• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

北羌塘坳陷上三叠统黑色泥页岩有机地球化学特征与生烃潜力分析

王剑, 刘中戎, 王忠伟, 付修根, 范志伟, 何志勇, 曾胜强, 易建全

王剑,刘中戎,王忠伟,付修根,范志伟,何志勇,曾胜强,易建全. 2025. 北羌塘坳陷上三叠统黑色泥页岩有机地球化学特征与生烃潜力分析[J]. 中国地质, 52(1): 61−77. DOI: 10.12029/gc20230902001
引用本文: 王剑,刘中戎,王忠伟,付修根,范志伟,何志勇,曾胜强,易建全. 2025. 北羌塘坳陷上三叠统黑色泥页岩有机地球化学特征与生烃潜力分析[J]. 中国地质, 52(1): 61−77. DOI: 10.12029/gc20230902001
Wang Jian, Liu Zhongrong, Wang Zhongwei, Fu Xiugen, Fan Zhiwei, He Zhiyong, Zeng Shengqiang, Yi Jianquan. 2025. Organic geochemical characteristics and hydrocarbon generation potential of Upper Triassic black shales in the North Qiangtang Depression[J]. Geology in China, 52(1): 61−77. DOI: 10.12029/gc20230902001
Citation: Wang Jian, Liu Zhongrong, Wang Zhongwei, Fu Xiugen, Fan Zhiwei, He Zhiyong, Zeng Shengqiang, Yi Jianquan. 2025. Organic geochemical characteristics and hydrocarbon generation potential of Upper Triassic black shales in the North Qiangtang Depression[J]. Geology in China, 52(1): 61−77. DOI: 10.12029/gc20230902001

北羌塘坳陷上三叠统黑色泥页岩有机地球化学特征与生烃潜力分析

基金项目: 国家自然科学基金(42372129,42241202,91955204)和中国石油化工股份有限公司科技部项目(P22197)、中国石油化工股份有限公司勘探分公司项目(35450003−22−ZC0607−0022)联合资助。
详细信息
    作者简介:

    王剑,男,1962年生,教授,从事沉积盆地分析及油气资源评价研究;E-mail: w1962jian@163.com

    通讯作者:

    王忠伟,男,1990年生,副教授,从事羌塘盆地油气资源评价;E-mail: wzwcdg@sina.com

  • 中图分类号: P618.13

Organic geochemical characteristics and hydrocarbon generation potential of Upper Triassic black shales in the North Qiangtang Depression

Funds: Supported by the National Natural Science Foundation of China (No.42372129; No.42241202, No.91955204), project of the Science and Technology Department of China Petroleum and Chemical Corporation (No.P22197), and Sinopec exploration company (No.35450003−22−ZC0607−0022).
More Information
    Author Bio:

    WANG Jian, male, born in 1962, professor, engaged in sedimentary basin analysis and oil−gas resource evaluation research; E-mail: w1962jian@163.com

    Corresponding author:

    WANG Zhongwei: Wang Zhongwei, male, born in 1990, associate professor, mainly engaged in oil and gas resource evaluation in Qiangtang Basin; E-mail: wzwcdg@sina.com.

  • 摘要:
    研究目的 

    基于浅地表地质调查认为,上三叠统黑色泥页岩是羌塘盆地最重要的烃源岩。然而,由于缺乏深钻井样品,盆地深部这套烃源岩特征尚不清楚。北羌塘坳陷东部QZ−16井钻遇了迄今为止盆地最深的上三叠统烃源岩,并发现了较显著的气测异常及大量沥青,为盆地深部烃源岩品质研究与生烃潜力分析提供了新的机遇。

    研究方法 

    以QZ−16井上三叠统黑色泥页岩为研究对象,通过有机地球化学测试分析研究,揭示羌塘盆地深部该套烃源岩的有机质丰度、类型、成熟度、来源及其与沥青油苗之间的油源关系。

    研究结果 

    与已有的地质浅钻及地表露头相比,QZ−16井上三叠统黑色泥页岩TOC含量总体较低(0.12%~1.09%,均值为0.47%),但普遍高于II型干酪根的过成熟烃源岩的TOC下限标准(0.3%);氯仿沥青A和生烃潜量(S1+S2)参数可能不能真实反映研究区过成熟烃源岩的有机质丰度;干酪根类型指数(8.75~18.5)、Ph/nC18(0.65~1.06)、Pr/nC17(0.34~0.61)值及C27−C28−C29甾烷特征等表明有机质为低等浮游生物与陆生高等植物的混合来源,为II2型干酪根,且多形成于较强的还原环境;干酪根颜色(棕褐色—黑色)、Tmax(536~602 ℃)、镜质体反射率(Ro=2.44%~2.77%)及生物标志化合物参数表明该套黑色泥页岩有机质热演化程度为过成熟;油源对比参数反映QZ−16井上三叠统沥青油苗与黑色泥页岩之间具有较好的亲缘关系,为自生自储型。

    结论 

    北羌塘坳陷上三叠统黑色泥页岩为过成熟烃源岩,具有一定的生烃潜力,该成果为羌塘盆地烃源岩评价提供了新的参考依据。

    创新点:

    (1)首次对北羌塘拗陷深部钻井(QZ−16井)样品开展了烃源岩评价与生烃潜力分析;(2)提出了北羌塘拗陷上三叠统黑色泥页岩为过成熟烃源岩并具有一定的生烃潜力。

    Abstract:

    This paper is the result of oil and gas exploration engineering.

    Objective 

    Geological investigations of petroleum potential suggest that the Upper Triassic black shales represent the most significant source rock interval in the Qiangtang Basin. However, the organic geochemical characteristics and hydrocarbon generation potential of these source rocks in the deep basin are still under ongoing research due to the lack of deep drilling activities.

    Methods 

    The well QZ−16, located in the eastern part of the North Qiangtang Depression, has encountered the deepest Upper Triassic strata in the basin to date, revealing significant gas anomalies and a substantial amount of bitumen. This provides a new opportunity to enhance the understanding of deep basin source rocks. Here, organic geochemical analyses of the Upper Triassic black shales were conducted to investigate the organic matter quality, quantity, and levels of thermal maturity as well as the oil−source relationship between the source rock and bituminous oil.

    Results 

    The TOC content of the Upper Triassic black shales in the well QZ−16 is generally poor to fair organic matter richness, ranging from 0.12% to 1.09%, with an average of 0.47%. These values are higher than the average TOC limit (0.3%) of over−mature source rocks with type II kerogen. The degree of thermal maturity is suggested to be in the over−mature stage based on significantly high Tmax (536−602 ℃) and vitrinite reflectance values (Ro = 2.44%−2.77%). The chloroform asphalt A and hydrocarbon generation potential (S1+S2) may not reliably reflect the organic matter abundance due to the source rocks being in the over−mature stage. Kerogen type index (8.75−18.5), Ph/nC18 (0.65−1.06), Pr/nC17 (0.34−0.61) and C27−C28−C29 sterane characteristics indicate a mixed organic matter source comprising of lower plankton and higher terrestrial plants of Type II2 kerogen. Most source rock intervals were deposited under strongly reducing conditions, exhibiting a brown−black kerogen color, which align with biomarker parameters, indicating that the thermal evolution of the black shale is over mature. The oil source correlation parameters reveal a strong affinity between the Triassic bituminous oil seedling and black shale in the well QZ−16, which is self−generated and self−stored.

    Conclusions 

    The Upper Triassic black shales in the North Qiangtang Depression are mature source rocks with certain hydrocarbon generation potential. The results of this study provide a new reference for evaluating source rocks and analyzing hydrocarbon generation potential in the Qiangtang Basin.

    Highlights:

    (1) Source rock evaluation and hydrocarbon generation potential analysis were carried out for the first time on samples from deep drilling (well QZ−16) in North Qiangtang Depression; (2) It is suggested that the black shale of Upper Triassic in North Qiangtang is over-mature source rock and has certain hydrocarbon generation potential.

  • 近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。

    在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。

    研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。

    图  1  区域构造位置图(a)、矿区地质简图(b)、勘探线剖面图(c)及萤石矿岩心(d)
    Figure  1.  Regional structure location map (a), brief geological diagram of ore district (b), prospecting line profile map (c) and cores specimen of fluorite deposit (d)

    在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。

    (1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。

    (2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。

    本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。

  • 图  1   (a)羌塘盆地地质构造及上三叠统地层分布特征;(b)北羌塘坳陷东部QZ−16井地区地质简图

    Figure  1.   (a) Tectonic framework of the Qiangtang Basin and showing the distribution of Upper Triassic strata; (b) Simplified geological map of the well QZ−16 in the east part of the North Qiangtang Depression

    图  2   QZ−16井上三叠统地层序列、沉积特征、取样位置及TOC和S的垂向分布

    Figure  2.   Upper Triassic stratigraphic successions, sedimentary characteristics, sampling locations, vertical distributions of total organic carbon (TOC) and sulfur (S) in the well QZ−16

    图  3   QZ−16井上三叠统黑色泥岩干酪根显微组分特征

    Figure  3.   Characteristics of kerogen maceral compositions of Upper Triassic black mudstones in the well QZ−16

    图  4   QZ−16井上三叠统黑色泥岩饱和烃色谱−质谱特征

    Figure  4.   GC−MS characteristics of some typical Upper Triassic black mudstone samples in the well QZ−16

    图  5   QZ−16井上三叠统黑色泥岩Ph/nC18与Pr/nC17相关关系图

    Figure  5.   Binary diagrams of Ph/nC18 versus Pr/nC17 of Upper Triassic black mudstones in the well QZ−16

    图  6   QZ−16井上三叠统黑色泥岩有机质成熟度判别图解

    Figure  6.   Discrimination diagram of organic maturity of Upper Triassic black mudstones in the well QZ−16

    图  7   QZ−16井上三叠统黑色泥岩C27−C28−C29甾烷三角判别图

    Figure  7.   Ternary diagram of C27−C28−C29 regular steranes in Upper Triassic black mudstones in the well QZ−16

    图  8   QZ−16井上三叠统沥青油苗与烃源岩生物标志物多因素对比图(Bsy为烃源岩,QZ为沥青油苗)

    Figure  8.   Multifactor correlation diagram of biomarkers between the bitumen oil seepages and Upper Triassic source rocks in the well QZ−16 (Bsy and QZ represent the source rocks and bitumen, respectively)

    图  9   QZ−16井上三叠统沥青油苗与烃源岩单体烃碳同位素对比图(Bsy为烃源岩,QZ为沥青油苗)

    Figure  9.   δ13C correlation diagram of n−alkanes between the bitumen oil seepages and Upper Triassic source rocks in the well QZ−16 (Bsy and QZ represent the source rocks and bitumen, respectively).

    表  1   QZ−16井上三叠统黑色泥岩基础有机地球化学参数

    Table  1   Basic organic geochemical parameters of Upper Triassic black mudstones in the well QZ−16

    样品编号 TOC S S1 S2 S3 氯仿沥青A/10−6 HI OI Tmax/℃ Ro
    16Bsy−1 0.34 1.10 / / / / / / / /
    16Bsy−2 0.28 1.11 / / / / / / / /
    16Bsy−3 0.53 2.74 / / / / / / / /
    16Bsy−4 0.22 0.71 / / / / / / / /
    16Bsy−5 0.18 0.30 / / / / / / / /
    16Bsy−6 0.64 1.08 0 0 0.20 13.96 0 21 601 2.44
    16Bsy−7 0.54 2.62 / / / / / / / /
    16Bsy−8 0.76 2.77 0 0 0.18 15.84 0 15 n.d 2.46
    16Bsy−9 0.29 1.28 / / / / / / / /
    16Bsy−10 0.15 0.10 / / / / / / / /
    16Bsy−11 0.12 0.12 / / / / / / / /
    16Bsy−12 0.18 0.61 / / / / / / / /
    16Bsy−13 0.22 0.66 / / / / / / / /
    16Bsy−14 0.17 0.07 / / / / / / / /
    16Bsy−15 0.17 0.10 / / / / / / / /
    16Bsy−16 0.21 0.95 / / / / / / / /
    16Bsy−17 0.57 5.70 / / / / / / / /
    16Bsy−18 0.87 3.43 0 0 0.15 19.61 0 13 582 2.54
    16Bsy−19 0.37 5.08 / / / / / / / /
    16Bsy−20 0.46 5.45 / / / / / / / /
    16Bsy−21 0.67 6.31 0 0 0.18 6.66 0 16 536 2.77
    16Bsy−22 0.43 4.41 / / / / / / / /
    16Bsy−23 0.45 3.45 / / / / / / / /
    16Bsy−24 0.40 2.07 / / / / / / / /
    16Bsy−25 0.92 4.18 0 0 0.13 5.65 0 9 n.d 2.65
    16Bsy−26 0.33 2.56 / / / / / / / /
    16Bsy−27 1.09 4.59 0 0 0.18 17.29 0 12 n.d 2.70
    16Bsy−28 0.63 4.12 / / / / / / / /
    16Bsy−29 0.98 4.08 0 0 0.13 17.88 0 8 602 2.73
    16Bsy−30 0.92 4.37 0 0 0.12 13.48 0 10 n.d 2.68
    下载: 导出CSV

    表  2   QZ−16井上三叠统黑色泥岩干酪根显微组分及类型

    Table  2   Maceral compositions and kerogen type of Upper Triassic black mudstones in the well QZ−16

    样品 干酪根显微组分/% 干酪根
    指数
    干酪根
    类型
    干酪根
    颜色
    壳质组 镜质组 惰质组
    无定型腐殖质 无结构镜质体 结构镜质体 丝质体
    16Bsy−6 75 10 12 3 18 2 棕褐色
    16Bsy−8 70 16 6 8 10.5 2 棕褐色
    16Bsy−18 72 6 18 4 14 2 棕黑色
    16Bsy−21 68 15 12 5 8.75 2 棕黑色
    16Bsy−25 68 10 18 4 9.0 2 棕黑色
    16Bsy−27 70 13 12 5 11.25 2 棕黑色
    16Bsy−29 76 8 10 6 18.5 2 棕黑色
    16Bsy−30 75 10 10 5 17.5 2 棕黑色
    下载: 导出CSV

    表  3   QZ−16井上三叠统黑色泥岩正构烷烃单体碳同位素特征

    Table  3   Carbon isotope characteristics of n-alkanes in Upper Triassic black mudstones in the well QZ−16

    样品
    编号
    δ13CPDB/‰
    C17 C18 Ph C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29
    16Bsy−18 / −25.7 / −28.1 −28.5 −29.8 −31.1 −31.6 −31.6 −32.1 −31.8 −32.1 −31.0 −31.8
    16Bsy−25 / −28.7 −28.6 −28.9 −29.3 −30.3 −31.3 −32.2 −32.3 −32.0 −31.7 −31.6 −31.4 −31.1
    16Bsy−27 −27.3 −28.3 −26.8 −28.7 −28.9 −29.9 −31.2 −32.9 −32.3 −32.3 −32.7 −32.6 −32.4 −33.0
    16Bsy−29 / −26.7 −26.7 −27.6 −29.3 −30.8 −32.2 −33.3 −33.2 −33.4 −33.4 −33.6 −33.1 −33.8
    16Bsy−30 / −28.0 −27.9 −28.5 −29.4 −30.2 −31.5 −32.8 −32.4 −32.7 −31.6 −32.9 −32.4 −32.7
    下载: 导出CSV

    表  4   QZ−16井上三叠统黑色泥岩正构烷烃、类异戊二烯烃、萜烷与甾烷参数特征

    Table  4   Characteristics of n-alkane, major isoprenoid, terpanes and steranes parameters of Upper Triassic black mudstones in the well QZ−16

    样品编号 16Bsy−6 16Bsy−8 16Bsy−18 16Bsy−21 16Bsy−25 16Bsy−27 16Bsy−29 16Bsy−30
    主峰碳 C23 C23 C23 C23 C23 C23 C23 C23
    CPI 1.12 1.16 1.3 1.13 1.15 1.15 1.19 1.15
    OEP 1.01 1.03 1.03 1.02 1 1.03 1.02 1.04
    C21−/C22+ 0.4 0.96 0.78 0.6 0.81 1.13 0.82 0.8
    Pr/Ph 0.4 0.47 0.53 0.37 0.51 0.4 0.51 0.47
    C24TeT/C26TT 0.66 0.6 0.64 0.71 0.71 0.63 0.67 0.72
    ST/H30-35 0.61 0.55 0.43 0.49 0.45 0.43 0.56 0.48
    C25TT/C24TeT 1.47 1.66 1.45 1.4 1.43 1.44 1.53 1.38
    C21+20TT/C23+24TT 0.96 1.03 1.02 1 1.12 0.91 1.17 1.13
    G/C30H 0.17 0.14 0.16 0.13 0.13 0.11 0.12 0.11
    Ts/Tm 1.02 0.95 0.85 0.98 0.87 0.82 0.86 0.95
    C27/% 28 30 30 29 28 27 29 29
    C28/% 24 24 23 23 24 25 23 24
    C29/% 48 46 47 47 48 48 47 47
    C29ααα20S/(20S+20R) 0.44 0.43 0.45 0.44 0.46 0.47 0.45 0.47
    C29αββ/(ααα+αββ) 0.41 0.38 0.39 0.39 0.4 0.4 0.39 0.4
    下载: 导出CSV
  • [1]

    Chen Wenbin, Fu Xiugen, Tan Fuwen, Fen Xinglei. 2014. Geochemical characteristics of biomarkers of the Upper Triassic source rocks from Tumengela Formation in Qiangtang Basin of Tibet[J]. Geoscience, 28(1): 216−223 (in Chinese).

    [2]

    Chen Zhijun, Zhang Chunming, He Yonghong, Wen Zhigang, Ma Fangxia, Li Wei, Gao Yiwen, Chen Yiguo, Zhang Huiyuan, Wei Dongtao. 2022. Characteristics and geochemical indication of over−mature source rocks in the Paleozoic, Yingen−Ejinaqi Basin[J]. Oil & Gas Geology, 43(3): 682−695 (in Chinese with English abstract).

    [3]

    Cranwell P A. 1973. Chain length distribution of n−alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology, 3: 259−265. doi: 10.1111/j.1365-2427.1973.tb00921.x

    [4]

    Didyk B M, Simoneit B R T, Brassell S C, Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 272(5650): 216−222. doi: 10.1038/272216a0

    [5]

    Ding L, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. 2013. Provenance analysis of the Mesozoic Hoh−Xil− Songpan−Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo−Tethys Ocean[J]. Tectonics, 32: 34−48. doi: 10.1002/tect.20013

    [6]

    Eglinton G, Gonzales A G, Hamilton R J, Raphael R A. 1962. Hydrocarbon constituents of wax coatings of plant leaves: A taxonomic survey[J]. Phytochemistry, 1: 89−102. doi: 10.1016/S0031-9422(00)88006-1

    [7]

    Farrimond P, Bevan C J, Bishop A N. 1999. Tricyclic terpane maturity parameters: response to heating by an igneous intrusion[J]. Organic Geochemistry, 30: 1011e1019.

    [8]

    Fu X G, Wang J, Tan F W, Feng X L, Wang D, He J L. 2013. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China[J]. Energy Conversion and Management, 73: 186−194. doi: 10.1016/j.enconman.2013.04.020

    [9]

    Fu Xiugen, Chen Wenbin, Zeng Shengqiang, Sun Wei, Wang Jian. 2020. Petroleum Geological Characteristics of Qiangtang Basin−Information from Geological Survey Drilling[M]. Beijing: Science Press (in Chinese).

    [10]

    Hou Dujie, Feng Zihui. 2011. Oil and Gas Geochemistry[M]. Beijing: Petroleum Industry Press, 79 (in Chinese).

    [11]

    Kapp P, Yin A, Manning C E, Harrison T M, Taylor M H, Ding L. 2003. Tectonic evolution of the early Mesozoic blueschist−bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 22: 1043.

    [12]

    Li Yong, Wang Chengshan, Yi Haisheng. 2003. The Late Triassic collision and sedimentary responses at western segment of Jinshajiang suture, Tibet[J]. Acta Sedimentologica Sinica, 21(2): 191−197 (in Chinese with English abstract).

    [13]

    Liang Xiao. 2020. The Deep Marine Hydrocarbon Accumulation Process under Complex Tectonic Background in the Northern Segment of Western Sichuan Depression[D]. Chengdu: Chendu University of Technology, 1−152 (in Chinese with English abstract).

    [14]

    Lin Fei, Fu Xiugen, Wang Jian, Song Chunyan. 2023. Mechanism of organic matter accumulation in a marine-terrestrial transitional residual bay environment: A case of Early Cretaceous organic-rich shales in the QiangtangBasin[J]. Geology in China, 50(4): 1093-1106(in Chinese with English abstract).

    [15]

    Liu Zhongrong, Yang Ping, Zhang Guochang, Fan Zhiwei, Han Jing, Tan Fuwen, Zhan Wangzhong, Zeng Shengqiang, Wei Hongwei, He Lei, He Jiale. 2022. Sedimentary model and its implications for oil and gas exploration of Upper Triassic in Northern Qiangtang depression[J]. Sedimentary Geology and Tethyan Geology, 42(3): 465−480 (in Chinese with English abstract).

    [16]

    Moldowan J M, Seifert W K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 69(8): 1255−1268.

    [17]

    Pang Xiongqi, Li Qianwen, Chen Jianfa, Li Maowen, Pang Hong. 2014. Recovery method of original TOC and its application in source rocks at high mature−over mature stage in deep petroliferous basins[J]. Journal of Palaeogeography, 16(6): 769−789 (in Chinese with English abstract).

    [18]

    Peter K E, Moldowan J M. 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 17: 47−61.

    [19]

    Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide, Volumes 1 and 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History, Seconded[M]. Cambridge, Cambridge University Press, USA.

    [20]

    Ruebsam W, Mattioli E, Schwark L. 2022. Molecular fossils and calcareous nannofossils reveal recurrent phytoplanktonic events in the Early Toarcian[J]. Global and Planetary Change, 212: 103812. doi: 10.1016/j.gloplacha.2022.103812

    [21]

    Shen L J, Zhang J Y, Xiong S Y, Wang J, Fu X G, Zheng B, Wang Z W. 2023. Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbon−generating potential of the Qiangtang Basin: New evidence from the scientific drilling project[J] China Geology, 6, 187−207.

    [22]

    Sinninghe Damsté J S, Kenig F, Koopmans M P, Köster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 59: 1895−1900. doi: 10.1016/0016-7037(95)00073-9

    [23]

    Song Chunyan, Wang Jian, Fu Xiugen, Chen Wenbin, Xie Shangke, He Li. 2018. Geochemical characteristics and the significance of the Upper Triassic hydrocarbon source rocks of the Bagong Formation in Eastern Qiangtang Basin[J]. Journal of Northeast Petroleum University, 42(5): 104−114 (in Chinese with English abstract).

    [24]

    Tan Furong, Yang Chuang, Chen Fuyan, Du Fangpeng, Liu Zhiwu, Xu Jiang, Li Juyun, Chen Yingtao, Luo Tingting, Luo Zheng, Fan Yuhai. 2020. Sedimentary facies and its control over petroleum and other resources of the Upper Triassic Bagong Formation in Baqing area, southeastern Qiangtang Basin[J]. Geology in China, 47(1): 57−71 (in Chinese with English abstract).

    [25]

    Tao S Z, Wang C Y, Du J G, Liu L, Chen Z. 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 67: 460−467. doi: 10.1016/j.marpetgeo.2015.05.030

    [26]

    Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence[M]. Berlin, Heidelberg, New York: Springer−Verlag. Germany, 643−644.

    [27]

    Tulipani S, Grice K, Greenwood P F, Haines P W, Sauer P E, Schimmelmann A, Summons R E, Foster C B, Böttcher M E, Playton T, Schwark L. 2015. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning basin, Western Australia: A biomarker and stable isotope approach[J]. Gondwana Research, 28: 1500−1515. doi: 10.1016/j.gr.2014.10.003

    [28]

    Volkman J K. 2003. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 60: 495−506. doi: 10.1007/s00253-002-1172-8

    [29]

    Volkman J K. 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways[J]. Organic Geochemistry, 36: 139−159. doi: 10.1016/j.orggeochem.2004.06.013

    [30]

    Wang Chengshan, Yi Haisheng, Li Yong. 2001. Geological Evolution and Prospective Evaluation for Oil and Gas of the Qiangtang Basin, Tibet[M]. Beijing: Geological Publishing House (in Chinese).

    [31]

    Wang J, Fu X G, Wei H Y, Shen L J, Wang Z, Li K Z. 2022. Late Triassic basin inversion of the Qiangtang basin in northern Tibet: Implications for the closure of the Paleo−Tethys and expansion of the Neo−Tethys[J]. Journal of Asian Earth Sciences, 227: 105119. doi: 10.1016/j.jseaes.2022.105119

    [32]

    Wang Jian, Ding Jun, Wang Chengshan, Tan Fuwen. 2009. Investigation and Evaluation on Oil and Gas Resource Strategic Area Selection of Qinghai−Tibet Plateau[M]. Beijing: Geological Publishing House (in Chinese).

    [33]

    Wang Jian, Fu Xiugen, Tan Fuwen. 2020. Geological Survey of the Hydrocarbon Resources in Qiangtang Basin[M]. Beijing: Science Press (in Chinese).

    [34]

    Wang Jian, Song Chunyan, Fu Xiugen, Tan Fuwen, Dong Weizhe. 2022b. Scientific Drilling Project of Qiangke 1 Well in Qinghai−Tibet Plateau[M]. Beijing: Science Press (in Chinese).

    [35]

    Wang Jian, Tan Fuwen, Li Yalin, Li Yongtie, Chen Ming, Wang Chengshan, Guo Zujun, Wang Xiaolong, Du Baiwei, Zhu Zhongfa. 2004. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai−Xizang Plateau[M]. Beijing: Geological Publishing House (in Chinese).

    [36]

    Wang Jian, Wang Zhongwei, Fu Xiugen, Tan Fuwen, Wei Hengye. 2022a. Progress on the first petroleum scientific drilling (QK−1) of the Qiangtang Basin, Tibetan Plateau[J]. Chinese Science Bulletin, 67(3): 321−328 (in Chinese with English abstract). doi: 10.1360/TB-2021-1048

    [37]

    Wang Zhongwei, Xiao Yang, Zhan Wangzhong, Yu Fei. 2022. Geochemical characteristics of the Upper Triassic Bagong Formation mudstones in Eastern Qiangtang basin and its petroleum geological significance[J]. Journal of Northeast Petroleum University, 46(2): 1−12,131 (in Chinese with English abstract).

    [38]

    Wang Z W, Wang J, Yu F, Fu X G, Chen W B, Zhan W Z, Song C Y. 2021b. Geochemical characteristics of Upper Triassic black mudstones in the Eastern Qiangtang basin, Tibet: Implications for petroleum potential and depositional environment[J]. Journal of Petroleum Science and Engineering, 207: 109180. doi: 10.1016/j.petrol.2021.109180

    [39]

    Wang Z W, Yu F, Wang J, Fu X G, Chen W B, Zeng S Q, Song C Y. 2021a. Palaeoenvironment evolution and organic matter accumulation of the Upper Triassic mudstones from the eastern Qiangtang basin (Tibet), eastern Tethys[J]. Marine and Petroleum Geology, 130: 105113. doi: 10.1016/j.marpetgeo.2021.105113

    [40]

    Wu Xinhe, Wang Chengshan, Yi Haisheng, Liu Guifeng. 2005. Discussion on Mesozoic source rock of Qiangtang basin in Tibet[J]. Northwestern Geology, 38(4): 78−85 (in Chinese with English abstract).

    [41]

    Xiao Rui, Zhang Shuai, Zhu Youhai, Wang Pingkang, Pang Shouji. 2021. Organic geochemistry and significance of oil seepages in the Quse Formation in the Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 41(4): 544−553 (in Chinese with English abstract).

    [42]

    Yi Haisheng, Chen Zhiyong, Ji Changjun, Yang Xiaoping, Xia Guoqing, Wu Chihua. 2014. New evidence for deep burial origin of sucrosic dolomites from Middle Jurrasic Buqu Formation in southern Qiangtang basin[J]. Acta Petrologica Sinica, 30(3): 737−746 (in Chinese with English abstract).

    [43]

    Yin A, Harrison T M. 2000. Geologic evolution of the himalayan−Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 28: 211−280. doi: 10.1146/annurev.earth.28.1.211

    [44]

    Zeng Y H, Fu X G, Zeng S Q, Du G. 2013. Upper Triassic potential source rocks in the Qiangtang basin, Tibet: Organic geochemical characteristics[J]. Journal Petroleum Geology, 36: 237−255. doi: 10.1111/jpg.12554

    [45]

    Zhai Q G, Jahn B M, Zang R Y, Wang J, Su L. 2011. Triassic subduction of the Paleo−Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 42: 1356−1370. doi: 10.1016/j.jseaes.2011.07.023

    [46]

    Zhan Wangzhong, Tan Fuwen. 2020. Lithofacies palaeogeography and source rock of the Late Triassic in the Qiangtang Basin[J]. ActaSedimentologica Sinica, 38(4): 876−885 (in Chinese with English abstract).

    [47]

    Zhang K J, Cai J X, Zhang Y X, Zhao T P. 2006. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 245: 722−729. doi: 10.1016/j.jpgl.2006.02.025

    [48]

    Zhang Shuai, Zhu Youhai, Wang Pingkang, Fu Xiugen, Wang Dayong, Wu Xinhe, Pang Shouji, Xiao Rui. 2020. Analysis of the gas hydrate accumulation condition in Quemocuo Area of Qiangtang Basin[J]. Geological Survey of China, 7(4): 10−19 (in Chinese with English abstract).

    [49] 陈文彬, 付修根, 谭富文, 冯兴雷. 2014. 羌塘盆地上三叠统土门格拉组烃源岩生物标志物地球化学特征[J]. 现代地质, 28(1): 216−223. doi: 10.3969/j.issn.1000-8527.2014.01.024
    [50] 陈治军, 张春明, 贺永红, 文志刚, 马芳侠, 李渭, 高怡文, 陈义国, 张慧元, 魏东涛. 2022. 银额盆地古生界过成熟烃源岩特征及其地球化学意义[J]. 石油与天然气地质, 43(3): 682−695. doi: 10.11743/ogg20220316
    [51] 付修根, 陈文彬, 曾胜强, 孙伟, 王剑. 2020. 羌塘盆地石油地质特征—来自地质调查钻井的信息[M]. 北京: 科学出版社.
    [52] 侯读杰, 冯子辉. 2011. 油气地球化学[M]. 北京: 石油工业出版社.
    [53] 李勇, 王成善, 伊海生. 2003. 西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应[J]. 沉积学报, 21(2): 191−197. doi: 10.3969/j.issn.1000-0550.2003.02.001
    [54] 梁霄. 2020. 川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究[D]. 成都: 成都理工大学, 1−152.
    [55] 林飞, 付修根, 王剑, 宋春彦. 2023. 残留海湾环境有机质富集影响因素分析——以羌塘盆地早白垩世富有机质页岩为例[J]. 中国地质, 50(4): 1093-1106.
    [56] 刘中戎, 杨平, 张国常, 范志伟, 韩京, 谭富文, 占王忠, 曾胜强, 卫红伟, 何磊, 何佳乐. 2022. 北羌塘拗陷坳陷上三叠统沉积模式及对油气勘探的启示[J]. 沉积与特提斯地质, 42(3): 465−480.
    [57] 庞雄奇, 李倩文, 陈践发, 黎茂稳, 庞宏. 2014. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用[J]. 古地理学报, 16(6): 769−789. doi: 10.7605/gdlxb.2014.06.062
    [58] 宋春彦, 王剑, 付修根, 陈文彬, 谢尚克, 何利. 2018. 北羌塘拗陷东部上三叠统巴贡组烃源岩特征及意义[J]. 东北石油大学学报, 42(5): 104−114, 11−12. doi: 10.3969/j.issn.2095-4107.2018.05.011
    [59] 谭富荣, 杨创, 尘福艳, 杜芳鹏, 刘志武, 许将, 李居云, 陈应涛, 罗婷婷, 雒铮, 范玉海. 2020. 羌塘盆地巴青地区上三叠统巴贡组沉积相及其对油气等资源的控制[J]. 中国地质, 47(1): 57−71. doi: 10.12029/gc20200105
    [60] 王成善, 伊海生, 李勇. 2001. 羌塘盆地地质演化与油气远景评价[M]. 北京: 地质出版社.
    [61] 王剑, 谭富文, 李亚林, 李永铁, 陈明, 王成善, 郭祖军, 王小龙, 杜佰伟, 朱忠发. 2004. 青藏高原重点沉积盆地油气资源潜力分析[M]. 北京: 地质出版社.
    [62] 王剑, 丁俊, 王成善, 谭富文. 2009. 青藏高原油气资源战略选区调查与评价[M]. 北京: 地质出版社.
    [63] 王剑, 付修根, 谭富文. 2020. 羌塘盆地油气资源战略调查[M]. 北京: 科学出版社.
    [64] 王剑, 王忠伟, 付修根, 谭富文, 韦恒叶. 2022a. 青藏高原羌塘盆地首口油气科探井(QK−1)新发现[J]. 科学通报, 67(3): 321−328.
    [65] 王剑, 宋春彦, 付修根, 谭富文, 董维哲. 2022b. 青藏高原羌科1井科学钻探工程[M]. 北京: 科学出版社.
    [66] 王忠伟, 肖杨, 占王忠, 余飞. 2022. 北羌塘拗陷东部上三叠统巴贡组泥岩特征及油气地质意义[J]. 东北石油大学学报, 46(2): 1−12, 131. doi: 10.3969/j.issn.2095-4107.2022.02.001
    [67] 伍新和, 王成善, 伊海生, 刘桂凤. 2005. 西藏羌塘盆地中生界烃源岩探讨[J]. 西北地质, 38(4): 78−85. doi: 10.3969/j.issn.1009-6248.2005.04.012
    [68] 肖睿, 张帅, 祝有海, 王平康, 庞守吉. 2021. 羌塘盆地侏罗系曲色组油苗有机地球化学特征及意义[J]. 沉积与特提斯地质, 41(4): 544−553.
    [69] 伊海生, 陈志勇, 季长军, 杨晓萍, 夏国清, 吴驰华. 2014. 羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据[J]. 岩石学报, 30(3): 737−746.
    [70] 占王忠, 谭富文. 2020. 羌塘盆地晚三叠世岩相古地理特征与烃源岩[J]. 沉积学报, 38(4): 876−885.
    [71] 张帅, 祝有海, 王平康, 付修根, 王大勇, 伍新和, 庞守吉, 肖睿. 2020. 羌塘盆地雀莫错地区天然气水合物成藏条件分析[J]. 中国地质调查, 7(4): 10−19.
图(9)  /  表(4)
计量
  • 文章访问数:  2255
  • HTML全文浏览量:  566
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2024-01-14
  • 网络出版日期:  2025-01-23
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回
x 关闭 永久关闭