• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

共和盆地干热岩GR2井现今地应力特征及断层稳定性分析

陈东方, 杨跃辉, 牛兆轩, 王红伟, 金显鹏, 李振宇, 吴海东, 刘东林

陈东方,杨跃辉,牛兆轩,王红伟,金显鹏,李振宇,吴海东,刘东林. 2025. 共和盆地干热岩GR2井现今地应力特征及断层稳定性分析[J]. 中国地质, 52(2): 1−13. DOI: 10.12029/gc20230901003
引用本文: 陈东方,杨跃辉,牛兆轩,王红伟,金显鹏,李振宇,吴海东,刘东林. 2025. 共和盆地干热岩GR2井现今地应力特征及断层稳定性分析[J]. 中国地质, 52(2): 1−13. DOI: 10.12029/gc20230901003
Chen Dongfang, Yang Yuehui, Niu Zhaoxuan, Wang Hongwei, Jin Xianpeng, Li Zhenyu, Wu Haidong, Liu Donglin. 2025. In-situ stress characteristics and fault stability analysis of hot dry rock GR2 well in Gonghe Basin[J]. Geology in China, 52(2): 1−13. DOI: 10.12029/gc20230901003
Citation: Chen Dongfang, Yang Yuehui, Niu Zhaoxuan, Wang Hongwei, Jin Xianpeng, Li Zhenyu, Wu Haidong, Liu Donglin. 2025. In-situ stress characteristics and fault stability analysis of hot dry rock GR2 well in Gonghe Basin[J]. Geology in China, 52(2): 1−13. DOI: 10.12029/gc20230901003

共和盆地干热岩GR2井现今地应力特征及断层稳定性分析

基金项目: 国家重点研发计划(2021YFB1507404)及中国地质调查局项目(DD20211336、DD20230018)联合资助。
详细信息
    作者简介:

    陈东方,男,1992年生,工程师,主要从事构造应力场和岩石力学方面的相关工作;E−mail:chendongfang@mail.cgs.gov.cn

    通讯作者:

    金显鹏,男,1983年生,高级工程师,主要从事干热岩开发方面的相关工作;E−mail:jinxp@mail.cgs.gov.cn

  • 中图分类号: P314

In-situ stress characteristics and fault stability analysis of hot dry rock GR2 well in Gonghe Basin

Funds: Supported by the National Key Research and Development Program (No.2021YFB1507404) and the projects of China Geological Survey (No.DD20211336, No.DD20230018).
More Information
    Author Bio:

    CHEN Dongfang, male, born in 1992, master, engineer, engaged in the the field of in-situ stress and rock mechanics-related work; E−mail:chendongfang@mail.cgs.gov.cn

    Corresponding author:

    JIN Xianpeng, male, born in 1983, senior engineer, mainly engaged in hot dry rock development related work; E−mail:jinxp@mail.cgs.gov.cn.

  • 摘要:
    研究目的 

    地应力大小和方向是干热岩开发中井位部署、压裂设计和储层评价等方面的重要基础数据,研究储层应力状态对干热岩开发具有重要意义。

    研究方法 

    本文根据区域地质构造演化、震源机制解反演结果、节理裂隙统计、原地应力实测数据分析了共和盆地区域应力场的特征,结合共和GR2地热井储层构造、地层岩性特点建立三维模型,利用正交各向异性弹性本构关系,通过数值模拟获取了共和盆地GR2井的三维地应力数据,探讨了区域构造应力场及干热岩注水开发与断层稳定性。

    研究结果 

    ①模拟所得地应力分布与理论值吻合,满足初始位移精度要求,最终预估了井中地应力场分布特征;②在500~4500 m深度范围内,三向主应力总体表现为σv> σH >σh,表明该区域应力结构有利于正断层活动;③青海共和盆地最大水平主应力方向整体上呈北东(NE)向挤压变形作用为主,有利于花岗岩岩体具有低的流体渗透率、低的热流传导。④在统一的区域地应力场作用下, 研究区3900~4500 m干热岩注水开发过程中,当地面持续注入压力达到或超过约19.9 MPa 时,可能引起场区内断层的滑动失稳,导致中小地震的发生,在干热岩开发利用中需注意防范。

    结论 

    研究结果对共和盆地地球动力学研究及干热岩安全开发利用具有一定参考价值。

    创新点:

    (1)基于地质构造演化、震源机制解反演、节理裂隙统计、地应力实测数据系统分析了共和盆地区域应力场特征;(2)采用数值模拟方法获取了干热岩GR2井地应力数据,对干热岩研究区断层的稳定性进行分析并从干热岩开发的角度定量评价了注水压力对附近断层稳定性的影响。

    Abstract:

    This paper is the result of geological survey engineering.

    Objective 

    The magnitude and direction of in−situ stress are important parameters for well placement, fracturing design and reservoir evaluation in hot dry rock development. It is of great significance to study reservoir stress state for hot dry rock development.

    Methods 

    In this paper, the characteristics of current stress field in Gonghe Basin are analyzed based on regional geological structure evolution, focal mechanism solution and inversion results, statistics of joints and fissures, and in−situ stress measured data. Combined with the reservoir structure and stratigraphic lithofacies characteristics of GR2 well, a three−dimensional model is established, and the three−dimensional in−situ stress data of GR2 well in Gonghe Basin is obtained through numerical simulation by using orthogonal anisotropic elastic constitutive relation. The regional tectonic stress field and occurrence conditions of dry hot rock resources are discussed.

    Results 

    ① The simulated stress distribution is consistent with the theoretical value, which meets the requirements of initial displacement accuracy, and finally predicts the distribution characteristics of in−situ stress field in the well. ② In the depth range of 500~4500 m, the relationship of three principal stresses is principal stress is σv>σH >σh, indicating that the stress structure in this region is favorable to normal fault activity. ③ The maximum horizontal principal stress direction of Gonghe Basin in Qinghai province is mainly NE direction compression deformation, which is conducive to low fluid permeability and low heat transfer of granite. ④ Under the action of a unified regional stress field, the faults may be come instability near the injecting well, when the continuous injection pressure on the ground reaches or exceeds about 19.9 MPa during the water injection development of 3900~4500 m depth in the study area, leading to the occurrence of medium and small earthquakes, which should be prevented in the development and utilization of the hot dry rock.

    Conclusions 

    This study have certain reference value for geodynamics research and the safe development and utilization of dry hot rock in Gonghe Basin.

    Highlights:

    (1) The characteristics of regional stress field in Gonghe Basin were analyzed based on geological structure evolution, focal mechanism solution inversion, joint fracture statistics and in−situ stress measurement data. (2) The in−situ stress data of hot dry rock GR2 well were obtained by numerical simulation, the stability of faults in the study area was analyzed, and the influence of water injection pressure on the stability of nearby faults was quantitatively evaluated from the perspective of hot dry rock development.

  • 近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。

    在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。

    研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。

    图  1  区域构造位置图(a)、矿区地质简图(b)、勘探线剖面图(c)及萤石矿岩心(d)
    Figure  1.  Regional structure location map (a), brief geological diagram of ore district (b), prospecting line profile map (c) and cores specimen of fluorite deposit (d)

    在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。

    (1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。

    (2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。

    本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。

  • 图  1   共和盆地地质构造简图(据王二七等,2009修改)

    Figure  1.   Schematic diagram of the geological structure of the Gonghe Basin (modified from Wang Erqi et al.,2009)

    图  2   基于裂隙统计的共和干热岩区地应力方向投影图(据雷治红,2020修改)

    Figure  2.   Direction projection map of in−situ stress in hot and dry rock area of Gonghe Basin based on fracture statistics (modified from Lei Zhihong, 2020)

    图  3   共和盆地干热岩区最大水平主应力方位(据王洪等,2021修改)a—水压致裂法;b—应力解除法

    Figure  3.   Orientation of maximum horizontal principal stress in hot dry rock area of Gonghe Basin (modified from Wang Hong, 2021). (a) HF method; (b) Stress relief method.

    图  4   共和盆地震源分布图(a)(据雷治红,2020修改)和震源机制综合解(b)

    Figure  4.   Seismic source distribution map of Gonghe Basin (a) (modified from Lei Zhihong, 2020) and the focal mechanism synthesis solution (b)

    图  5   干热岩研究区三维有限元网格模型

    Figure  5.   Diagram of the 3D finite element mesh model of the hot dry rock study area

    图  6   干热岩研究区三维主应力云图

    a—最大主应力云图;b—中间主应力云图;c—最小主应力云图

    Figure  6.   3D principal stress Nephogram of the hot dry rock study area

    a–Nephogram of maximum principal stress; b–Nephogram of intermediate principal stress; c– Nephogram of minor principal stress

    图  7   干热岩GR2井位移、地应力模拟结果图

    a—Z向位移云图;b—GR2井地应力随孔深分布图

    Figure  7.   Displacement and is−situ stress simulation results diagram in hot dry rock GR2 well

    a–Nephogram of Z−direction displacement; b–Variations of stresses with the depth of GR2 well

    图  8   库伦破坏准则有效应力莫尔圆示意图

    Figure  8.   Mohrcircle of effective principal stress expressing Coulomb’s failure criterion

    图  9   干热岩区断层活动性分析莫尔圆

    a—基于地应力的莫尔圆断层活动性分析;b—GR2井在4500 m处断层随孔隙压力的增加可能导致不稳定

    Figure  9.   Mohr circle of effective principal stress expressing Coulomb’s failure criterion in hot dry rock region

    a−Mohr circle based on in−situ stress data for activity analysis of faults;b−The faults may lead to instability with the depth of 4500 m of GR2 well with the increase of pore pressure

    表  1   共和干热岩分布区节理裂隙主应力方向统计表

    Table  1   Statistics of principal stress direction of joints and fractures in hot dry rock area of Gonghe Basin

    位置经度/°纬度/°最大主应力/°岩性露头
    达连海100.4136.23NE 85临夏组泥岩
    千卜禄寺100.4636.39NE 60印支期花岗岩
    沟后100.5836.39NE 62印支期花岗岩
    阿乙亥100.6836.21NE 73共合组砂岩
    龙羊峡100.9036.15NE 75印支期花岗岩
    土林100.8336.21NE 70临夏组泥岩
    党家寺100.8536.29NE 72印支期花岗岩
    下载: 导出CSV

    表  2   干热岩GR2井岩层类别及岩层力学参数

    Table  2   Rock stratum category and rock mechanics parameters of hot dry rock GR2 well

    岩性深度/m密度/(kN/m3)泊松比弹性模量/GPa
    μxμyμzGxyGyzGxz
    泥岩945220000.2380.2380.2387.517.517.51
    砂岩1000236500.2400.2400.24014.8514.8514.85
    二长花岗岩1395257700.2530.2530.25335.4435.4435.44
    黑云母花岗岩1600258100.2550.2550.25542.1542.1542.15
    花岗闪长岩1800268500.2640.2640.26443.1543.1543.15
    二长花岗斑岩1920268200.2580.2580.25846.5646.5646.56
    黑云母花岗岩2350275600.2740.2740.27440.2540.2540.25
    二长花岗岩2600278600.2690.2690.26942.3642.3642.36
    黑云母二长花岗岩4000279600.2710.2710.27141.2841.2841.28
    下载: 导出CSV

    表  3   干热岩地热井地应力数值模拟值对比表

    Table  3   Comparison of stress field numerical simulation values in geothermal wells of dry hot rock

    深度/m井名σv/MPa相对误差σH/MPa相对误差σh/MPa相对误差
    3000GR2773.75%6115%546.8%
    GR1807258
    3500GR2923.15%7216.2%637.3%
    GR1958668
    4000GR21043.7%8315.3%725.3%
    GR11089876
    下载: 导出CSV
  • [1]

    Amadei B, Stephansson O. 1997. Rock Stress and Its Measurement[M]. Centek Publishers.

    [2]

    Byerlee J. 1978. Friction of rocks[J]. Pure & Applied Geophysics, 116(4/5): 615−626.

    [3]

    Ding Sanping. 2008. Early Palaeozoic Tectonic Framework and Evolution in the Junction of Western Qinling Orogenic Belt and Qilian Orogenic Belt[D]. Xi'an: Chang'an University, 1– 200(in Chinese with English abstract).

    [4]

    Dong Zhiping, Yao Zhengsheng, Lei Fang. 1992. Active faults and modern tectonic stress field in the region of eastern Qinghai[J]. Crustal Deformation and Earthquake, 12(4): 64−71 (in Chinese with English abstract).

    [5]

    Du Changting. 2001. Characteristics of the mechanism solutions of Gonghe earthquakes[J]. Plateau Earthquake Research, 13(4): 1−5 (in Chinese with English abstract).

    [6]

    Feng C J, Gao G L, Zhang S H, Sun D S, Zhu S Y, Tan C X, Ma X D. 2022. Fault slip potential induced by fluid injection in the Matouying enhanced geothermal system (EGS) field, Tangshan seismic region, North China[J]. Natural Hazards and Earth System Sciences, 22(7): 2257−2287.

    [7]

    He Dafang, Zeng Lin, Yang Hanyuan, Ye Jianling, Cao Hui, Zhang Dali. 2018. Granite mass hot dry rock resources hosting condition in hunan[J]. Coal Geology of China, 30(2): 50−57,67 ( in Chinese with English abstract).

    [8]

    He Jiangda, Xie Hongqiang, Wang Qizhi, Xiao mingli. 2009. Inversion analysis of initial geostress in dam site of Guandi Hydropower Project[J]. Chinese Journal of Geotechnical Engineering, 31(2): 166−171 (in Chinese with English abstract).

    [9]

    He Manchao, Xie Heping, Peng Suping, Jiang Yaodong. 2005. Stduy on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2804−2813 (in Chinese with English abstract).

    [10]

    Jing Feng, Sheng Qian, Zhang Yonghui, Luo Wenchao, Liu Yuankun. 2007. Research on distribution rule of shallow crustal geostess in China mainland[J]. Chinese Journal of Rock Mechanics and Engineering, 26(10): 2056−2062 (in Chinese with English abstract).

    [11]

    Lee K K, Ellsworth W L, Giardini D, Townend J, Ge S, Toshihiko S, Yeo I, Kang T S, Junkee R, Sheen D H, Chang C D, Woo J U, Langenbruch C. 2019. Managing injection−induced seismic risks[J]. Science, 364: 730−732. doi: 10.1126/science.aax1878

    [12]

    Lei Zhihong. 2020. Study on the Characteristics of Hot Dry Rock Reservoir and Fracturing Test Model in the Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 1–178 (in Chinese with English abstract).

    [13]

    Lei Z H, Zhang Y J, Yu Z W, Hu Z J, Li L Z, Zhang S Q, Fu L, Zhou L, Xie Y Y. 2019. Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China[J]. Renewable Energy, 139: 52−70. doi: 10.1016/j.renene.2019.01.088

    [14]

    Li Liangzhen, Zhang Yanjun, Lei Zhihong, Zhang Qian, Zhang Senqi, Fu Lei. 2019. Inversion analysis of 3D geostress field in GR2 well area of Gonghe hot rock geothermal well[J]. Chinese Quarterly of Mechanics, 40(1): 115−123 (in Chinese with English abstract).

    [15]

    Liu Aihua, Yang Qing, Wu Junping. 2013. A practical ANSYS 3−D numerical simulation method for in−situ stress field[J]. Journal of Geomechanics, 19(2): 133−142 (in Chinese with English abstract).

    [16]

    Liu Jian, Hui Chen, Fan Jianming, Lü Wenya, Wang Jiwei, Yin Chen, Wang Haonan. 2021. Distribution characteristics of the present−day in−situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31−39 (in Chinese with English abstract).

    [17]

    Liu Hongzhan, Zhang Xiaoling, Yao Mingbo. 2014. Geothermal geology characteristic and origin analysis of Shilin Basin in Yunnan Province[J]. Journal of East China Institute of Technology (Natural Science), (1): 69−74 ( in Chinese with English abstract).

    [18]

    Lu Chuan, Wang Guiling. 2015. Current status and prospect of hot dry rock research[J]. Science & Technology Review, 33(19): 13−21 (in Chinese with English abstract).

    [19]

    Michael A J. 1987. Use of focal mechanisms to determine stress: A control study[J]. Journal of Geophysical Research: Solid Earth, 92: 357−368.

    [20]

    Ren Haidong, Wang Tao. 2017. Temporal−spatial variations, sources and tectonic significances of the Triassic granitic rocks in the Juncti on part of the east Kunlun and west Qinling Orogen, Central China[J]. Acta Geoscientica Sinica, 38(S1): 59−63 (in Chinese with English abstract).

    [21]

    Shangguan Shuantong, Sun Dongsheng, Zhang Guobin, Yang Yuehui, Qi Xiaofei, Chen Dongfang, Qiao Yongchao, Li A Wei, Chen Qunce. 2021. In−situ stress measurement and fault stability analysis within a depth of 3~4 km in the Tangshan area[J]. Acta Geologica Sinica, 95(12): 3915−3925 (in Chinese with English abstract).

    [22]

    Sun Dongsheng. 2014. Experimental Study of Aneiastic Strain Recovery in−Situ Stress Measurement Methods and its Application[D]. Beijing: Chinese Academy of Geological Sciences , 1–134(in Chinese with English abstract).

    [23]

    Sun Yangui, Fang Hongbin, Zhang Kun, Zhao Fuyue, Liu Shiying, Zhu Xi, Liu Yanguang, Li Jun. 2007. Step−like landform system of the Gonghe basin and the uplift of the Qinghai−Tibet Plateau and development of the Yellow River[J]. Geology in China, 34(6): 1141−1147 (in Chinese with English abstract).

    [24]

    Tan Chengxuan, Sun Weifeng, Sun Ye, Wang Lianjie. 2006. A consideration on in–situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10): 1627−1632 ( in Chinese with English abstract).

    [25]

    Vavryˇcuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms[J]. Geophysical Journal International, 199: 69−77.

    [26]

    Wang Chenghu. 2014. Brief review and outlook of main estimate and measurement methods for in−situ stresses in rock mass[J]. Geological Review, 60(5): 971–991, 992–995, 996 (in Chinese with English abstract).

    [27]

    Wang Erqi, Su Zhe, Xu Guang. 2009. A case study on lateral extrusion occurred along some orogenic belts in China[J]. Chinese Journal of Geology, 44(4): 1266−1288 (in Chinese with English abstract).

    [28]

    Wang Guilin, Zhang Wei, Lin Wenjing, Liu Feng, Zhu Xi, Liu Yanguang, Li Jun. 2017. Research on formation mode and development potential of geothermal resources in Beijing−Tianjin−Hebei region[J]. Geology in China, 44(6): 1074−1085 (in Chinese with English abstract).

    [29]

    Wang Hong, Wang Chenghu, Gao Guiyun, Chen Nian, Zhou Hao, An Yifei. 2021. The state of the in–situ stress and fault slide evaluation of Gonghe Basin, Qinghai Province[J]. Technology for Earthquake Disaster Prevention, 16(1): 123−133 (in Chinese with English abstract).

    [30]

    Wang Jinan, Li Fei. 2015. Review of inverse optimal algorithm of in–situ stress filed and new achievement[J]. Journal of China University of Mining & Technology, 44(2): 189−205 (in Chinese with English abstract).

    [31]

    Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 30(32): 25−31 (in Chinese with English abstract).

    [32]

    Wang Lijuan, Mu Qingsong, Miao Tiande. 2008. Numerical simulation of 3D initial stress field of Jinchuan No. 2 Mining Area[J]. Metal Mine, (11): 100−102 (in Chinese with English abstract).

    [33]

    Wang Yong, Yang Weihao. 2016. Numerical simulation method for 3D initial geostress field based on ANSYS[J]. Coal Engineering, 48(10): 77−88 (in Chinese with English abstract).

    [34]

    Xie Furen, Chen Qunce, Cui Xiaofeng, Li Hong, Yang Shuxin, Guo Qiliang, Chen Lianwang, Xu Zhonghuai, Zhang Yanshan, Dou Shuqin, Zhao Jiantao, Zhang Zhoushu, Liu Changyi, Wang Gangjun. 2004. Fundamental database of crustal stress environment in continental China[J]. Progress in Geophysics, 22(1): 131−136 (in Chinese with English abstract).

    [35]

    Xu Jiren, Zhao Zhixin. 2006. Characteristics of the regional stress field and tectonic movement on the Qinghai−Tibet Plateau and in its surrounding areas[J]. Geology in China, 33(2): 275−285 (in Chinese with English abstract).

    [36]

    Xu Tianfu, Hu Zixu, Li Shengtao, Jiang Zhenjiao, Hou Zhaoyun, Li Fengyu, Liang Xu, Feng Bo. 2018. Enhanced geothermal system: International progresses and research status of china[J]. Acta Geologica Sinica, 92(9): 1936−1947 (in Chinese with English abstract).

    [37]

    Yu Zhixiong, Zhou Chuangbin, Chen Yifeng, Li Junping. 2007. Study on v− SVR and modified GA in back analysis of initial stress fields from displacements[J]. Rock and Soil Mechanics, 28(1): 151−156,162 (in Chinese with English abstract).

    [38]

    Zhang Chongyuan, Wu Manlu, Chen Qunce, Liao Chunting, Feng Chengjun. 2012. Review of in−situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3): 305−310 (in Chinese with English abstract).

    [39]

    Zhang E Y, Wen D G, Wang G L, Yan W D, Wang W S, Ye C M, Li X F, Wang H, Tang X C, Weng W, Li K, Zhang C Y, Liang M X, Luo H B, Hu H Y, Zhang W, Zhang S Q, Jin X P, Wu H D, Zhang LY, Feng Q D, Xie J Y, Wang D, He Y C, Wang Y W, Chen Z B, Cheng Z P, Luo W F, Yang Y, Zhang H, Zha E L, Gong Y, Zheng Y, Jiang C S, Zhang S S, Niu X, Zhang H, Hu L S, Zhu G L, Xu W H, Niu Z X, Yang L. 2022. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 5(3): 372–382.

    [40]

    Zhang Guowei, Guo Anlin, Yao Anping. 2004. Western Qinling−Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 11(3): 23−32 (in Chinese with English abstract).

    [41]

    Zhang Yongming, Pei Xianzhi, Li Zuochen, Li Ruibao, Liu Chengjun, Pei Lei, Chen Youxin, Chen Guochao, Wang Meng. 2017. LA−ICP−MS zircon U−Pb dating, geochemistry and its geological significance of the heimahe granitic pluton in the western segment of the Qinghai'nanshan tectonic belt[J]. Geological Review, 63(4): 1079−1101 ( in Chinese with English abstract).

    [42]

    Zoback M D. 2007. Reservoir Geomechanics[M]. Cambridge University Press.

    [43] 丁仨平. 2008. 西秦岭—祁连造山带(东段)交接部位早古生代构造格架及构造演化[D]. 西安: 长安大学, 1–200.
    [44] 董治平, 姚政生, 雷芳. 1992. 青海东部活断层与现代构造应力场[J]. 地壳形变与地震, 12(4): 64−71.
    [45] 都昌庭. 2001. 共和地震震源机制解特征[J]. 高原地震, 13(4): 1−5.
    [46] 何大芳, 曾琳, 杨汉元, 叶见玲, 曹晖, 张大礼. 2018. 湖南花岗岩体干热岩资源赋存条件分析[J]. 中国煤炭地质, 30(2): 50−57,67.
    [47] 何江达, 谢红强, 王启智, 肖明砾. 2009. 官地水电站坝址区初始地应力场反演分析[J]. 岩土工程学报, 31(2): 166−171. doi: 10.3321/j.issn:1000-4548.2009.02.003
    [48] 何满潮, 谢和平, 彭苏萍, 姜耀东. 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2804−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [49] 景锋, 盛谦, 张勇慧, 罗超文, 刘元坤. 2007. 中国大陆浅层地壳实测地应力分布规律研究[J]. 岩石力学与工程学报, 26(10): 2056−2062. doi: 10.3321/j.issn:1000-6915.2007.10.014
    [50] 雷治红. 2020. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 1–178.
    [51] 李良振, 张延军, 雷治红, 张谦, 张森琦, 付雷. 2019. 共和干热岩地热井GR2井区三维地应力场反演分析[J]. 力学季刊, 40(1): 115−123.
    [52] 刘爱华, 杨清, 吴均平. 2013. ANSYS三维地应力场数值模拟方法应用研究[J]. 地质力学学报, 19(2): 133−142. doi: 10.3969/j.issn.1006-6616.2013.02.003
    [53] 刘建, 惠晨, 樊建明, 吕文雅, 王继伟, 尹陈, 王浩南. 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31−39.
    [54] 刘红战, 张小凌, 姚明波. 2014. 云南石林盆地地热地质特征及成因分析[J]. 东华理工大学学报(自然科学版), (1): 69−74.
    [55] 陆川, 王贵玲. 2015. 干热岩研究现状与展望[J]. 科技导报, 33(19): 13−21.
    [56] 任海东, 王涛. 2017. 东昆仑—西秦岭造山带对接处三叠纪花岗质岩石时空演化、物源特征对比及其大地构造意义[J]. 地球学报, 38(S1): 59−63. doi: 10.3975/cagsb.2017.s1.16
    [57] 上官拴通, 孙东生, 张国斌, 杨跃辉, 齐晓飞, 陈东方, 乔永超, 李阿伟, 陈群策. 2021. 唐山地区3~4 km深部地应力测量及断层稳定性分析[J]. 地质学报, 95(12): 3915−3925. doi: 10.3969/j.issn.0001-5717.2021.12.024
    [58] 孙东生. 2014. 非弹性应变恢复原地应力测量方法的实验研究及应用[D]. 北京: 中国地质科学院, 1–134.
    [59] 孙延贵, 方洪宾, 张琨, 赵福岳, 刘世英. 2007. 共和盆地层状地貌系统与青藏高原隆升及黄河发育[J]. 中国地质, 34(6): 1141−1147. doi: 10.3969/j.issn.1000-3657.2007.06.021
    [60] 谭成轩, 孙炜锋, 孙叶, 王连捷. 2006. 地应力测量及其地下工程应用的思考[J]. 地质学报, 80(10): 1627−1632. doi: 10.3321/j.issn:0001-5717.2006.10.018
    [61] 王成虎. 2014. 地应力主要测试和估算方法回顾与展望[J]. 地质论评, 60(5): 971–991, 992–995, 996.
    [62] 王二七, 苏哲, 许光. 2009. 我国的一些造山带的侧向挤出构造[J]. 地质科学, 44(4): 1266−1288. doi: 10.3321/j.issn:0563-5020.2009.04.016
    [63] 王贵玲, 张薇, 蔺文静, 刘峰, 朱喜, 刘彦广, 李郡. 2017. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074−1085. doi: 10.12029/gc20170603
    [64] 王洪, 王成虎, 高桂云, 陈念, 周昊, 安易飞. 2021. 青海共和盆地地应力状态与断层稳定性分析[J]. 震灾防御技术, 16(1): 123−133.
    [65] 王金安, 李飞. 2015. 复杂地应力场反演优化算法及研究新进展[J]. 中国矿业大学学报, 44(2): 189−205.
    [66] 汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002
    [67] 王丽娟, 慕青松, 苗天德. 2008. 金川二矿区3D初始应力场的数值模拟[J]. 金属矿山, (11): 100−102. doi: 10.3321/j.issn:1001-1250.2008.11.030
    [68] 王勇, 杨维好. 2016. 基于ANSYS的三维初始地应力场模拟方法[J]. 煤炭工程, 48(10): 77−88. doi: 10.11799/ce201610025
    [69] 谢富仁, 陈群策, 崔效锋, 李宏, 杨树新, 郭启良, 陈连旺, 许忠淮, 张彦山, 窦淑芹, 赵建涛, 张周术, 刘长义, 王刚军. 2007. 中国大陆地壳应力环境基础数据库[J]. 地球物理学进展, 22(1): 131−136. doi: 10.3969/j.issn.1004-2903.2004.01.019
    [70] 徐纪人, 赵志新. 2006. 青藏高原及其周围地区区域应力场与构造运动特征[J]. 中国地质, 33(2): 275−285. doi: 10.12029/gc20060205
    [71] 许天福, 胡子旭, 李胜涛, 姜振蛟, 侯兆云, 李凤昱, 梁旭, 冯波. 2018. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 92(9): 1936−1947. doi: 10.3969/j.issn.0001-5717.2018.09.012
    [72] 余志雄, 周创兵, 陈益峰, 李俊平. 2007. 基于v–SVR 和GA的初始地应力场位移反分析方法研究[J]. 岩土力学, 28(1): 151−156,162.
    [73] 张重远, 吴满路, 陈群策, 廖椿庭, 丰成君. 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3): 305−310.
    [74] 张国伟, 郭安林, 姚安平. 2004. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 11(3): 23−32.
    [75] 张永明, 裴先治, 李佐臣, 李瑞保, 刘成军, 裴磊, 陈有炘, 陈国超, 王盟. 2017. 青海南山构造带西段黑马河花岗杂岩体锆石U–Pb年代学、地球化学特征及其地质意义[J]. 地质论评, 63(4): 1079−1101.
图(9)  /  表(3)
计量
  • 文章访问数:  1256
  • HTML全文浏览量:  247
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-11-08
  • 网络出版日期:  2025-03-07

目录

/

返回文章
返回
x 关闭 永久关闭