分别为0.12和0.11。而当Na/Ca0.5比值增加到102时,K02−F沉积物砷的解吸附量占总吸附态砷的比值能够达到0.37,在K01−F沉积物中这一比值为0.47。
4.5 地下水开发利用建议
河套盆地是中国的塞上粮仓,对水资源的需求较大。研究区地势较高,引黄河入河套盆地并难以满足居民的农业和生活需求,因此,居民普遍开采地下水用于农业灌溉和日常生活,这虽然解决水量的问题,却忽视了原生劣质地下水的危害。根据国家《生活饮用水卫生标准》(GB 5749—2022)和《地下水质量标准》(GB/T14848—2017),砷浓度大于10 μg/L的地下水为高砷地下水,摄入后对人体有害。以往的研究发现高砷地下水主要集中在平原区,浓度高达857 μg/L(Guo et al., 2008)。本研究发现,山前冲洪积扇区的含水层沉积物固相砷相对稳定,而平原区的含水层沉积物固相砷迁移性相对较强,且平原区沉积物吸附态砷在弱碱性和高Na/Ca0.5摩尔比值条件下,容易向地下水迁移,导致砷的富集。因此,当地居民种植农作物时避免使用碱性复合肥,从而减少碱性水的向下补给。此外,生活污水中Na+较高,建议适当处理后排放。用于日常生活的地下水,建议采用混凝沉淀或吸附法降砷。
5. 结 论
山前冲洪积扇区含水层处于相对氧化的环境中,其沉积物以细砂和中粗砂为主,而平原区含水层处于封闭的还原环境中,沉积物以粉细砂为主。两者沉积物总固相砷含量相差不大,但固相砷的赋存形态差别较大。山前冲洪积扇区含水层沉积物固相砷以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷为主(33%~43%),平原区含水层沉积物固相砷则以强吸附态砷为主(32%~43%),后者沉积物的中固相砷迁移性更强,容易通过解吸附释放到地下水中。此外,当pH值由6.1上升到9.6时,山前和平原区沉积物解吸附砷占总吸附砷的比值分别上升0.16和0.22。同时,Na/Ca0.5摩尔比值的增加,会导致反离子效应减弱,比值由0.3增加到102时,山前沉积物和平原区解吸附砷占总吸附砷的比值分别上升0.26和0.36。可见含水层中pH的升高和Na/Ca0.5摩尔比值的增加,都会促使沉积物中的砷发生解吸附,导致地下水中砷的富集。因此,当地居民应减少碱性以及富含Na+的生产生活用水的排放,同时平原区用于日常生活的地下水,建议当地居民采用混凝沉淀或吸附法降砷。
-
图 1 南岭成矿带区域构造概略图(a,据陈毓川等, 1989; 徐志刚等, 2008)和地质图(b,据黄崇轲等, 1997)
Figure 1. Outline map (a, after Chen Yuchuan et al., 1989; Xu Zhigang et al., 2008) and geological map (b, after Huang Chongke et al., 1997) of Nanling metallogenic belt
图 3 南岭成矿带中段岩浆岩TAS图解(a)和A/CNK–A/NK图解(b)
数据资料来源于马铁球等, 2005; 姚军明等, 2005; 付建明等, 2012; 全铁军等, 2012; 郑佳浩和郭春丽, 2012; 王凯兴等, 2012; 谢银财, 2013; 陈迪等, 2017; 弥佳茹等, 2018
Figure 3. TAS diagram (a) and A/CNK–A/NK diagram (b) of the magmatic rocks in the middle part of Nanling metallogeny belt
The magmatic rock data are from Ma Tieqiu et al., 2005; Yao Junming et al., 2005; Fu Jianming et al., 2012; Quan Tiejun et al., 2012; Zheng Jiahao and Guo Chunli, 2012; Wang Kaixing et al., 2012; Xie Yincai, 2013; Chen Di et al., 2017; Mi Jiaru et al., 2018
图 4 南岭成矿带中段岩浆岩Rb–Ba–Sr图解(a)、(Zr+Nb+Y)–Rb/Ba图解(b)、Zr/Hf–Nb/Ta图解(c)和K/Rb–Nb/T图解(d)
AGG—钠长石和云英岩化的花岗岩;DG—分异的花岗岩;NG—正常花岗岩;AG—异常花岗岩;GAD—与W、Sn、Mo有关的矿化花岗岩;GD—花岗闪长岩;QD—石英闪长岩;D—闪长岩;数据资料来源于付建明等, 2004, 2012; 姚军明等, 2005; 全铁军等, 2012; 郑佳浩和郭春丽, 2012; 王凯兴等, 2012; 马星华等, 2014; 单芝波, 2014; 陈迪等, 2014; 马丽艳等, 2016; 程亮开, 2018
Figure 4. Rb–Ba–Sr diagram (a), (Zr+Nb+Y)–Rb/Ba diagram (b), Zr/Hf–Nb/Ta diagram (c) and K/Rb–Nb/T diagram (d) of the magmatic rocks in the middle part of Nanling metallogeny belt
AGG–Albite and greisen granites; DG–Differentiated granites; NG–Normal granites; AG–Anomalous granites; GAD–W, Sn, Mo-mineralized granites; GD–Granodiorites; QD–Quartz diorites; D–Diorites. The magmatic rock data are from Fu Jianming et al., 2004, 2012; Yao Junming et al., 2005; Quan Tiejun et al., 2012; Zheng Jiahao and Guo Chunli, 2012; Wang Kaixing et al., 2012; Ma Xinghua et al., 2014; Shan Zhibo, 2014; Chen Di et al., 2014; Ma Liyan et al., 2016; Cheng Liangkai, 2018
图 5 南岭成矿带中段岩浆岩t–εNd(t)图解(a)和(87Sr/88Sr)i–εNd(t)图解(b)
同位素数据来源于毛景文等, 1995; 柏道远等, 2005; 董少花等, 2014; 章荣清等, 2016
Figure 5. t–εNd(t) diagram (a) and (87Sr/88Sr)i–εNd(t) diagram (b) of the middle part of Nanling metallogeny belt
Isotopic data are from Mao Jingwen et al., 1995; Bai Daoyuan et al., 2005; Dong Shaohua et al., 2014; Zhang Rongqing et al., 2016
表 1 南岭成矿带中段主要花岗岩体年龄
Table 1 Formation age of main granitic plutons in the middle part of Nanling metallogeny belt
岩体 岩性 时代 方法 参考文献 石背 黑云母二长花岗岩 174.3~187.5 Ma LA–ICP–MS 程顺波等, 2016; 林小明等, 2016 锡田 细粒黑云花岗岩、花岗岩、黑云二长花岗岩 147~151.7 Ma、
(228.5±2.5)MaLA–ICP–MS、SHRIMP、SIMS 马铁球等, 2005; 刘国庆等, 2008; 付建明等, 2012; 周云等, 2013; 陈迪等, 2014 贵东 二云母花岗岩、黑云母二长花岗岩 151~189.1 Ma、
228~239 MaLA–ICP–MS、SIMS、SHRIMP 孙涛等, 2003; 徐夕生等, 2003; 吴继光, 2013; 李建华等, 2014; 单芝波, 2014;
林坤等, 2021宝山 花岗闪长斑岩 156.3~164.1 Ma LA–ICP–MS、SIMS 伍光英等, 2005; 路远发等, 2006; 谢银财, 2013; 弥佳茹等, 2018 大坊 花岗闪长岩 (154.5±1.0)Ma LA–ICP–MS 弥佳茹等, 2018 水口山 英安斑岩、花岗闪长岩 148.8~173 Ma LA–ICP–MS、SHRIMP 甄世民等, 2012; 左昌虎等, 2014; 李永胜等, 2015 大义山 黑云母二长花岗岩、二云母二长花岗岩 147.5~171.8 Ma LA–ICP–MS 塔山 黑云母二长花岗岩、二云母二长花岗岩 218~247 Ma LA–ICP–MS 李勇等, 2015;
郭爱民等, 2017邓埠仙 白云母碱长花岗岩 154.4~158.6 Ma、
218.2~230 MaLA–ICP–MS 汪群英等, 2015;
陈迪等, 2017骑田岭 角闪黑云二长花岗岩、细粒黑云母花岗岩 141~160 Ma LA–ICP–MS 毛景文等, 2004; 付建明等, 2004; 马丽艳等, 2005; 柏道远等, 2005; 李华芹等, 2006 黄沙坪 花岗斑岩、石英斑岩 82.9~179.9 Ma SHRIMP 姚军明等, 2005; 王登红等, 2010; 全铁军等, 2012 界牌岭 花岗斑岩 90.5~92 Ma LA–ICP–MS 王登红等, 2010 香花岭—癞子岭 黑云母碱长花岗岩、黄玉霏细斑岩香花岭岩、细粒花岗岩 150.37~151.18 Ma LA–ICP–MS 来守华, 2014 瑶岗仙 斑状花岗岩、白云母花岗岩 157~170.7 Ma LA–ICP–MS 董少花等, 2014 大东山 黑云母二长花岗岩、黑云母钾长花岗岩 155.9~165 Ma LA–ICP–MS 张敏等, 2003; 黄会清等, 2008; 程亮开, 2018 热水 钾长花岗岩、黑云母花岗岩 (162.8±5.8)Ma SHRIMP 邓平等, 2011 王仙岭 黑云母二长花岗岩、白云母花岗岩 (155.9±1.0)Ma、
224~235 MaLA–ICP–MS 郑佳浩和郭春丽, 2012; Zhang et al., 2015 湖南桂东 花岗闪长岩、角闪黑云母花岗岩 (148.2±1.7)Ma、
(207.5±2.7)Ma、
(414.5±4.5)MaLA–ICP–MS 王登红等, 2010 五峰仙 黑云母二长花岗岩、二云母二长花岗岩 (230.8±1.7)Ma LA–ICP–MS 王凯兴等, 2012 连阳−白浆 斑状黑云二长花岗岩 100~102 Ma、
(144.3±0.8)MaLA–ICP–MS 高剑峰等, 2005;
马星华等, 2014千里山 斑状黑云母花岗岩、花岗斑岩 (152±2)Ma SHRIMP Li et al., 2004 表 2 南岭成矿带中段矿种及其矿产地数量
Table 2 Mineral species and number of mineral sites of the middle part of Nanling metallogeny belt
矿种 矿产地/处 矿种 矿产地/处 矿种 矿产地/处 白云岩 4 脉石英 2 石墨 5 铋 4 煤 77 石英岩 2 冰洲石 2 锰 75 水晶 10 大理岩 14 钼 6 锑 24 地热 69 耐火黏土 6 天然矿泉水 16 地下水 12 泥炭 2 天然石英砂 2 高岭土 3 铌钽 6 铁 145 汞 1 硼矿物 3 铜 12 硅灰石 3 膨润土 1 钨 44 红柱石 1 铍 2 稀土 15 花岗岩 3 其他黏土 8 锡 56 滑石 5 铅锌 104 页岩 1 金 6 铷 2 萤石 12 金红石 1 砂岩 4 铀 20 磷 1 砷 2 长石 1 硫铁矿 24 石膏 4 重晶石 4 铝 1 石灰岩 45 表 3 南岭成矿带中段矿床主要成矿特征
Table 3 Main mineralization characteristics of the deposits in the middle part of Nanling metallogeny belt
成矿作用 矿床类型 矿产地数量 主要矿种 主要成矿期 典型矿床 (内生)
岩浆作用岩浆型矿床 4 花岗岩、铌钽 印支期、燕山期 小龙、垄上花岗岩矿、隘子铌钽矿 伟晶岩型矿床 3 铌钽 燕山期 531、隘子东、一六铌钽矿 云英岩型矿床 7 铌钽、锡 燕山期 尖峰岭铌钽矿、狮形岭锡矿 接触交代型矿床 101 钨、锡、钼、硅灰石、铅锌、大理岩、铁、硼、水晶 燕山期、(华力西期、前寒武纪) 黄沙坪铅锌矿、水底下、东风、朝天硅灰石矿、汤市硼矿、烟竹湖硼矿、大顶铁矿、谢家山锡矿、瑶田钨矿、大平锡矿、青石岩砷矿、大顶铁矿、大中山水晶矿、大顺窿铜矿、新田岭钨矿、一六、单竹坑钨矿 岩浆热液型矿床 197 钨、铷、锡、铍、铜、萤石、水晶、铀、重晶石、铋、
滑石、硫铁矿燕山期、(华力西期、印支期) 长岗岭铋矿、界滩滑石矿、锦潭硫铁矿、湘东铌钽矿、大笋、小坑铍矿、大尖山铅锌矿、田尾铅锌矿、拖碧塘铷矿、杉木溪铷矿、鸡脚山水晶矿、红岭、锯板坑、邓阜仙钨矿、天字号、芙蓉、白蜡水、香花岭锡矿、荷花坪锡矿、江口萤石矿、坪田铀矿、601铀矿、十里亭重晶石矿 (内生)
变质作用受变质型矿床 3 铁矿、石英岩 前寒武纪、燕山期、华力西期 九家坳铁矿、芝麻山铁矿、五官庙石英岩矿 变成型矿床 20 大理岩、石墨(红柱石、石英岩) 燕山期 鸡公岭、安源、三托坪、鲁塘、青坑、长江、大旺 (内生)
含矿流体作用浅成中—低温热液型矿床 54 铅锌、锑、铀、汞、硫铁矿、冰洲石 华力西期、燕山期、加里东期 红岩、西牛硫铁矿、西岸汞矿、赤佬顶锑矿、圆山、东城铀矿、高坳冰洲石矿 (外生)
表生作用风化型矿床 165 锰、稀土、铁、
高岭土、其他黏土喜山期 寨背顶稀土、来石稀土、大坪 (外生)
沉积作用机械沉积型矿床 16 砂岩、页岩、石英砂、黏土 喜山期、燕山期、华力西期 乌石砂岩、牛岭砂岩、红光页岩矿 化学沉积型矿床 94 白云岩、硫铁矿、
石灰岩、(铁、锰)华力西期、印支期 南头冲、柏塘、石灰岭、李家湾、罗仙岭、狮子山、燕山岭 生物化学沉积型矿床 80 煤矿、泥炭矿 华力西期、印支期 永耒煤矿、白沙煤矿、杨梅山煤矿、盘村泥炭矿 蒸发沉积型 4 石膏 喜山期、燕山期 星子盆地石膏矿 (外生)
流体作用流体型矿床 107 天然矿泉水、地热、地下水 喜山期 汤泉地热、地下水、宝林山矿泉水 叠加(复合/
改造)叠加(复合/改造)矿床 5 铀、铅锌、锰、铜、滑石 燕山期、华力西期、喜山期 水口山、杨柳塘、玛瑙山、大宝山、大莨 表 4 南岭成矿带中段主要矿床成矿年龄
Table 4 Formation age of main deposits in the middle part of Nanling metallogeny belt
矿床名称 测试对象和测年方法 年龄/Ma 资料来源 石背大顶铁锡矿 金云母Ar–Ar 185.9±1.2 程顺波等, 2016 辉钼矿Re–Os 186.7±1.2 袁顺达, 2017 锡田锡钨矿 石英Rb–Sr 153±12 付建明等, 2012 辉钼矿Re–Os 150.0±2.7 刘国庆等, 2008 辉钼矿Re–Os 150.3±0.5 董超阁, 2018 宝山铅锌多金属矿 辉钼矿Re–Os 160±2 路远发等, 2006 三角潭钨矿 辉钼矿Re–Os 224.9±1.3 彭能立等, 2017 白沙子岭锡矿 石英Rb–Sr 160±1 张晓军等, 2014 邓阜仙钨矿 辉钼矿Re–Os 152.4±3.3 蔡杨等, 2012 白云母Ar–Ar 148.3±1.1 孙颖超等, 2017 辉钼矿Re–Os 150.7±2.3 董超阁, 2018 金船塘锡矿 矽卡岩矿物Sm–Nd 141±11 马丽艳等, 2010 黄铁矿Pb–Pb 164±12 肖红全等, 2003 辉钼矿Re–Os 158.8±6.6 刘晓菲, 2014 红旗岭锡多金属矿 石英Rb–Sr 143.1±8.7 马丽艳等, 2010 矿脉白云母Ar–Ar 153.5±1.5 袁顺达等, 2012 芙蓉白腊水锡矿 金云母Ar–Ar 154.1±1.1 彭建堂等, 2007 角闪石Ar–Ar 156.9±1.1 彭建堂等, 2007 芙蓉淘锡窝锡矿 白云母Ar–Ar 154.8±0.6 彭建堂等, 2007 芙蓉三门锡矿 白云母Ar–Ar 156.1±0.4 毛景文等, 2004 芙蓉淘锡窝锡矿 白云母Ar–Ar 160.1±0.9 毛景文等, 2004 芙蓉锡矿 含矿云英岩Rb–Sr 146±3 马丽艳等, 2005 芙蓉白腊水锡矿 石英Rb–Sr 177±39 蔡锦辉等, 2004 黄沙坪铅锌多金属矿床 矿脉辉钼矿Re–Os 153.8~157.5 马丽艳等, 2007; 毛景文等, 2007; 王登红等, 2010 香花岭锡多金属矿 白云母Ar–Ar 154.4±1.1 Yuan et al., 2007 香花岭—牛角湾 闪锌矿脉石英Rb–Sr 154±2 王登红等, 2010 闪锌矿脉萤石Sm–Nd 156.1±8.4 王登红等, 2010 香花岭—新风 黄铁矿Re–Os 158.9 王登红等, 2010 界牌岭锡多金属矿 矿脉黑云母Ar–Ar 91.1±1.1 毛景文等, 2007 白云母Ar–Ar 92.1±0.7 Yuan et al., 2015 瑶岗仙钨矿 辉钼矿Re–Os 158.0±1.2 李顺庭等, 2011 瑶岗仙尚滩钨矿 辉钼矿Re–Os 160.0±3.3 李顺庭等, 2011 瑶岗仙钨矿 石英Rb–Sr 175.8±4.1 王登红等, 2009 石英Rb–Sr 156±3 王登红等, 2009 辉钼矿Re–Os 170±5 王登红等, 2009 合江口锡矿 辉钼矿Re–Os 225.0±3.6 邓湘伟等, 2015 荷花坪锡矿 辉钼矿Re–Os 224.0±1.9 蔡明海等, 2006 锆石U–Pb 156 Zhang et al., 2015 香花铺钨矿 白云母Ar–Ar 161.3±1.1 Yuan et al., 2007 尖峰岭锡矿 白云母Ar–Ar 158.7±1.2 Yuan et al., 2007 桂东青石岭钨多金属矿 辉钼矿Re–Os 147.6±6.8 王登红等, 2010 下庄335铀矿 沥青铀矿U–Pb 93.5±1.2 邹东风等, 2011 下庄石土岭铀矿 沥青铀矿U–Pb 138.5±1.9 何德宝, 2017 下庄希望铀矿 沥青铀矿U–Pb 81.8±1.1 何德宝, 2017 下庄寨下铀矿 沥青铀矿U–Pb 92.0±1.3 何德宝, 2017 下庄仙石铀矿 沥青铀矿U–Pb 96.4±1.4 何德宝, 2017 下庄竹山下 沥青铀矿U–Pb 134 李子颖等, 2011 下庄大帽峰 沥青铀矿U–Pb 84.3 李子颖等, 2011 下庄仙人嶂 沥青铀矿U–Pb 81 李子颖等, 2011 柿竹园钨多金属矿 辉钼矿Re–Os 151.0±3.5 李红艳等, 1996 萤石Sm–Nd 149±2 Li et al., 2004 -
[1] Bai Daoyuan, Chen Jianchao, Ma Tieqiu, Wang Xianhui. 2005. Geochemical characteristics and tectonic setting of Qitianling A−type granitic pluton in southeast Hunan[J]. Acta Petrologica et Mineralogica, 24(4): 255−272 (in Chinese with English abstract).
[2] Bai Daoyuan, Ma Tieqiu, Wang Xianhui, Zhang Xiaoyang, Chen Bihe. 2008. Progress in the study of Mesozoic tectono−magmatism and mineralization in the central segment of the Nanling Mountains[J]. Geology in China, 35(3): 436−455 (in Chinese with English abstract).
[3] Bai Daoyuan, Tang Fenpei, Li Bin, Zeng Guangqian, Li Yinmin, Jiang Wen. 2022. Summary of main mineralization events in Hunan Province[J]. Geology in China, 49(1): 151–180 (in Chinese with English abstract).
[4] Bai Hui, Qiu Kaiguo, Chen Fugui, Cheng Xingmin, Wang He. 2016. Preliminary study on Nappe in coal−bearing strata in Xinfeng County[J]. Jiangxi Coal Science and Technology, (4): 108−109 (in Chinese with English abstract).
[5] Cai Fucheng, Qin Jinhua, Qin Jinning, Jiang Biguang, Zhu Chengsheng. 2021. Geochemical characteristics and LA–ICP–MS zircon U–Pb dating of ore−bearing granite of Chuankou intrusion−related tungsten deposit, Hunan Province[J]. Geology in China, 48(4): 1212−1224 (in Chinese with English abstract).
[6] Cai Jinhui, Wei Changshan, Sun Minghui. 2004. A discussion on the ore−forming age of the Bailashui tin deposit in Qitianling, Hunan[J]. Acta Geoscientica Sinica, 25(2): 235−238 (in Chinese with English abstract).
[7] Cai Minghai, Chen Kaixu, Qu Wenjun, Liu Guoqing, Fu Jianming, Yin Jianping. 2006. Geological characteristics and Re–Os dating of molybdenites in Hehuaping tin−polymetallic deposit, southern Hunan Province[J]. Mineral Deposits, 25(3): 263−268 (in Chinese with English abstract).
[8] Cai Minghai, Zhang Wenbin, Peng Zhenan, Liu Hu, Guo Tengfei, Tan Zemo, Tang Longfei. 2016. Study on minerogenetic epoch of the Hehuaping tin−polymetallic deposit in southern Hunan[J]. Acta Petrologica Sinica, 32(7): 2111−2123 (in Chinese with English abstract).
[9] Cai Yang, Ma Dongsheng, Lu Jianjun, Huang Hui, Zhang Rongqinig, Qu Wenjun. 2012. Re–Os geochronology and S isotope geochemistry of Dengfuxian tungsten deposit, Hunan Province, China[J]. Acta Petrologica Sinica, 28(12): 3798−3808 (in Chinese with English abstract).
[10] Chen Di, Chen Yanming, Ma Aijun, Liu Wei, Liu Yaorong, Ni Yanjun. 2014. Magma mixing in the Xitian pluton of Hunan Province: Evidence from petrography, geochemistry and zircon U–Pb age[J]. Geology in China, 41(1): 61−78 (in Chinese with English abstract).
[11] Chen Di, Liu Jueyi, Fu Shengyu, Ma Tieqiu, Liu Yaorong. 2017. Petrology, geochemistry, zircon U–Pb age characteristics and significance of Dengfuxian pluton in Hunan Province[J]. Geological Bulletin of China, 36(9): 1601−1615 (in Chinese with English abstract).
[12] Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W–Sn–Nb–Ta–bearing granites in the Nanling Range[J]. Geological Journal of China Universities, 14(4): 459−473 (in Chinese with English abstract).
[13] Chen Peirong, Hua Renmin, Zhang Bangtong, Lu Jianjun, Fan Chunfang. 2002. Early Yanshanian post−orogenic granites in Nanling: Petrological constraints and geodynamic settings[J]. Science in China (Series D: Earth Sciences), 32(4): 279−289 (in Chinese).
[14] Chen Yuchuan, Pei Rongfu, Zhang Hongliang. 1990. The geology of nonferrous and rare metal deposits related to Mesozoic granitoids in the Nanling region, China[J]. Bulletin of the Chinese Academy of Geological Sciences, (1): 79−85 (in Chinese).
[15] Chen Yuchuan, Pei Rongfu, Zhang Hongliang, Lin Xinduo, Bai Ge, Li Chongyou, Hu Yongjia, Liu Jinyou, Xian Baiqi. 1989. Nonferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Area[M]. Beijing: Geological Publishing House, 1–508 (in Chinese).
[16] Chen Yuchuan, Wang Denghong, Xu Zhigang, Huang Fan. 2014. Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in south China[J]. Geotectonica et Metallogenia, 38(2): 219−229 (in Chinese with English abstract).
[17] Cheng Liangkai. 2018. Zircon U–Pb dating and geological significance of Caledonian Dadongshan pluton in the Northern Guangdong province[J]. South China Geology, 34(1): 31−40 (in Chinese with English abstract).
[18] Cheng Shunbo, Fu Jianming, Ma Liyan, Lu Youyue, Wang Xiaodi, Xia Jinlong. 2016. Early Jurassic iron−tin mineralization event in the Nanling Range: Evidence from LA–ICP–MS zircon U–Pb and phlogopite 39Ar–40Ar dating of the Dading deposit in Lianping, Northern Guangdong[J]. Acta Geologica Sinica, 90(1): 163−176 (in Chinese with English abstract).
[19] Deng Ping, Shen Weizhou, Ling Hongfei, Zhang Liqiang, Zhu Ba, Huang Guolong, Tan Zhengzhong. 2011. SHRIMP zircon U–Pb dating and geochemistry characteristics of Reshui granitic batholith, Northern Guangdong[J]. Acta Geologica Sinica, 85(8): 1274−1283 (in Chinese with English abstract).
[20] Deng Xiangwei, Liu Jishun, Dai Xueling. 2015. Geological characteristics and molybdenite Re–Os isotopic age of Hejiangkou tungsten and tin polymetallic deposit, East Hunan, China[J]. The Chinese Journal of Nonferrous Metals, 25(10): 2883−2897 (in Chinese with English abstract).
[21] Ding Xing, Chen Peirong, Chen Weifeng, Huang Hongye, Zhou Xinmin. 2005. LA–ICPMS U–Pb dating of zircons from the Weishan granite in Hunan province: Implications for diagenesis[J]. Science in China (Series D: Earth Sciences), 35(7): 606−616 (in Chinese).
[22] Dong Chaoge. 2018. Studies on Granitic and Metallogenic Chronology and Geodynamics of the Xitian Tin–Tungsten and Dengfuxian Tungsten Deposits, Hunan Province, China[D]. Beijing: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 1–158 (in Chinese with English abstract).
[23] Dong Shaohua, Bi Xianwu, Hu Ruizhong, Chen Youwei. 2014. Petrogenesis of the Yaogangxian granites and implications for W mineralization Hunan Province[J]. Acta Petrologica Sinica, 30(9): 2749−2765 (in Chinese with English abstract).
[24] Fu Jianming, Ma Changqian, Xie Caifu, Zhang Yeming, Peng Songbai. 2004. Zircon SHRIMP dating of the Cailing granite on the eastern margin of the Qitianling granite, Hunan, South China, and its significance[J]. Geology in China, 31(1): 96−100 (in Chinese with English abstract).
[25] Fu Jianming, Chen Shunbo, Lu Youyue, Wu Shicong, Ma Liyan, Chen Xiqing. 2012. Geochronology of the greisen−quartz−vein type tungsten−tin deposit and its host granite in Xitian, Hunan Province[J]. Geology and Exploration, 48(2): 313−320 (in Chinese with English abstract).
[26] Gao Jianfeng, Ling Hongfei, Shen Weizhou, Lu Jianjun, Zhang Min, Huang Guolong, Tan Zhengzhong. 2005. Geochemistry and petrogenesis of Lianyang granite composite, west Guangdong Province[J]. Acta Petrologica Sinica, 21(6): 1645−1656 (in Chinese with English abstract).
[27] Gu Xiongfei, Ding Kuishou, Xu Yingnian. 1976. Nanling: A new arsenite mineral from southern China[J]. Geochimica, (2): 107−112 (in Chinese).
[28] Guo Aiming, Chen Bihe, Chen Jianfeng, Du Yun, Zhen Zhengfu, Zhou Chao, Tian Lei, Fan Hui. 2017. SHRIMP zircon U–Pb age of Tashan granitic pluton from Hunan Province and its geological significance[J]. Geological Bulletin of China, 36(Z1): 459−465 (in Chinese with English abstract).
[29] He Debao. 2017. A Comparative Study on the Metallogenic Mechanism of Different Types of Uranium Deposits in Xiazhuang Orefield, North Guangdong, the Nanling Mountain Devonian Stratabound Deposit[D]. Beijing: Beijing Research Institute of Uranium Geology, 1–82 (in Chinese with English abstract).
[30] Huang Chongke, Zhu Yusheng, Zhang Zhongwei. 1997. The Silver Deposits in Nanling[M]. Beijing: Geological Publishing House, 1–293 (in Chinese with English abstract).
[31] Huang Huiqing, Li Xianhua, Li Wuxian, Liu Yin. 2008. Age and origin of the Dadongshan granite from the Nanling Range: SHRIMP U–Pb zircon age, geochemistry and Sr–Nd–Hf isotopes[J]. Geological Journal of China Universities, 14(3): 317−333 (in Chinese with English abstract).
[32] Huang Yunhui, Du Shaohua. 1986. The discovery and study of the first new mineral in China: Xianghua stone (1958) [J]. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (18): 1 (in Chinese).
[33] Jia Dacheng, Hu Ruizhong, Xie Guiqing. 2002. Trace element geochemical characteristics and genesis of Mesozoic mafic dikes in Northeast Hunan Province[J]. Geology Geochemistry, 30(3): 33−39 (in Chinese with English abstract).
[34] Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun. 2014. The Early Jurassic A−type granites in Northern Guangxi, China: Petrogenesis and implications[J]. Earth Science (Journal of China University of Geosciences), 39(1): 21−36 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.003
[35] Jiang H, Jiang S Y, Li W Q, Zhao K D. 2018. Highly fractionated Jurassic I−type granites and related tungsten mineralization in the Shirenzhang deposit, northern Guangdong, South China: Evidence from cassiterite and zircon U–Pb ages, geochemistry and Sr–Nd–Pb–Hf isotopes[J]. Lithos, 312–313: 186–203.
[36] Jiang Y H, Wang G C, Zheng L, Ni C Y, Qing L, Zhang Q. 2015. Repeated slab advance retreat of the Palaeo−Pacific plate underneath SE China[J]. International Geology Review, 57(4): 472−491. doi: 10.1080/00206814.2015.1017775
[37] Lai Shouhua. 2014. Research on Mineralization of the Xianghualing Tin Polymetallic Deposit, Hunan Province, China[D]. Beijing: China University of Geosciences (Beijing), 1–142 (in Chinese with English abstract).
[38] Li Tong, Yuan Huanyu, Wu Shengxi. 1998. On the average chemical composition of granitoids in China and the world[J]. Geotectonica et Metallogenia, 22(1): 29−34 (in Chinese with English abstract).
[39] Li Hongyan, Mao Jingwen, Sun Yali, Zhou Xiaoqiu, He Hongliao, Du Andao. 1996. Re–Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, Southern Hunan[J]. Geological Review, 42(3): 261−267 (in Chinese with English abstract).
[40] Li Huaqin, Lu Yuanfa, Wang Denghong, Chen Yuchuan, Yang Hongmei, Guo Jin, Xie Caifu, Mei Yuping, Ma Liyan. 2006. Dating of the rock−forming and ore−froming ages and their geological significances in the Furong ore−field, Qitian Mountain, Hunan[J]. Geological Review, 52(1): 113−121 (in Chinese with English abstract).
[41] Li Jianhua, Zhang Yueqiao, Xu Xianbin, Li Hailong, Dong Shuwen, Li Tingdong. 2014. SHRIMP U–Pb dating of zircons from the Baimashan Longtan super−unit and Wawutang granites in Hunan Province and its geological implication[J]. Journal of Jilin University (Earth Science Edition), 44(1): 158−175 (in Chinese with English abstract).
[42] Li Sai, Duan Xianzhe, Niu Sujuan, Li Nan, Sun Haoran, Wu Peng, Dai Haotong, Guo Cong, Ding Xinke. 2022. Geochemical characteristics and geodynamic significance of Mesozoic basalts in South China Block[J]. Geology and Exploration, 58(5): 1001−1015 (in Chinese with English abstract).
[43] Li Shunting, Wang Jingbin, Zhu Xinyou, Li Chao. 2011. Re–Os dating of molybdenite and sulfur isotope analysis of the Yaogangxian tungsten polymetallic deposits in Hunan Province and their geological significance[J]. Geoscience, 25(2): 228−235 (in Chinese with English abstract).
[44] Li Shunting, Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, Jiang Binbin. 2015. Geological and geochemical characteritics of the Yaogangxian complex granitoid and its relationship with tungsten mineralization[J]. Mineral Exploration, 6(4): 347−355 (in Chinese with English abstract).
[45] Li Yong, Zhang Yueqiao, Su Jinbao, Li Jianhua, Dong Shuwen. 2015. Zircon U–Pb dating of Dayishan and Tashan plutons in Hunan Province and its tectonic implications[J]. Acta Geoscientica Sinica, 36(3): 303−312 (in Chinese with English abstract).
[46] Li Yongsheng, Zhen Shimin, Gong Fanyin, Du Zezhong, Jia Delong. 2015. Geological and geochemical characteristics of Yagongtang No. 3 rock mass in Shuikoushan lead−zinc−silver ore field, Hunan[J]. Acta Mineralogica Sinica, 35(S1): 708−709 (in Chinese with English abstract).
[47] Li Zhenhong. 2020. Constraints of the upper mantle and lower crust on the Yanshanian metallogenic granites in the Middle Nanling (Hunan)[J]. Land and Resources Herald, 17(1): 27−33 (in Chinese with English abstract).
[48] Li Ziying, Huang Zhizhang, Li Xiuzhen. 2011. Guidong Magmatic Rocks and Uranium Mineralization in the Nanling Mountain[M]. Beijing: Geological Publishing House, 1–292 (in Chinese).
[49] Li X H, Liu D Y, Sun M, Li W X, Liang X R, Liu Y. 2004. Precise Sm–Nd and U–Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite SE China[J]. Geological Magazine, 141(2): 225−231. doi: 10.1017/S0016756803008823
[50] Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopopic constrains on age and origin of Jurassic I− and A−type granites from central Guangdong, SE China: A major igneous event in response to foundering of a sub−ducted flat−slab?[J]. Lithos, 96: 186−204. doi: 10.1016/j.lithos.2006.09.018
[51] Liang Xinquan, Li Xianhua, Qiu Yuanxi, Yang Dongsheng. 2005. Indosinian collisional orogeny: Evidence from structural and sedimentary geology in Shiwandashan, South China[J]. Geotectonica et Metallogenia, 29(1): 99−112 (in Chinese with English abstract).
[52] Liao Sen, Zou Zhenwei, Xie Gang. 2017. Geological structure characteristics of Xinfeng Daqiao coalfield[J]. Resource Information and Engineering, 32(6): 55−56 (in Chinese with English abstract).
[53] Liao Yuzhong. 2019. The Qianlishan Granite Genetically Related to the Zoning of Shizhuyuan Ore−field[D]. Beijing: China University of Geosciences (Beijing), 1–197 (in Chinese with English abstract).
[54] Lin Kun, Li Haidong, Liu Bin, Long Ziqiang, Wu Jianyong. 2021. Zircon U–Pb chronology and Hf isotope composition of porphyritic dacite in Hekou rock mass of northern Guangdong and their geological implications[J]. Geology and Exploration, 57(2): 392−401 (in Chinese with English abstract).
[55] Lin Xiaoming, Li Hongwei, Huang Jianye, Lou Feng. 2016. LA–ICP–MS zircon U–Pb dating of Shibei pluton at Dading iron mine area in Lianping, Guangdong and its geological significance[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 55(1): 131−136 (in Chinese with English abstract).
[56] Liu Chang, Tian Jianji, He Debao, Wang Wenquan, Li Junyang, Liu Wei. 2022. The uranium occurrence and paragenetic association of minerals in the Shuikoushan Pb–Zn polymeallie orefield, Hunan Province[J]. Geology and Exploration, 58(1): 1−11 (in Chinese with English abstract).
[57] Liu Guoqing, Wu Shicong, Du Andao, Fu Jianming, Yang Xiaojun, Tang Zhihua, Wei Junqi. 2008. Metallogenic ages of the Xitian tungsten−tin deposit, eastern Hunan Province[J]. Geotectonica et Metallogenia, 32(1): 63−71 (in Chinese with English abstract).
[58] Liu Xiaofei. 2014. Geology, Geochemistry and Genesis of the Jinchuantang Tin–Bismuth Deposit, Hunan Province[D]. Beijing: China University of Geosciences (Beijing), 1–80 (in Chinese with English abstract).
[59] Liu X H, Li B, Xu J W, He B, Liao J, Peng H W, Wang Y H, Lai J Q. 2022. Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li–Rb–Cs deposit in South China[J]. Ore Geology Reviews, 150: 105147. doi: 10.1016/j.oregeorev.2022.105147
[60] Lu Youyue, Fu Jianming, Chen Shunbo, Ma Liyan, Zhang Kun. 2013. SHRIIMP zircon U–Pb geochronology of the ore−bearing granite porphyry in the Jiepailing tin−polymetallic deposit, Southern Hunan province[J]. South China Geology, 29(3): 199−206 (in Chinese with English abstract).
[61] Lu Yuanfa, Ma Liyan, Qu Wenjun, Mei Yuping, Chen Xiqing. 2006. U–Pb and Re–Os isotope geochronology of Baoshan Cu–Mo polymetallic ore deposit in Hunan province[J]. Acta Petrologica Sinica, 22(10): 2483−2492 (in Chinese with English abstract).
[62] Ma Liyan, Lu Yuanfa, Mei Yuping, Chen Xiqing, Yang Hongmei. 2005. Rb–Sr isotopic ages of the Furong tin orefield in Hunan and their implications[J]. Acta Geoscientica Sinica, 26(S1): 143−145 (in Chinese with English abstract).
[63] Ma Liyan, Lu Yuanfa, Qu Wenjun, Fu Jianming. 2007. Re–Os isotopic chronology of molybdenites in Huangshaping lead–zinc deposit, southeast Hunan, and its geological implications[J]. Mineral Deposits, 26(4): 425−431 (in Chinese with English abstract).
[64] Ma Liyan, Lu Yuanfa, Fu Jianfa, Chen Xiqing, Chen Shunbo. 2010. The Rb–Sr and Sm–Nd geochronology constraints on the formation age of Jinchuantang and Hongqiling tin−polymetallic deposits in Dongpo orefield, Hunan Province[J]. South China Geology, 26(4): 23−29 (in Chinese with English abstract).
[65] Ma Liyan, Liu Shusheng, Fu Jianming, Chen Shunbo, Lu Youyue, Mei Yuping. 2016. Petrogenesis of the Tashan−Yangmingshan granitic batholiths: Constraint from zircon U–Pb age, geochemistry and Sr–Nd isotopes[J]. Acta Geologica Sinica, 90(2): 284−303 (in Chinese with English abstract).
[66] Ma Tieqiu, Bai Daoyuan, Kuang Jun, Wang Xianhui. 2005. Zircon SHRIMP dating of the Xitian granite pluton, Chaling, southeastern Hunan, and its geological significance[J]. Geological Bulletin of China, 24(5): 415−419 (in Chinese with English abstract).
[67] Ma Xinghua, Chen Bin, Wang Zhiqiang, Gao Lin, Sun Keke. 2014. Petrogenesis of the Lianyang composite granite, Nanling region: U–Pb zircon geochronology, geochemistry and Nd–Hf isotopes constraints[J]. Earth Science Frontiers, 21(6): 264−280 (in Chinese with English abstract).
[68] Mao J W, Cheng Y B, Chen M H. 2013. Major types and time−space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium deposita, 48(3): 267−294. doi: 10.1007/s00126-012-0446-z
[69] Mao Jinwen, Li Hongyan, Pei Rongfu. 1995. Nd–Sr isotopic and petrogenetic studies of the Qianlishan granite stock, Hunan Province[J]. Mineral Deposits, 14(3): 235−242 (in Chinese with English abstract).
[70] Mao Jingwen, Li Xiaofeng, Bernd Lehmann, Chenwen, Lan Xiaoming, Wei Shaoliu. 2004. 40Ar–39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance[J]. Mineral Deposits, 23(2): 164−175 (in Chinese with English abstract).
[71] Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large−scale tungsten−tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 23(10): 2329−2338 (in Chinese with English abstract).
[72] Mao Jingwen, Xie Guiqing, Guo Chunli, Yuan Shunda, Chen Yanbo, Chen Yuchuan. 2008. Spatial−temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510−526 (in Chinese with English abstract).
[73] Mi Jiaru, Yuan Shunda, Xuan Yisa, Zhang Dongliang. 2018. Zircon U–Pb ages, Hf isotope and trace element characteristics of the granodiorite porphyry from the Baoshan–Dafang ore district, Hunan: Implications for regional metallogeny[J]. Acta Petrologica Sinica, 34(9): 2548−2564 (in Chinese with English abstract).
[74] Mo Zhusun, Ye Bodan, Pan Weizu. 1980. Geology of the Nanling Mountain Granite[M]. Beijing: Geological Publishing House, 1–363 (in Chinese).
[75] Peng Jiantang, Hu Ruizhong, Bi Xianwu, Dai Tongmo, Li Zhaoli, Li Xiaomin, Shuang Yan, Yuan Shunda, Liu Shirong. 2007. 40Ar/39Ar isotopic dating of tin mineralization in Furong deposit of Hunan Province and its geological significance[J]. Mineral Deposits, 26(3): 237−248 (in Chinese with English abstract).
[76] Peng Nengli, Wang Xianhui, Yang Jun, Chen Di, Luo Lai, Luo Peng, Liu Tianyi. 2017. Re–Os dating of molybdenite from Sanjiaotan tungsten deposit in Chuankou area, Hunan Province, and its geological implications[J]. Mineral Deposits, 36(6): 1402−1414 (in Chinese with English abstract).
[77] Qin J H, Wang D H, Li C, Chen Y C, Cai F C. 2020. The molybdenite Re–Os isotope chronology, in situ scheelite and wolframite trace elements and Sr isotope characteristics of the Chuankou tungsten ore field, South China[J]. Ore Geology Reviews, 126: 103756−103775. doi: 10.1016/j.oregeorev.2020.103756
[78] Qin J H, Wang D H, Chen Y C. 2022. Geochemical and geochronological constraints on a granitoid containing the largest Indosinian tungsten (W) deposit in South China (SC): Petrogenesis and implications[J]. Minerals, 12(80): 1−33.
[79] Qin Jinhua, Wang Chenghui, Chen Yuchuan, Zhao Ruyi. 2022. Mineralogical characteristics and geological significance of beryl and muscovite from Yiliu deposit in middle of Nanling metallogenic belt[J]. Mineral Deposits, 41(5): 1025−1041 (in Chinese with English abstract).
[80] Qin Zhengwei, Fu Jianming, Xing Guangfu, Cheng Shunbo, Lu Youyue, Zhu Yingxue. 2022. The petrogenetic differences of the Middle–Late Jurassic W−, Sn−, Pb−Zn−Cu−bearing granites in the Nanling Range, South China[J]. Geology in China, 49(2): 518–539 (in Chinese with English abstract).
[81] Quan Tiejun, Kong Hua, Wang Gao, Fei Lidong, Guo Biying, Zhao Zhiqiang. 2012. Petrogenesis of the granites in the Huangshaping area: Constraints from petrochemistry, zircon U–Pb chronology and Hf isotope[J]. Geotectonica et Metallogenia, 36(4): 597−606 (in Chinese with English abstract).
[82] Rao C, Gu X, Wang R, Xia Q, Cai Y, Dong C, Hatert F, Hao Y. 2022. Chukochenite, (Li0.5Al0.5)Al2O4, a new lithium ox spinel mineral from the Xianghualing skarn, Hunan province, China. American Mineralogist[J], 107(5/6): 842–847.
[83] Shan Zhibo. 2014. Zircon U–Pb Geochronology, Geochemistry and Petrogenesis of the Taocunba Granite, Northern Guangdong Province Deposit in Lianping, Northern Guangdong[D]. Naniing: Nanjing University, 1–52 (in Chinese with English abstract).
[84] Shu Liangshu, Zhou Shuming, Deng Ping, Yu Xinqi. Wang Bin, Zu fuping. 2004. Geological features and tectonic evolution of Meso–Cenozoic basins in southeastern China[J]. Geological Bulletin of China, 23(9): 876−884 (in Chinese with English abstract).
[85] Shu Liangshu, Zhou Shuming, Deng Ping, Yu Xinqi. 2006. Principal geological features of Nanling tectonic belt, South China[J]. Geological Review, 52(2): 251−265 (in Chinese with English abstract).
[86] Sun Tao, Zhou Xinmin, Chen Peirong, Li Huimin, Zhou Hongying, Wang Zhicheng, Shen Weizhou. 2003. Genesis and tectonic significance of Mesozoic strong peraluminous granites in eastern Nanling[J]. Science in China (Series D: Earth Sciences), 33(12): 1209−1218 (in Chinese).
[87] Sun Yinchao, Chen Zhenhui, Zhao Guochun, Huang Hongxin, Zeng Le, Yan Chao, Wu Shicong. 2017. 40Ar/39Ar dating of muscovite from the contact zone of granite–aplite in the Dengfuxian W–Nb–Ta deposit and its geological significance[J]. Geological Bulletin of China, 36(2): 466−476 (in Chinese with English abstract).
[88] Wang Qunying, Lu Yuanfa, Chen Zhenhui, Ye Shiwen, Huang Hongxin. 2015. Fluid inclusion characteristic and ore−bearing granite U–Pb age of the Dengbuxian tungsten deposit, Hunan Province[J]. South China Geology, 31(1): 77−88 (in Chinese with English abstract).
[89] Wang Chenghui, Wang Denghong, Qin Jinhua, Li Jiankang, Liu Shanbao, Chen Zhenyu. 2021. Discovery of granitic pegmatite type beryllium ore deposit in middle of Nanling metallogenic belt[J]. Mineral Deposits, 40(2): 398−401 (in Chinese with English abstract).
[90] Wang Denghong. 1998. Mantle Plume and Mineralization[M]. Beijing: Seismological Press, 1–160 (in Chinese).
[91] Wang Denghong, Li Jiangkang, Ying Lijuan, Chen Zhenghui, Chen Yuchaun. 2007. Thinking of applying the concept of full mineralization and missing prospecting to find platinum group element deposits[J]. Journal of Mineralogy, (Z1): 460−462 (in Chinese).
[92] Wang Denghong, Li Huaqin, Qin Yan, Mei Yuping, Chen Zhenhui, Qu Wenjun, Wang Yanbin, Cai Hong, Gong Shuqing, He Xiaoping. 2009. Rock−forming and ore−forming ages of the Yaogangxian tungsten deposit of Hunan Province[J]. Rock and Mineral Analysis, 28(3): 201−208 (in Chinese with English abstract).
[93] Wang Denghong, Chen Zhenhui, Chen Yuchuan, Tang Juxing, Li Jiankang, Ying Lijuan, Wang Chenghui, Liu Shanbao, Li Xingli, Qin Yan, Li Huaqin, Qu Wenjun, Wang Yanbin, Chen Wen, Zhang Yan. 2010. New data of the rock−forming and ore−forming chronology for China's important mineral resources areas[J]. Acta Geologica Sinica, 84(7): 1030−1040 (in Chinese with English abstract).
[94] Wang Denghong, Chen Zhenyu, Huang Fan, Wang Chenghui, Zhao Zhi, Chen Zhenhui, Zhao Zheng, Liu Xinxing. 2014. Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling region[J]. Geotectonica et Metallogenia, 38(2): 230−238 (in Chinese with English abstract).
[95] Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, Yu Yang, Dai Jingjing, Tian Shihong. 2017. A preliminary review of the application of “Five levels + Basement” model for Jiajika−style rare metal deposits[J]. Earth Science Frontiers, 24(5): 1−7 (in Chinese with English abstract).
[96] Wang Jun, Lai Zhongxin, Zhang Huiren, Hu Gang, Yang Kunguang. 2011. The characteristics of pluton and its tectonic environment in Xiazhuang ore−field, North Guangdong[J]. Uranium Geology, 27(3): 136−145 (in Chinese with English abstract).
[97] Wang Kaixing, Chen Weifeng, Chen Peirong, Zhang Jian. 2012. LA–ICP–MS zircon geochronology, geochemistry and petrogenesis of the Yajiangqiao and Wufengxian intrusions in central Hunan[C]//Proceedings of the National Symposium on the Construction of Uranium Mining Base (Part 1): 486–494 (in Chinese with English abstract).
[98] Wang Rucheng, Xie Lei, Zhu Zeyin, Hu Huan. 2018. Micas: Important indicators of granite−pegmatite−related rare−metal mineralization[J]. Acta Petrologica Sinica, 35(1): 69−75 (in Chinese with English abstract).
[99] Wu Guangying. 2005. The Yanshanian Granitoids and Their Cosmical Mineralization Interaction in Poly Metallogenic Deposit−concentrated, Area in Southeastern Hunan[D]. Beijing: China University of Geosciences (Beijing), 1–218 (in Chinese with English abstract).
[100] Wu Guangying, Ma Tieqiu, Bai Daoyuan, Li Jindong, Che Qinjian, Wang Xianhui. 2005. Petrological and geochemical characteristics of granodioritic crypto explosion breccia and zircon SHRIMP dating in the Baoshan area, Hunan Province[J]. Geoscience, 19(2): 198−204 (in Chinese with English abstract).
[101] Wu Jiguang. 2013. LA–ICPMS U–Pb dating of zircons in dacite porphyry at North Guidong pluton in Nanling Mountain and its geological significance[J]. Uranium Geology, 29(5): 268−273,262 (in Chinese with English abstract).
[102] Xiao Hongquan, Zhao Kuidong, Jiang Shaoyong, Jiang Yaohui, Ling Hongfei. 2003. Lead isotope geochemistry and ore−forming age of Jinchuantang Sn–Bi deposit in Dongpo ore field, Hunan Province[J]. Mineral Deposits, 22(3): 264−270 (in Chinese with English abstract).
[103] Xie Yincai. 2013. Genesis of the Granodiorite Porphyry and Sources of Metallogenic Materials in the Baoshan Pb–Zn Polymetallic Deposit, Southern Hunan Province[D]. Nanjing: Nanjing University, 1–104 (in Chinese with English abstract).
[104] Xu Xisheng, Deng Ping, O'Reilly S Y, Griffin W L, Zhou Xinmin, Tan Zhengzhong. 2003. ICPMS U–Pb dating of single−grain zircon from the Guidong complex in South China and its diagenetic significance[J]. Chinese Science Bulletin, 48(12): 1328−1334 (in Chinese with English abstract). doi: 10.1360/csb2003-48-12-1328
[105] Xu Zhigang, Chen Yuchuan, Wang Denghong, Chen Zhenghui, Li Houmin. 2008. The Scheme of the Classification of the Minerogenetic Units in China[M]. Beijing: Geological Publishing House, 1–138 (in Chinese with English abstract).
[106] Yao Junming, Hua Renming, Lin Jinfu. 2005. Zircon LA–ICPMS U–Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan province, China[J]. Acta Petrologica Sinica, 21(3): 688−696 (in Chinese with English abstract).
[107] Yao Yuan. 2013. Magnesian and Calcic Skarn Type Tin−polymetallic Mineralization in the Nanling Range: A Case Study from Hehuaping and Xitian[D]. Nanjing: Nanjing University, 1–151 (in Chinese with English abstract).
[108] Yuan S D, Peng J T, Shen N P, Hu R Z, Dai T M. 2007. 40Ar–39Ar isotopic dating of the Xianghualing, Hunan, Sn–polymetallic ore field and its geological implications[J]. Acta Geologica Sinica (English Edition), 81(2): 278−286. doi: 10.1111/j.1755-6724.2007.tb00951.x
[109] Yuan S D, Mao J W, Cook N J, Wang X D, Liu X F, Yuan Y B. 2015. A Late Cretaceous tin metallogenic event in Nanling W–Sn metallogenic province: Constraints from U–Pb, Ar–Ar geochronology at the Jiepailing Sn–Be–F deposit, Hunan, China[J]. Ore Geology Reviews, 65: 283−293. doi: 10.1016/j.oregeorev.2014.10.006
[110] Yuan Shunda, Liu Xiaofei, Wang Xudong, Wu Shenghua, Yuan Yabing, Li Xuekai, Wang Tiezhu. 2012. Geological characteristics and 40Ar–39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province[J]. Acta Petrologica Sinica, 28(12): 3787−3797 (in Chinese with English abstract).
[111] Yuan Shunda. 2017. Several crucial scientific issues related to the W–Sn metallogenesis in the Nanling Range and their implications for regional exploration: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 736–749 (in Chinese with English abstract).
[112] Zeng Yunfu, Shen Qilin, Zhang Jinquan, Chi Sanchuan, Ge Chaohua, Liu Wenjun, Xu Xinhuang, et al. 1987. The Nanling Mountain Devonian stratabound deposit[M]. Beijing: Geological Publishing House (in Chinese).
[113] Zhang Min, Chen Peirong, Zhang Wenlan, Chen Weifeng, Li Huimin, Zhang Mengqun. 2003. Geochemical characteristics and petrogenesis of Dadongshan granite pluton in mid Nanling Range[J]. Geochimica, (6): 529−539 (in Chinese with English abstract).
[114] Zhang Rongqing, Lu Jianjun, Wang Rucheng, Yao Yuan, Ding Teng, Hu Jiabin, Zhang Huaifeng. 2016. Petrogenesis of W− and Sn−bearing granites and the mechanism of their metallogenic diversity in the Wangxianling area, southern Hunan Province[J]. Geochemica. 45(2): 105–132 (in Chinese with English abstract).
[115] Zhang R Q, Lu J J, Wang R C, Yang P, Zhu J C, Yao Y A, Gao J F, Li Chao, Lei Z H, Zhang W L, Guo W M. 2015. Constraints of in situ zircon and cassiterite U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar ages on multiple generations of granitic magmatism and related W–Sn mineralization in the Wangxianling area, Nanling Range, South China[J]. Ore Geology Reviews, 65: 1021−1042. doi: 10.1016/j.oregeorev.2014.09.021
[116] Zhang Shuming, Zhou Weixun, Wu Jianhua. 2002. Discrimination of volcanic rocks in Xiazhuang uranium ore−field and its comparison with volcanic rocks of the same period in adjacent areas[J]. Uranium Geology, 18(4): 202−209 (in Chinese with English abstract).
[117] Zhang Xiaojun, Luo Hua, Wu Zhihua, Fan Xianwang, Xiong Jun, Yang Jie, Mou Jinyi. 2014. Rb–Sr isochron age and its geological significance of Baishaziling tin deposit in Dayishan ore field, Hunan Province[J]. Earth Science, 39(10): 1422−1432 (in Chinese with English abstract).
[118] Zhao Chunlin. 1964. Liberite (Li2BeSiO4): A new lithium−beryllium silicate mineral from the Nanling Ranges, South China[J]. Acta Geologica Sinica, 44(3): 334−342 (in Chinese).
[119] Zhao Ruyi, Wang Denghong, Wang Yaowu, Chen Yuchuan, Liu Wusheng, Zhang Xiong, Jiang Jinchang, Liu Zhanqing, Li Tingjic, Wang Langen, Ying Lijuan. 2020. A prospecting breakthrough and progress in the Dabaoshan porphyry copper deposit in Guangdong Province[J]. Acta Geologica Sinica, 94(1): 204−216 (in Chinese with English abstract). doi: 10.1111/1755-6724.14508
[120] Zhao Zhi, Wang Denghong, Chen Zhenhui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of lon−adsorption type REE deposit in the Nanling Range[J]. Acta Geologica Sinica, 91(12): 2814−2827 (in Chinese with English abstract).
[121] Zhen Shiming, Zhu Xinyou, Li Yongsheng, Du Zezhong, Gong Fanyin, Gong Xiaodong, Qi Fanyu, Jia Delong, Wang Lulin. 2012. Zircon U–Pb geochronology and Hf isotopic compositions of the monzonite, related to the Xianrenyan gold deposit in Hunan Province and its geological significances[J]. Journal of Jilin University (Earth Science Edition), 42(6): 1740−1756 (in Chinese with English abstract).
[122] Zheng Jiahao, Guo Chunli. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance[J]. Acta Petrologica Sinica, 28(1): 75−90 (in Chinese with English abstract).
[123] Zhou Jiyuan, Du Siqing, Wei Xiangui. 1980. Discussion on structural system and coal prospecting direction in Xinfeng bridge coalfield area, Jiangxi Province[J]. Journal of Chengdu College of Geology, (2): 28−44 (in Chinese).
[124] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26−33. doi: 10.18814/epiiugs/2006/v29i1/004
[125] Zhou Yun, Liang Xinquan, Liang Xirong, Wu Shi, Cong Jiangying, Wen Shunv, Cai Yongfeng. 2013. Chronology and geochemical characteristics of W–Sn A−type granite in Xitian, Hunan[J]. Geotectonica et Metallogenia, 37(3): 511−529 (in Chinese with English abstract).
[126] Zou Dongfeng, Li Fanglin, Zhang Shuang, Huang Bin, Zong Keqing. 2011. Timing of No. 335 ore deposit in Xiazhuang uranium orefield, northern Guangdong Province: Evidence from LA–ICP–MS U–Pb dating of pitchblende[J]. Mineral Deposits, 30(5): 912−922 (in Chinese with English abstract).
[127] Zuo Changhu, Lu Rui, Zhao Zengxia, Xu Zhaowen, Lu Jianjun, Wang Ru Cheng, Chen Jinquan. 2014. Characterization of element geochemistry, LA–ICP–MS zircon U–Pb age, and Hf isotope of granodiorite in the Shuikoushan deposit, Changning, Hunan Province[J]. Geological Review, 60(4): 811−823 (in Chinese with English abstract).
[128] 柏道远, 陈建超, 马铁球, 王先辉. 2005. 湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境[J]. 岩石矿物学杂志, 24(4): 255−272. doi: 10.3969/j.issn.1000-6524.2005.04.002 [129] 柏道远, 马铁球, 王先辉, 张晓阳, 陈必河. 2008. 南岭中段中生代构造−岩浆活动与成矿作用研究进展[J]. 中国地质, 35(3): 436−455. doi: 10.3969/j.issn.1000-3657.2008.03.008 [130] 柏道远, 唐分配, 李彬, 曾广乾, 李银敏, 姜文. 2022. 湖南省成矿地质事件纲要[J]. 中国地质, 49(1): 151–180. [131] 伯慧, 邱开国, 陈富贵, 程星敏, 王鹤. 2016. 江西省信丰县含煤地层中推覆体的初步研究[J]. 江西煤炭科技, (4): 108−109. doi: 10.3969/j.issn.1006-2572.2016.04.042 [132] 蔡富成, 秦锦华, 覃金宁, 姜必广, 朱成生. 2021. 湖南川口岩体型钨矿赋矿花岗岩地球化学特征及LA–ICP–MS锆石U–Pb定年[J]. 中国地质, 48(4): 1212−1224. doi: 10.12029/gc20210417 [133] 蔡锦辉, 韦昌山, 孙明慧. 2004. 湖南骑田岭白腊水锡矿床成矿年龄讨论[J]. 地球学报, 25(2): 235−238. doi: 10.3321/j.issn:1006-3021.2004.02.027 [134] 蔡明海, 陈开旭, 屈文俊, 刘国庆, 付建明, 印建平. 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re–Os测年[J]. 矿床地质, 25(3): 263−268. doi: 10.3969/j.issn.0258-7106.2006.03.005 [135] 蔡明海, 张文兵, 彭振安, 刘虎, 郭腾飞, 谭泽模, 唐龙飞. 2016. 湘南荷花坪锡多金属矿床成矿年代研究[J]. 岩石学报, 32(7): 2111−2123. [136] 蔡杨, 马东升, 陆建军, 黄卉, 章荣清, 屈文俊. 2012. 湖南邓阜仙钨矿辉钼矿铼–锇同位素定年及硫同位素地球化学研究[J]. 岩石学报, 28(12): 3798−3808. [137] 陈迪, 陈焰明, 马爱军, 刘伟, 刘耀荣, 倪艳军. 2014. 湖南锡田岩体的岩浆混合成因: 岩相学、岩石地球化学和U–Pb年龄证据[J]. 中国地质, 41(1): 61−78. doi: 10.3969/j.issn.1000-3657.2014.01.005 [138] 陈迪, 刘珏懿, 付胜云, 马铁球, 刘耀荣. 2017. 湖南邓阜仙岩体地质地球化学特征、锆石U–Pb年龄及其意义[J]. 地质通报, 36(9): 1601−1615. doi: 10.3969/j.issn.1671-2552.2017.09.012 [139] 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 14(4): 459−473. doi: 10.3969/j.issn.1006-7493.2008.04.001 [140] 陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景[J]. 中国科学(D辑: 地球科学), 32(4): 279−289. [141] 陈毓川, 裴荣富, 张宏良, 林新多, 白鸽, 李崇佑, 胡永嘉, 刘姤群, 冼柏琪. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M]. 北京: 地质出版社, 1–508. [142] 陈毓川, 裴荣富, 张宏良. 1990. 南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质[J]. 中国地质科学院院报, (1): 79−85. [143] 陈毓川, 王登红, 徐志刚, 黄凡. 2014. 华南区域成矿和中生代岩浆成矿规律概要[J]. 大地构造与成矿学, 38(2): 219−229. [144] 程亮开. 2018. 粤北大东山岩体加里东期花岗岩锆石U–Pb年龄及地质意义[J]. 华南地质与矿产, 34(1): 31−40. [145] 程顺波, 付建明, 马丽艳, 卢友月, 王晓地, 夏金龙. 2016. 南岭地区早侏罗世成矿作用—来自粤北大顶铁锡矿床LA–ICP–MS和Ar–Ar年代学证据[J]. 地质学报, 90(1): 163−176. doi: 10.3969/j.issn.0001-5717.2016.01.011 [146] 邓平, 沈渭洲, 凌洪飞, 孙立强, 朱捌, 黄国龙, 谭正中. 2011. 粤北热水岩体SHRIMP锆石U–Pb年龄及地球化学特征研究[J]. 地质学报, 85(8): 1274−1283. [147] 邓湘伟, 刘继顺, 戴雪灵. 2015. 湘东锡田合江口锡钨多金属矿床地质特征及辉钼矿Re–Os同位素年龄[J]. 中国有色金属学报, 25(10): 2883−2897. [148] 丁兴, 陈培荣, 陈卫锋, 黄宏业, 周新民. 2005. 湖南沩山花岗岩中锆石LA–ICPMS U–Pb定年: 成岩启示和意义[J]. 中国科学(D辑: 地球科学), 35(7): 606−616. [149] 董超阁. 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 1–158. [150] 董少花, 毕献武, 胡瑞忠, 陈佑纬. 2014. 湖南瑶岗仙复式花岗岩岩石成因及与钨成矿关系[J]. 岩石学报, 30(9): 2749−2765. [151] 付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2004. 湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义[J]. 中国地质, 31(1): 96−100. doi: 10.3969/j.issn.1000-3657.2004.01.014 [152] 付建明, 程顺波, 卢友月, 伍式崇, 马丽艳, 陈希清. 2012. 湖南锡田云英岩−石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U–Pb定年[J]. 地质与勘探, 48(2): 313−320. [153] 高剑峰, 凌洪飞, 沈渭洲, 陆建军, 张敏, 黄国龙, 谭正中. 2005. 粤西连阳复式岩体的地球化学特征及其成因研究[J]. 岩石学报, 21(6): 1645−1656. doi: 10.3321/j.issn:1000-0569.2005.06.012 [154] 顾雄飞, 丁奎首, 徐英年. 1976. 南岭石—一种新的亚砷酸盐矿物[J]. 地球化学, (2): 107−112. doi: 10.3321/j.issn:0379-1726.1976.02.004 [155] 郭爱民, 陈必河, 陈剑锋, 杜云, 郑正福, 周超, 田磊, 樊晖. 2017. 湖南塔山花岗岩SHRIMP锆石U–Pb年龄及其地质意义[J]. 地质通报, 36(Z1): 459−465. [156] 何德宝. 2017. 粤北下庄矿田不同类型铀矿床成矿机制对比研究[D]. 北京: 核工业北京地质研究院, 1–82. [157] 黄崇轲, 朱裕生, 张忠伟. 1997. 南岭银矿[M]. 北京: 地质出版社, 1–293. [158] 黄会清, 李献华, 李武显, 刘颖. 2008. 南岭大东山花岗岩的形成时代与成因—SHRIMP锆石U–Pb年龄、元素和Sr–Nd–Hf同位素地球化学[J]. 高校地质学报, 14(3): 317−333. doi: 10.3969/j.issn.1006-7493.2008.03.004 [159] 黄蕴慧, 杜绍华. 1986. 我国第一个新矿物—香花石的发现及研究(1958)[J]. 中国地质科学院矿床地质研究所文集, (18): 1. [160] 贾大成, 胡瑞忠, 谢桂青. 2002. 湘东北中生代基性岩脉微量元素地球化学特征及岩石成因[J]. 地质地球化学, 30(3): 33−39. [161] 贾小辉, 王晓地, 杨文强, 牛志军. 2014. 桂北圆石山早侏罗世A型花岗岩的岩石成因及意义[J]. 地球科学(中国地质大学学报), 39(1): 21−36. [162] 来守华. 2014. 湖南香花岭锡多金属矿床成矿作用研究[D]. 北京: 中国地质大学(北京), 1–142. [163] 黎彤, 袁怀雨, 吴胜昔. 1998. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J]. 大地构造与成矿学, 22(1): 29−34. [164] 李红艳, 毛景文, 孙亚利, 邹晓秋, 何红蓼, 杜安道. 1996. 柿竹园钨多金属矿床的Re–Os同位素等时线年龄研究[J]. 地质论评, 42(3): 261−267. doi: 10.3321/j.issn:0371-5736.1996.03.011 [165] 李华芹, 路远发, 王登红, 陈毓川, 杨红梅, 郭敬, 谢才富, 梅玉萍, 马丽艳. 2006. 湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义[J]. 地质论评, 52(1): 113−121. doi: 10.3321/j.issn:0371-5736.2006.01.015 [166] 李建华, 张岳桥, 徐先兵, 李海龙, 董树文, 李廷栋. 2014. 湖南白马山龙潭超单元、瓦屋塘花岗岩锆石SHRIMP U–Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 44(1): 158−175. [167] 李赛, 段先哲, 牛苏娟, 李南, 孙浩然, 吴鹏, 戴浩鐘, 郭聪, 丁心科. 2022. 华南中生代玄武岩地球化学特征及其地球动力学意义[J]. 地质与勘探, 58(5): 1001−1015. doi: 10.12134/j.dzykt.2022.05.008 [168] 李顺庭, 王京彬, 祝新友, 李超. 2011. 湖南瑶岗仙钨多金属矿床辉钼矿Re–Os同位素定年和硫同位素分析及其地质意义[J]. 现代地质, 25(2): 228−235. doi: 10.3969/j.issn.1000-8527.2011.02.005 [169] 李顺庭, 祝新友, 王京彬, 王艳丽, 程细音, 蒋斌斌. 2015. 瑶岗仙复式岩体地质地球化学特征及其与成矿的关系[J]. 矿产勘查, 6(4): 347−355. doi: 10.3969/j.issn.1674-7801.2015.04.002 [170] 李勇, 张岳桥, 苏金宝, 李建华, 董树文. 2015. 湖南大义山、塔山岩体锆石U–Pb年龄及其构造意义[J]. 地球学报, 36(3): 303−312. doi: 10.3975/cagsb.2015.03.05 [171] 李永胜, 甄世民, 公凡影, 杜泽忠, 贾德龙. 2015. 湖南水口山铅锌金银矿田鸭公塘3号岩体地质及地球化学特征[J]. 矿物学报, 35(S1): 708−709. [172] 李振红. 2020. 南岭中段(湖南段)上地幔−下地壳对燕山期成矿花岗岩的约束[J]. 国土资源导刊, 17(1): 27−33. doi: 10.3969/j.issn.1672-5603.2020.01.006 [173] 李子颖, 黄志章, 李秀珍. 2011. 南岭贵东岩浆岩与铀成矿作用[M]. 北京: 地质出版社, 1–292. [174] 梁新权, 李献华, 丘元禧, 杨东生. 2005. 华南印支期碰撞造山—十万大山盆地构造和沉积学证据[J]. 大地构造与成矿学, 29(1): 99−112. doi: 10.3969/j.issn.1001-1552.2005.01.014 [175] 廖森, 邹振威, 谢刚. 2017. 信丰大桥煤田地质构造特征[J]. 资源信息与工程, 32(6): 55−56. doi: 10.3969/j.issn.2095-5391.2017.06.026 [176] 廖煜钟. 2019. 千里山花岗岩及其与柿竹园矿田矿化分带的成因联系[D]. 北京: 中国地质大学(北京), 1–197. [177] 林坤, 李海东, 刘斌, 龙自强, 吴建勇. 2021. 粤北河口岩体次英安斑岩锆石U–Pb年代学和Hf同位素特征及其地质意义[J]. 地质与勘探, 57(2): 392−401. doi: 10.12134/j.dzykt.2021.02.014 [178] 林小明, 李宏卫, 黄建桦, 娄峰. 2016. 广东连平大顶铁矿区石背岩体LA–ICP–MS锆石U–Pb年龄及地质意义[J]. 中山大学学报(自然科学版), 55(1): 131−136. [179] 刘畅, 田建吉, 何德宝, 王文全, 李君阳, 刘威. 2022. 湖南水口山铅锌多金属矿田中铀的赋存状态及其共生矿物组合[J]. 地质与勘探, 58(1): 1−11. doi: 10.12134/j.dzykt.2022.01.001 [180] 刘国庆, 伍式崇, 杜安道, 付建明, 杨晓君, 汤质华, 魏君奇. 2008. 湘东锡田钨锡矿区成岩成矿时代研究[J]. 大地构造与成矿学, 32(1): 63−71. doi: 10.3969/j.issn.1001-1552.2008.01.009 [181] 刘晓菲. 2014. 湖南金船塘锡铋矿床地质地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京), 1–80. [182] 卢友月, 付建明, 程顺波, 马丽艳, 张鲲. 2013. 湘南界牌岭锡多金属矿床含矿花岗斑岩SHRIMP锆石U–Pb年代学研究[J]. 华南地质与矿产, 29(3): 199−206. [183] 路远发, 马丽艳, 屈文俊, 梅玉萍, 陈希清. 2006. 湖南宝山铜−钼多金属矿床成岩成矿的U–Pb和Re–Os同位素定年研究[J]. 岩石学报, 22(10): 2483−2492. doi: 10.3321/j.issn:1000-0569.2006.10.009 [184] 马丽艳, 路远发, 梅玉萍, 陈希清, 杨红梅. 2005. 湖南芙蓉锡矿田Rb–Sr同位素年龄及其地质意义[J]. 地球学报, 26(S1): 143−145. [185] 马丽艳, 路远发, 屈文俊, 付建明. 2007. 湖南黄沙坪铅锌多金属矿床的Re–Os同位素等时线年龄及其地质意义[J]. 矿床地质, 26(4): 425−431. doi: 10.3969/j.issn.0258-7106.2007.04.006 [186] 马丽艳, 路远发, 付建明, 陈希清, 程顺波. 2010. 湖南东坡矿田金船塘、红旗岭锡多金属矿床Rb–Sr、Sm–Nd同位素年代学研究[J]. 华南地质与矿产, 26(4): 23−29. [187] 马丽艳, 刘树生, 付建明, 程顺波, 卢友月, 梅玉萍. 2016. 湖南塔山、阳明山花岗岩的岩石成因: 来自锆石U–Pb年龄、地球化学及Sr–Nd同位素证据[J]. 地质学报, 90(2): 284−303. doi: 10.3969/j.issn.0001-5717.2016.02.007 [188] 马铁球, 柏道远, 邝军, 王先辉. 2005. 湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义[J]. 地质通报, 24(5): 415−419. doi: 10.3969/j.issn.1671-2552.2005.05.004 [189] 马星华, 陈斌, 王志强, 高林, 孙克克. 2014. 南岭连阳复式岩体成因: 锆石U–Pb年代学、地球化学和Nd–Hf同位素约束[J]. 地学前缘, 21(6): 264−280. [190] 毛景文, 李红艳, 裴荣富. 1995. 湖南千里山花岗岩体的Nd–Sr同位素及岩石成因研究[J]. 矿床地质, 14(3): 235−242. [191] 毛景文, 李晓峰, Bernd Lehmann, 陈文, 蓝晓明, 魏绍六. 2004. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar–39Ar年龄及其地球动力学意义[J]. 矿床地质, 23(2): 164−175. doi: 10.3969/j.issn.0258-7106.2004.02.005 [192] 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329−2338. doi: 10.3969/j.issn.1000-0569.2007.10.002 [193] 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510−526. doi: 10.3969/j.issn.1006-7493.2008.04.005 [194] 弥佳茹, 袁顺达, 轩一撒, 张东亮. 2018. 湖南宝山—大坊矿区成矿花岗闪长斑岩的锆石U–Pb年龄、Hf同位素及微量元素组成对区域成矿作用的指示[J]. 岩石学报, 34(9): 2548−2564. [195] 莫柱孙, 叶伯丹, 潘维祖. 1980. 南岭花岗岩地质学[M]. 北京: 地质出版社, 1–363. [196] 彭建堂, 胡瑞忠, 毕献武, 戴橦谟, 李兆丽, 李晓敏, 双燕, 袁顺达, 刘世荣. 2007. 湖南芙蓉锡矿床40Ar–39Ar同位素年龄及地质意义[J]. 矿床地质, 26(3): 237−248. doi: 10.3969/j.issn.0258-7106.2007.03.001 [197] 彭能立, 王先辉, 杨俊, 陈迪, 罗来, 罗鹏, 刘天一. 2017. 湖南川口三角潭钨矿床中辉钼矿Re–Os同位素定年及其地质意义[J]. 矿床地质, 36(6): 1402−1414. [198] 秦锦华, 王成辉, 陈毓川, 赵如意. 2022. 南岭中段一六矿床绿柱石和白云母矿物学特征及其地质意义[J]. 矿床地质, 41(5): 1025−1041. [199] 秦拯纬, 付建明, 邢光福, 程顺波, 卢友月, 祝颖雪. 2022. 南岭成矿带中—晚侏罗世成钨、成锡、成铅锌(铜)花岗岩的差异性研究[J]. 中国地质, 49(2): 518–539. [200] 全铁军, 孔华, 王高, 费利东, 郭碧莹, 赵志强. 2012. 黄沙坪矿区花岗岩岩石地球化学、U–Pb年代学及Hf同位素制约[J]. 大地构造与成矿学, 36(4): 597−606. [201] 单芝波. 2014. 粤北桃村坝花岗岩锆石U–Pb年代学、地球化学及成因研究[D]. 南京: 南京大学, 1–52. [202] 舒良树, 周新民, 邓平, 余心起, 王彬, 祖辅平. 2004. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 23(9): 876−884. [203] 舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征[J]. 地质论评, 52(2): 251−265. [204] 孙涛, 周新民, 陈培荣, 李惠民, 周红英, 王志成, 沈渭洲. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义[J]. 中国科学(D辑: 地球科学), 33(12): 1209−1218. [205] 孙颖超, 陈郑辉, 赵国春, 黄鸿新, 曾乐, 晏超, 伍式崇. 2017. 湖南邓阜仙钨铌钽矿花岗细晶岩接触带白云母40Ar/39Ar年龄及其地质意义[J]. 地质通报, 36(2): 466−476. doi: 10.3969/j.issn.1671-2552.2017.02.028 [206] 汪群英, 路远发, 陈郑辉, 叶诗文, 黄鸿新. 2015. 湖南邓埠仙钨矿流体包裹体特征及含矿岩体U–Pb年龄[J]. 华南地质与矿产, 31(1): 77−88. [207] 王成辉, 王登红, 秦锦华, 李建康, 刘善宝, 陈振宇. 2021. 南岭成矿带中亚带发现花岗伟晶岩型铍矿[J]. 矿床地质, 40(2): 398−401. [208] 王登红. 1998. 地幔柱及其成矿作用[M]. 北京: 地震出版社, 1–160. [209] 王登红, 李建康, 应立娟, 陈郑辉, 陈毓川. 2007. 对运用全位成矿与缺位找矿理念寻找铂族元素矿床的思考[J]. 矿物学报, (Z1): 460−462. [210] 王登红, 李华芹, 秦燕, 梅玉萍, 陈郑辉, 屈文俊, 王彦斌, 蔡红, 龚述清, 何晓平. 2009. 湖南瑶岗仙钨矿成岩成矿作用年代学研究[J]. 岩矿测试, 28(3): 201−208. [211] 王登红, 陈郑辉, 陈毓川, 唐菊兴, 李建康, 应立娟, 王成辉, 刘善宝, 李立兴, 秦燕, 李华芹, 屈文俊, 王彦斌, 陈文, 张彦. 2010. 我国重要矿产地成岩成矿年代学研究新数据[J]. 地质学报, 84(7): 1030−1040. [212] 王登红, 陈振宇, 黄凡, 王成辉, 赵芝, 陈郑辉, 赵正, 刘新星. 2014. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 38(2): 230−238. [213] 王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−7. [214] 王军, 赖中信, 张辉仁, 胡刚, 杨坤光. 2011. 粤北下庄铀矿田岩体地球化学特征及其构造环境[J]. 铀矿地质, 27(3): 136−145. doi: 10.3969/j.issn.1000-0658.2011.03.002 [215] 王凯兴, 陈卫锋, 陈培荣, 章健. 2012. 湖南中部地区丫江桥和五峰仙岩体地球LA–ICP–MS锆石年代学、地球化学及岩石成因研究[C]//全国铀矿大基地建设学术研讨会论文集(上): 486–494. [216] 王汝成, 谢磊, 诸泽颖, 胡欢. 2018. 云母: 花岗岩—伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1): 69−75. [217] 伍光英. 2005. 湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用[D]. 北京: 中国地质大学(北京), 1–218. [218] 伍光英, 马铁球, 柏道远, 李金冬, 车勤建, 王先辉. 2005. 湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年[J]. 现代地质, 19(2): 198−204. doi: 10.3969/j.issn.1000-8527.2005.02.006 [219] 吴继光. 2013. 南岭贵东岩体北部英安斑岩锆石LA–ICPMS U–Pb年龄及其地质意义[J]. 铀矿地质, 29(5): 268−273, 262. doi: 10.3969/j.issn.1000-0658.2013.05.003 [220] 肖红全, 赵葵东, 蒋少涌, 姜耀辉, 凌洪飞. 2003. 湖南东坡矿田金船塘锡铋矿床铅同位素地球化学及成矿年龄[J]. 矿床地质, 22(3): 264−270. doi: 10.3969/j.issn.0258-7106.2003.03.007 [221] 谢银财. 2013. 湘南宝山铅锌多金属矿区花岗闪长斑岩成因及成矿物质来源研究[D]. 南京: 南京大学, 1–104. [222] 徐夕生, 邓平, O'Reilly S Y, Griffin W L, 周新民, 谭正中. 2003. 华南贵东杂岩体单颗粒锆石激光探针ICPMS U–Pb定年及其成岩意义[J]. 科学通报, 48(12): 1328−1334. doi: 10.3321/j.issn:0023-074X.2003.12.020 [223] 徐志刚, 陈毓川, 王登红, 陈郑辉, 李厚民. 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社, 1–138. [224] 姚军明, 华仁民, 林锦富. 2005. 湘东南黄沙坪花岗岩LA–ICPMS锆石U–Pb定年及岩石地球化学特征[J]. 岩石学报, 21(3): 688−696. doi: 10.3321/j.issn:1000-0569.2005.03.010 [225] 姚远. 2013. 南岭镁质及钙质矽卡岩型锡多金属成矿作用研究[D]. 南京: 南京大学, 1–151. [226] 袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李雪凯, 王铁柱. 2012. 湘南红旗岭锡多金属矿床地质特征及Ar–Ar同位素年代学研究[J]. 岩石学报, 28(12): 3787−3797. [227] 袁顺达. 2017. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J]. 矿物岩石地球化学通报, 36(5): 736−749. doi: 10.3969/j.issn.1007-2802.2017.05.004 [228] 曾允孚, 沈德麒, 张锦泉, 池三川, 葛朝华, 刘文均, 徐新煌, 等. 1987. 南岭泥盆系层控矿床[M]. 北京: 地质出版社. [229] 张敏, 陈培荣, 张文兰, 陈卫锋, 李惠民, 张孟群. 2003. 南岭中段大东山花岗岩体的地球化学特征和成因[J]. 地球化学, (6): 529−539. doi: 10.3321/j.issn:0379-1726.2003.06.003 [230] 章荣清, 陆建军, 王汝成, 姚远, 丁腾, 胡加斌. 2016. 湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制[J]. 地球化学, 45(2): 105−132. doi: 10.3969/j.issn.0379-1726.2016.02.001 [231] 张树明, 周维勋, 巫建华. 2002. 下庄铀矿田火山岩的厘定及与周边同期火山岩的对比[J]. 铀矿地质, 18(4): 202−209. doi: 10.3969/j.issn.1000-0658.2002.04.002 [232] 张晓军, 罗华, 吴志华, 范先旺, 熊俊, 杨杰, 牟金燚. 2014. 湖南大义山矿田白沙子岭锡矿床Rb–Sr同位素等时线年龄及其地质意义[J]. 地球科学(中国地质大学学报), 39(10): 1422−1432. [233] 赵春林. 1964. 锂铍石—一个新的富锂、铍矿物[J]. 地质学报, 44(3): 334−342. [234] 赵如意, 王登红, 王要武, 陈毓川, 刘武生, 张熊, 蒋金昌, 刘战庆, 李挺杰, 王兰根, 应立娟. 2020. 广东省大宝山斑岩型铜矿床勘查突破及其区域找矿意义[J]. 地质学报, 94(1): 204−216. [235] 赵芝, 王登红, 陈郑辉, 陈振宇. 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报, 91(12): 2814−2827. doi: 10.3969/j.issn.0001-5717.2017.12.016 [236] 甄世民, 祝新友, 李永胜, 杜泽忠, 公凡影, 巩小栋, 齐钒宇, 贾德龙, 王璐琳. 2012. 湖南仙人岩与金矿床有关的二长岩锆石U–Pb年龄、Hf同位素及地质意义[J]. 吉林大学学报(地球科学版), 42(6): 1740−1756. [237] 郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U–Pb年代学、地球化学、锆石Hf同位素特征及其地质意义[J]. 岩石学报, 28(1): 75−90. [238] 周济元, 杜思清, 魏显贵. 1980. 江西信丰大桥煤田地区构造体系及找煤方向的探讨[J]. 成都地质学院学报, (2): 28−44. [239] 周云, 梁新权, 梁细荣, 伍式, 崇蒋英, 温淑女, 蔡永丰. 2013. 湖南锡田含W–Sn A型花岗岩年代学与地球化学特征[J]. 大地构造与成矿学, 37(3): 511−529. doi: 10.3969/j.issn.1001-1552.2013.03.015 [240] 邹东风, 李方林, 张爽, 黄彬, 宗克清. 2011. 粤北下庄335矿床成矿时代的厘定—来自LA–ICP–MS沥青铀矿U–Pb年龄的制约[J]. 矿床地质, 30(5): 912−922. doi: 10.3969/j.issn.0258-7106.2011.05.012 [241] 左昌虎, 路睿, 赵增霞, 徐兆文, 陆建军, 王汝成, 陈进全. 2014. 湖南常宁水口山Pb–Zn矿区花岗闪长岩元素地球化学, LA–ICP–MS锆石U–Pb年龄和Hf同位素特征[J]. 地质论评, 60(4): 811−823.