• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例

沈杰, 徐浩, 邓虎成, 何建华, 李国峰, 刘岩, 宋威国, 邓乃尔, 武瑾

沈杰,徐浩,邓虎成,何建华,李国峰,刘岩,宋威国,邓乃尔,武瑾. 2025. 复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例[J]. 中国地质, 52(1): 315−330. DOI: 10.12029/gc20230421004
引用本文: 沈杰,徐浩,邓虎成,何建华,李国峰,刘岩,宋威国,邓乃尔,武瑾. 2025. 复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例[J]. 中国地质, 52(1): 315−330. DOI: 10.12029/gc20230421004
Shen Jie, Xu Hao, Deng Hucheng, He Jianhua, Li Guofeng, Liu Yan, Song Weiguo, Deng Naier, Wu Jin. 2025. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin[J]. Geology in China, 52(1): 315−330. DOI: 10.12029/gc20230421004
Citation: Shen Jie, Xu Hao, Deng Hucheng, He Jianhua, Li Guofeng, Liu Yan, Song Weiguo, Deng Naier, Wu Jin. 2025. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin[J]. Geology in China, 52(1): 315−330. DOI: 10.12029/gc20230421004

复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例

基金项目: 四川省科技计划杰出青年科技人才项目“页岩气储层天然裂缝评价”(2020JDJQ0058)资助。
详细信息
    作者简介:

    沈杰,男,1999年生,硕士,主要从事非常规油气储层地应力场精细描述研究;E−mail:1982510085@qq.com

    通讯作者:

    徐浩,男,1990年生,博士,副教授,主要从事油气田开发地质研究;E−mail:xuhao19@cdut.edu.cn

    武瑾,女,1988年生,博士,高级工程师,主要从事页岩气开发地质研究;E-mail:wujinouc@petrochina.com.cn

  • 中图分类号: P618.13

Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin

Funds: Supported by the project of sichuan Science and Technology Program Outstanding Young Scientific Talents (No. 2020JDJQ0058).
More Information
    Author Bio:

    SHEN Jie, born in 1999, master, mainly engaged in fine description of geostress field in unconventional oil and gas reservoirs; E-mail:1982510085@qq.com

    Corresponding author:

    XU Hao, born in 1990, Ph.D., associate professor, mainly engaged in oil and gas field development geological research; E-mail:xuhao19@cdut.edu.cn

    WU Jin, born in 1988, Ph.D., senior engineer, mainly engaged in shale gas development geological research; E-mail: wujinouc@petrochina.com.cn.

  • 摘要:
    研究目的 

    鄂尔多斯盆地定北地区上古生界致密气资源丰富,勘探潜力巨大,但区内断裂广泛发育,断裂带附近地应力场特征规律不明,严重制约该区油气勘探开发。

    研究方法 

    本文基于差应变实验、声发射实验、测井解释地应力大小、波速各向异性实验、古地磁实验、成像测井与偶极声波测井资料解释地应力方向、数值模拟等多方法融合开展研究区上古生界地应力场特征精细解析,以期查明定北地区地应力场分布特征及其扰动机制。

    研究结果 

    定北地区上古生界三向应力具有垂向主应力>最大主应力>最小主应力的特征,区域地应力场大小主要受断裂带控制,应力扰动程度与断裂部位、断裂规模、断裂成因等因素有关,其中溶塌型断裂带区域三向应力相对最低。区域主应力场方向为N35°E~N45°E,储层地应力方向主要受区域主应力场方向和断裂带控制,不同类型断裂带引起的地应力扰动范围和扰动程度存在差异,其中地应力扰动范围主要受断裂走向与断层长度所影响。

    结论 

    基于地应力场特征研究,本文明确了定北地区地应力大小及方向的分布特征和扰动规律,探讨了不同成因断裂带对地应力大小的扰动机制,并建立了研究区地应力方向扰动宽度预测模型,对后续井网部署及压裂改造等具有重要参考价值。

    创新点:

    揭示了复杂断裂带对地应力分布的影响;探讨了不同成因断裂带对地应力大小的扰动机制;建立了定北地区地应力方向扰动宽度预测模型。

    Abstract:

    This paper is the result of oil−gas exploration engineering.

    Objective 

    Dingbei area of Ordos Basin is rich in tight gas resources of Upper Paleozoic and has great exploration potential. However, faults are widely developed in this area, and the characteristics of geostress field near the fault zone are unknown, which seriously restricts oil and gas exploration and development in this area.

    Methods 

    This paper conducts a detailed analysis of the characteristics of the Upper Paleozoic geostress field in the study area based on differential strain experiment, acoustic emission experiment, logging interpretation of geostress size, wave velocity anisotropy experiment, paleomagnetism experiment, imaging logging and dipole acoustic logging data interpretation of geostress direction, numerical simulation and other methods, in order to find out the distribution characteristics and disturbance mechanism of the geostress field in Dingbei area.

    Results 

    The three−dimensional stress of Upper Paleozoic in Dingbei area has the characteristics of vertical principal stress>maximum principal stress>minimum principal stress, and the regional geostress field is mainly controlled by the fault zone, and the stress disturbance degree is related to the fault location, fault scale, fault genesis and other factors, among which the three−dimensional stress in the karst fault zone is relatively lowest. The direction of regional principal stress field is N35°E~N45°E. The direction of reservoir geostress is mainly controlled by the direction of regional principal stress field and fault zone, and the range and degree of geostress disturbance caused by different types of fault zones are different, among which the range of geostress disturbance is mainly affected by fault strike and fault length.

    Conclusions 

    Based on the research on the characteristics of geostress field, this paper clarifies the distribution characteristics and disturbance law of geostress size and direction in Dingbei area, discusses the disturbance mechanism of different genetic fault zones on geostress size, and establishes a prediction model for the disturbance width of geostress direction in the research area, which has important reference value for subsequent well pattern deployment and fracturing reconstruction.

    Highlights:

    The influence of complex fault zone on in−situ stress distribution is revealed. The disturbance mechanism of different genetic fault zones on geostress is discussed. The prediction model of disturbance width in the direction of geostress in Dingbei area is established.

  • 近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。

    在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。

    研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。

    图  1  区域构造位置图(a)、矿区地质简图(b)、勘探线剖面图(c)及萤石矿岩心(d)
    Figure  1.  Regional structure location map (a), brief geological diagram of ore district (b), prospecting line profile map (c) and cores specimen of fluorite deposit (d)

    在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。

    (1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。

    (2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。

    本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。

  • 图  1   研究区地质背景图

    a—研究区构造位置图(据刘洪平,2017修改);b—不同时期构造应力场;c—太原组底面相干切片图;d—工区主要断裂分布图

    Figure  1.   Geological background map of the study area

    a−Tectonic location map of the study area (modified from Liu Hongping, 2017);b−Tectonic stress field at different times;c−Taiyuan Formation bottom surface coherent slice map;d−Distribution map of main faults in work area

    图  2   研究区哈巴湖断裂典型剖面(剖面位置见图1d)

    Figure  2.   Typical section of Habahu fault in the study area (see Fig.1d for the location of the section)

    图  3   DB13井太2段2号样品45°声发射曲线图

    Figure  3.   45 Acoustic emission curve of sample No.2 of Well DB13 Tai 2

    图  4   DB23井上古生界单井地应力剖面

    Figure  4.   Geostress profile of single Well DB23 in Upper Paleozoic

    图  5   地应力方向测井解释结果图

    a—DB27井3734~3737 m井壁崩落指示地应力方向51°±5°;b—DB23井3858~3863 m诱导缝指示地应力方向68°±5°;c—DB23井4020~4035 m偶极声波各向异性图像指示地应力方向69°±5°

    Figure  5.   Interpretation result diagram of geostress direction logging

    a−Well DB27 3734−3737m wall collapse indicates the direction of ground stress 51°±5°; b−Well DB23 3858−3863 m induced joints indicative of ground stress direction 68°±5°; c−Well DB23 4020−4035 m dipole acoustic anisotropy images indicate 69°±5° geostress direction

    图  6   定北地区上古生界单井地应力方向分布图(底图为太2段底部构造图)

    Figure  6.   Distribution map of geostress direction of Upper Paleozoic single well in Dingbei area (the base map is the bottom structural map of Tai 2 member)

    图  7   研究区地质模型图

    a—小层层面;b—断层模型网格剖分图;c—加边界的地质模型

    Figure  7.   Geological model map of the study area

    a−Plane of stratum minor; b−Fault model grid sections; c−Geological model with boundary

    图  8   定北地区太二段主应力和差应力分布模拟图

    a—垂直主应力分布图;b—水平最大主应力分布图;c—水平最小主应力分布图;d—差应力分布图

    Figure  8.   Simulation diagram of principal stress and differential stress distribution of Tai−2 member in Dingbei area

    a−Vertical principal stress distribution; b−Horizontal maximum principal stress distribution; c−Horizontal minimum principal stress distribution; d−Differential stress distribution

    图  9   定北地区岩心照片

    a—DB18井马家沟组4008.56~4008.88 m,灰色灰质白云岩,见溶孔;b—DB18井马家沟组4012.08~4012.36 m,灰色白云岩,见垂直裂缝;c—DB16井太2段3842.75~3842.87 m,浅灰色中砂岩,见高角度裂缝;d—DB14井太2段3905.66~3905.83 m,浅灰色细砂岩,见垂直裂缝

    Figure  9.   Core photos in Dingbei area

    a−Well DB18 Majiagou Formation 4008.56−4008.88 m, gray gray dolomite, see solution hole; b−Well DB18 Majiagou Formation 4012.08−4012.36 m, gray dolomite, see vertical cracks; c−Well DB16 Tai 2 section 3842.75−3842.87 m, light gray medium sandstone, see high angle cracks; d−Well DB14 Tai 2 section 3905.66−3905.83 m, light gray fine sandstone, see vertical cracks

    图  10   不同成因断裂带应力扰动模式图

    Figure  10.   Stress disturbance pattern diagram of fault zones with different genesis

    图  11   哈巴湖主断裂附近地应力扰动范围(测线L位置见图12)

    a—水平最小主应力扰动范围;b—地应力方向扰动范围(其中应力偏转角度是指地应力方向与N40°E方向的夹角)

    Figure  11.   Disturbance range of geostress near Habahu main fault (see Fig.12 for the position of survey line L)

    a−Disturbance range of horizontal minimum principal stress; b−Disturbance Range of geostress direction (where the angle of stress deflection is the angle between the direction of geostress and the direction of N40°E)

    图  12   定北地区地应力扰动带平面分布图(其他图例见图1

    Figure  12.   Plane distribution map of ground stress disturbance zone in Dingbei area (other legends are shown in Fig.1)

    图  13   扰动宽度影响因素分析

    a—断裂面形态;b—断裂长度;c—断裂走向与区域主应力场方向的夹角;d—断距

    Figure  13.   Analysis of influencing factors of disturbance width

    a−Fault surface morphology; b−Fault length; c−Angle between the fault strike and the direction of the regional main stress field; d−Separation

    图  14   扰动宽度三维计算图版

    Figure  14.   Three−dimensional calculation chart of disturbance width

    表  1   定北地区上古生界差应变实验结果

    Table  1   Experimental results of Upper Paleozoic differential strain in Dingbei area

    井号 层位 深度/m 三向主应力/MPa 三向主应力梯度/(MPa/100 m)
    水平最大 水平最小 垂向 水平最大 水平最小 垂向
    DB15 山1段 3765.80 61.62 57.65 91.51 1.6363 1.5308 2.4300
    DB17 太2段 3937.50 74.33 65.26 95.68 1.8877 1.6573 2.4299
    DB20 盒1段 3764.40 66.45 56.17 91.47 1.7652 1.4921 2.4298
    DB23 太2段 3991.70 63.92 55.22 97.00 1.6013 1.3833 2.4300
    DB27 太2段 3799.40 70.91 64.46 92.33 1.8663 1.6965 2.4301
    DB31 盒1段 3774.80 61.59 58.11 91.73 1.6316 1.5394 2.4300
    DB32 山1段 3756.20 63.05 56.95 91.28 1.6785 1.5161 2.4301
    下载: 导出CSV

    表  2   定北地区上古生界声发射实验结果

    Table  2   Acoustic emission experiment results of Upper Paleozoic in Dingbei area

    井号 层位 深度/m 岩性 kaiser点应力值/MPa 最大主应力/
    MPa
    最小主应力/
    MPa
    垂向地应力/
    MPa
    45° 90° 垂直
    DB12 盒1段 3704.16~3704.30 灰白色粗砂岩 40.41 44.19 31.94 51.28 72.56 63.89 83.33
    DB13 太2段 3917.95~3918.11 灰白色粗砂岩 39.41 30.51 22.84 48.86 73.32 56.74 82.76
    DB501 盒1段 3809.09~3809.23 浅灰色中砂岩 39.28 28.50 20.64 50.13 72.25 53.59 83.09
    DB501 盒1段 3864.10~3864.22 浅灰色细砂岩 41.25 28.65 22.64 50.64 74.73 56.03 84.08
    DB2201 盒1段 3675.43~3675.56 浅灰色含砾粗砂岩 44.74 38.34 32.47 59.49 76.54 64.27 91.29
    下载: 导出CSV

    表  3   定北地区太2段现今地应力大小模拟结果及误差分析

    Table  3   Simulation results and error analysis of current geostress in Tai 2 member of Dingbei area

    井号 σH/MPa σh/MPa σv/MPa σHσh)/MPa
    测量值 模拟值 误差值 测量值 模拟值 误差值 测量值 模拟值 误差值 测量值 模拟值 误差值
    DB13 73.32 72.00 −1.32 56.74 58.00 1.26 82.76 92.00 9.24 16.58 14.00 −2.58
    DB17 74.33 70.00 −4.33 65.26 60.00 −5.26 95.68 95.00 −0.68 9.07 10.00 0.93
    DB23 63.92 66.00 2.08 55.22 54.00 −1.22 97.00 96.00 −1.00 8.70 12.00 3.30
    DB27 70.91 62.00 −8.91 64.46 54.00 −10.46 92.33 85.00 −7.33 6.45 8.00 1.55
    下载: 导出CSV

    表  4   定北地区太2段现今地应力方向模拟结果及误差分析

    Table  4   Simulation results and error analysis of current geostress direction of Tai 2 member in Dingbei area

    井号 实测手段 实测方向 模拟方向 差值/ (°)
    DB13 波速各向异性+古地磁 N76.73°E N64.00°E −12.73
    DB17 波速各向异性+古地磁 N48.05°E N55.00°E 6.95
    DB23 波速各向异性+古地磁 N68.90°E N75.00°E 6.10
    DB27 波速各向异性+古地磁 N49.13°E N106.00°E 56.87
    DB18 成像测井 N42.00°E N50.00°E 8.00
    DB26 偶极声波 N61.50°E N64.00°E 2.50
    下载: 导出CSV
  • [1]

    Chen Shijie, Xiao Ming, Chen Juntao, Ren Junqing. 2020. Disturbance law of faults to in−situ stress field directions and its inversion analysis method[J]. Journal of Rock Mechanics and Engineering, 39(7): 1434−1444 (in Chinese with English abstract).

    [2]

    Chen Wei, Wu Zhiping, Hou feng, Kong Fei. 2010. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 31(5): 774−780 (in Chinese with English abstract).

    [3]

    Fu H L, Xu W, Wu Y M. 2023. Study on the distribution law of crustal stress in fault fracture area[J]. Applied Sciences, 13(13): 7678. doi: 10.3390/app13137678

    [4]

    He Jianhua, Cao Feng, Deng Hucheng, Wang Yuanyuan, Li Yong, Xu Qinglong. 2022. Evaluation of in−situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 50(4): 1107−1121 (in Chinese with English abstract).

    [5]

    Huang Tao, Liu Yan, He Jianhua, Ye Tairan, Deng Hucheng, Li Ruixue, Li Kesai, Zhang Jiawei. 2023. Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan[J]. Geology in China, 51(1): 89−104 (in Chinese with English abstract).

    [6]

    Huang Rongzun, Zhuang Jinjiang. 1986. A new method for predicting formation fracture pressure[J]. Oil Drilling & Production Technology, (3): 1−14 (in Chinese).

    [7]

    Jia Ailin, Wei Yunsheng, Guo Zhi, Wang Guoting, Meng Deiwei, Huang Suqi. 2022. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 42(1): 83−92 (in Chinese with English abstract).

    [8]

    Jia Xiaoliang, Cui Hongqing, Zhang Zimin. 2010. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration, 38(4): 47−51 (in Chinese with English abstract).

    [9]

    Li Jing, Liu Chen, Liu Huimin, Xu Yanchao, Xie Li, Huang Guipeng. 2021. Distribution and influencing factors of in−situ in complex fault tectonic region[J]. Journal of China University of Mining and Technology, 50(1): 123−137 (in Chinese with English abstract).

    [10]

    Li Tang, Fu Meiyan, Deng Hucheng, Li Xiaohui, Wang Kunyu, Ran Hui. 2023. Diagenetic facies and distribution of tight sandstone reservoirs containing volcanic ash: A case study of the Upper Paleozoic in Dingbei area[J]. Natural Gas Geoscience, 34(10): 1768−1779 (in Chinese with English abstract).

    [11]

    Li Y J, Chen L W, Tan P, Li H. 2014. Lower crustal flow and its relation to the surface deformation and stress distribution in western Sichuan region, China[J]. Journal of Earth Science, 25(4): 630−637. doi: 10.1007/s12583-014-0467-x

    [12]

    Liu Hongping. 2017. Field Development Geologic Evaluation of Tight Gas Sandstones in Taiyuan Formation, Dingbei Area, Ordos Basin, China[D]. Wuhan: China University of Geosciences, 1−204 (in Chinese with English abstract).

    [13]

    Liu Yingjun, Zhu Haiyan, Tang Xuanhe, Sun Hansen, Zhang Binhai Chen Zhengrong. 2022. Four−dimensional in−situ stress model of CBM reservoirs based on geology–engineering integration[J]. Natural Gas Industry, 42(2): 82−92 (in Chinese with English abstract).

    [14]

    Liu Z Y, Zhao H F, Shi H W. 2022. Experimental study on stress monitoring in fractured−vuggy carbonate reservoirs before and after fracturing[J]. Journal of Petroleum Science and Engineering, 218: 110958. doi: 10.1016/j.petrol.2022.110958

    [15]

    Liu Zhongchun, Lü Xinrui, Li Yukun, Zhang Hui. 2016. Mechanism of faults acting on in−situ stress field direction[J]. Petroleum and Natural Gas Geology, 37(3): 387−393 (in Chinese with English abstract).

    [16]

    Luo Jianqiang, He Zhongming. 2008. Tectonic evolution and oil−gas distributoon in the mesozoic Ordos Basin[J]. Geology and Resources, 17(2): 135−138 (in Chinese with English abstract).

    [17]

    Lü Jing. 2017. Continental Facies Shale Formation Rock Mechanical Characteristics and Stress Field Evaluation Technique[D]. Chengdu: Chengdu University of Technology, 1−164 (in Chinese with English abstract).

    [18]

    Qi Hongwei, Shen Jie. 2023. Fracture development characteristics and influencing factors of Upper Paleozoic in Dingbei area[J]. World Petroleum Industry, 30(4): 48−54 (in Chinese with English abstract).

    [19]

    Shan Yuming, Zhou Wen, Tong Kaijun, Xie Runcheng. 2010. Application of synthetic evaluation for present ground stress field in deep formation of XC gas field in western Sichuan[J]. Mineralogy and Petrology, 30(3): 69−76 (in Chinese with English abstract).

    [20]

    Sun Lijian, Zhu Yuanqing, Yang Guangliang, Yin Jiyao. 2009. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 29(2): 7−12 (in Chinese with English abstract).

    [21]

    Su Shengrui. 2001. The Effect of Fractures on Rock Stresses and Its Significance in Geological Engineering[D]. Chengdu: Chengdu University of Technology, 1−153 (in Chinese with English abstract).

    [22]

    Su Shengrui, Wang Shitian, Zhu Hehua. 2022. The effect of faults on geostress fields[C]// China Science and Technology Press, 662−667 (in Chinese with English abstract).

    [23]

    Weng Jianqiao, Zeng Lianbo, Lü Wenya, Liu Qi, Zu Kewei. 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39−47 (in Chinese with English abstract).

    [24]

    Wu Xiaoqi, Ni Chunhua, Chen Yingbin, Zhu Jianhui, Li Kuang, Zeng Huasheng. 2019. Source of the Upper Paleozoic natural gas in Dingbei area in the Ordos Basin[J]. Natural Gas Geoscience, 30(6): 819−827 (in Chinese with English abstract).

    [25]

    Xian Chenggang. 2018. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 37(5): 24−34 (in Chinese with English abstract).

    [26]

    Xu Ke, Dai Junsheng, Shang Lin, Fang Lu, Feng Jianwei, Du He. 2019. Characteristics and infiuencing factors of in−situ stress of Nanpu sag, Bohai Bay basin, China[J]. Journal of China University of Mining & Technology, 48(3): 570−583 (in Chinese with English abstract).

    [27]

    Xu Ke, Tian Jun, Yang Haijun, Zhang Hui, Wang Zhimin, Yuan Fang, Wang Haiying. 2020. Prediction of current in−situ stress filed and its application of deeply buried tight sandstone reservoir: A case study of Keshen 10 gas reservoir in Kelasu structural belt, Tarim Basin[J]. Journal of China University of Mining & Technology, 49(4): 708−720 (in Chinese with English abstract).

    [28]

    Xu Ke, Zhang Hui, Liu Xinyu, Wang Zhimin, Lai Shujun. 2022. Current in−situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and development[J]. Petroleum Geology and Recovery Efficiency, 29(2): 34−45 (in Chinese with English abstract).

    [29]

    Xu Liming, Zhou Lifa, Zhang Yikai, Dang Ben. 2006. Characteristics and tectonic setting of tectono−stress field of Ordos Basin[J]. Tectonics and Mineralogy, 30(4): 455−462 (in Chinese with English abstract).

    [30]

    Zhang Chong. 2015. The Fracture Characteristics, Causes and Distribution Evaluation of the Ordovician Karst Reservoir in Daniudi Gas Field[D]. Chengdu: Chengdu University of Technology, 1−103 (in Chinese with English abstract).

    [31]

    Zhang Wei, Lu Tao. 2019. Control effect of fault system on gas−water distribution in Dingbei area[J]. Science and Technology & Innovation, (16): 81−82 (in Chinese).

    [32]

    Zhang Xiaoju, He Jianhua, Xu Qinglong, Ye Tairan, Deng Hucheng, Xu Zhengqi, Cao Feng, Yuan Yunqi. 2022. Distribution characteristics and disturbance mechanism of presnt in−situ stress field in the second member of Xujiane formation in Hechuan area[J]. Mineral Rock, 42(4): 71−82 (in Chinese with English abstract).

    [33]

    Zhang Yueqiao, Liao Changzhen. 2006. Transition of the Late Mesozoic–Cenozoic tectonic regimes and modification of the Ordos Basin[J]. Geology in China, 33(1): 28−40 (in Chinese with English abstract).

    [34]

    Zhao Ronghua. 2021. Types and models of gas accumulation in Upper Paleozoic in Dingbei area[J]. Journal of Hebei GEO University, 44(3): 37−40 (in Chinese with English abstract).

    [35]

    Zhao Yuting, Duan Dong, Yang Yao, Fang Chaohe, Qu Xiaoming, Kang Zhiqin. 2015. Numerical simulation on influence factors of ground stress at the end of fault[J]. Safety in Coal Mines, 46(10): 210−213 (in Chinese with English abstract).

    [36] 陈世杰, 肖明, 陈俊涛, 任俊卿. 2020. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 39(7): 1434−1444.
    [37] 陈伟, 吴智平, 侯峰, 孔菲. 2010. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报, 31(5): 774−780. doi: 10.7623/syxb201005012
    [38] 何建华, 曹峰, 邓虎成, 王园园, 李勇, 徐庆龙. 2022. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 50(4): 1107−1121.
    [39] 黄滔, 刘岩, 何建华, 叶泰然, 邓虎成, 李瑞雪, 李可赛, 张家维. 2023. 川西孝泉−丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 51(1): 89−104.
    [40] 黄荣樽, 庄锦江. 1986. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, (3): 1−14.
    [41] 贾爱林, 位云生, 郭智, 王国亭, 孟德伟, 黄苏琦. 2022. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 42(1): 83−92. doi: 10.3787/j.issn.1000-0976.2022.01.008
    [42] 贾晓亮, 崔洪庆, 张子敏. 2010. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探, 38(4): 47−51. doi: 10.3969/j.issn.1001-1986.2010.04.011
    [43] 李静, 刘晨, 刘惠民, 许艳超, 解丽, 黄贵朋. 2021. 复杂断层构造区地应力分布规律及其影响因素[J]. 中国矿业大学学报, 50(1): 123−137.
    [44] 李傥, 伏美燕, 邓虎成, 李晓慧, 王琨瑜, 冉辉. 2023. 含火山灰的致密砂岩储层成岩相及其分布—以定北地区上古生界为例[J]. 天然气地球科学, 34(10): 1768−1779.
    [45] 刘洪平. 2017. 鄂尔多斯盆地定北地区太原组致密砂岩气层开发地质评价[D]. 武汉: 中国地质大学, 1−204.
    [46] 刘英君, 朱海燕, 唐煊赫, 孙晗森, 张滨海, 陈峥嵘. 2022. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律[J]. 天然气工业, 42(2): 82−92. doi: 10.3787/j.issn.1000-0976.2022.02.009
    [47] 刘中春, 吕心瑞, 李玉坤, 张辉. 2016. 断层对地应力场方向的影响机理[J]. 石油与天然气地质, 37(3): 387−393. doi: 10.11743/ogg20160311
    [48] 罗建强, 何忠明. 2008. 鄂尔多斯盆地中生代构造演化特征及油气分布[J]. 地质与资源, 17(2): 135−138. doi: 10.3969/j.issn.1671-1947.2008.02.010
    [49] 吕晶. 2017. 陆相泥页岩地层岩石力学特征及地应力场评价技术[D]. 成都: 成都理工大学, 1−164.
    [50] 齐宏伟, 沈杰. 2023. 定北地区上古生界裂缝发育特征及影响因素[J]. 世界石油工业, 30(4): 48−54.
    [51] 单钰铭, 周文, 童凯军, 谢润成. 2010. 现今地应力场特征综合评价技术在川西XC气田深层中的应用[J]. 矿物岩石, 30(3): 69−76. doi: 10.3969/j.issn.1001-6872.2010.03.009
    [52] 孙礼健, 朱元清, 杨光亮, 尹继尧. 2009. 断层端部及附近地应力场的数值模拟[J]. 大地测量与地球动力学, 29(2): 7−12. doi: 10.3969/j.issn.1671-5942.2009.02.003
    [53] 苏生瑞. 2001. 断裂构造对地应力场的影响及其工程意义[D]. 成都: 成都理工学院, 1−153.
    [54] 苏生瑞, 王士天, 朱合华. 2002. 断裂对地应力场影响的研究[C]//岩石力学新进展与西部开发中的岩土工程问题—中国岩石力学与工程学会第七次学术大会论文集: 中国科学技术出版社, 662−667.
    [55] 翁剑桥, 曾联波, 吕文雅, 刘奇, 祖克威. 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39−47. doi: 10.12090/j.issn.1006-6616.2020.26.01.004
    [56] 吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 2019. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 30(6): 819−827. doi: 10.11764/j.issn.1672-1926.2019.03.015
    [57] 鲜成钢. 2018. 页岩气地质工程一体化建模及数值模拟: 现状、挑战和机遇[J]. 石油科技论坛, 37(5): 24−34. doi: 10.3969/j.issn.1002-302x.2018.05.005
    [58] 徐珂, 戴俊生, 商琳, 房璐, 冯建伟, 杜赫. 2019. 南堡凹陷现今地应力特征及影响因素[J]. 中国矿业大学学报, 48(3): 570−583.
    [59] 徐珂, 田军, 杨海军, 张辉, 王志民, 袁芳, 王海应. 2020. 深层致密砂岩储层现今地应力场预测及应用—以塔里木盆地克拉苏构造带克深10气藏为例[J]. 中国矿业大学学报, 49(4): 708−720.
    [60] 徐珂, 张辉, 刘新宇, 王志民, 来姝君. 2022. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 29(2): 34−45.
    [61] 徐黎明, 周立发, 张义楷, 党犇. 2006. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造与成矿学, 30(4): 455−462. doi: 10.3969/j.issn.1001-1552.2006.04.007
    [62] 张冲. 2015. 大牛地气田奥陶系岩溶储层裂缝特征、成因及分布评价[D]. 成都: 成都理工大学, 1−103.
    [63] 张威, 卢涛. 2019. 定北地区断裂系统对气水分布的控制作用[J]. 科技与创新, (16): 81−82.
    [64] 张小菊, 何建华, 徐庆龙, 叶泰然, 邓虎成, 徐争启, 曹峰, 阮韵琪. 2022. 合川地区须二段现今地应力场分布特征与扰动机制研究[J]. 矿物岩石, 42(4): 71−82. doi: 10.3969/j.issn.1001-6872.2022.4.kwys202204007
    [65] 张岳桥, 廖昌珍. 2006. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 33(1): 28−40. doi: 10.3969/j.issn.1000-3657.2006.01.003
    [66] 赵荣华. 2021. 定北地区上古生界天然气成藏类型及模式[J]. 河北地质大学学报, 44(3): 37−40.
    [67] 赵钰挺, 段东, 杨瑶, 方朝合, 曲晓明, 康志勤. 2015. 断层端部地应力分布规律影响因素的数值模拟[J]. 煤矿安全, 46(10): 210−213.
图(14)  /  表(4)
计量
  • 文章访问数:  8967
  • HTML全文浏览量:  781
  • PDF下载量:  738
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-09-30
  • 网络出版日期:  2024-02-03
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回
x 关闭 永久关闭