Heterogeneity characteristics and its controlling factors of marine shale reservoirs from the Wufeng−Longmaxi Formation in the Northern Guizhou area
-
摘要:研究目的
页岩非均质性是其自身固有属性,研究页岩的微观非均质性特征对明确页岩气富集机制研究及优质储层段优选具有重要的指导意义。
研究方法本文以黔北地区五峰组—龙马溪组海相页岩为研究对象,通过XRD、低温N2吸附、高压压汞等实验方法,重点分析了研究区海相页岩的宏观与微观孔隙结构非均质性特征。
研究结果黔北地区五峰组—龙马溪组页岩主要发育硅质页岩岩相,其次为混合质页岩、黏质页岩岩相;不同岩相页岩在总有机碳含量、矿物组分、微观孔隙结构特征等方面具有较强的非均质性。采用N2吸附曲线FHH分形模型,及高压压汞岩石多孔结构分形理论,计算得到N2吸附低压分形维数D1(0<P/P0<0.45)为2.5351~2.6722,高压分形维数D2(0.45<P/P0<1)为2.8311~2.9113,另外,高压压汞分形维数DHg为2.0904~2.3736,表明黔北地区五峰组—龙马溪组不同孔径范围内孔隙结构均具有较强的非均质性,分形维数越大,则页岩储层孔隙结构越复杂,对页岩气的吸附作用越强。同时,不同类型孔隙分形维数与TOC、矿物组分、孔隙结构参数等影响因素之间的相关性存在明显差异。分形维数DHg与矿物含量之间相关性较强,表明宏孔孔隙分形特征主要受矿物组分的控制;分形维数D1、D2与页岩TOC含量及孔隙比表面积参数之间呈现良好相关性,表明微孔和中孔孔隙非均质性的主要影响因素为有机碳的富集程度与有机质孔的发育规模。
结论综合分析发现,硅质页岩具有高TOC含量、高脆性矿物含量、高分形维数的特征,证明硅质页岩为黔北地区五峰组—龙马溪组优质页岩岩相,其次为混合质页岩岩相;同时有机质含量越高,则该岩相在具备优质生烃条件的同时,也具备良好的开发开采条件。该研究可为指导黔北地区海相页岩储层有利开发层段的优选提供理论和实践支撑。
创新点:本文采用多种方法对黔北地区海相页岩储层宏观与微观孔隙非均质性特征进行了研究,利用N2吸附及高压压汞实验数据计算了分形维数参数,分别讨论了不同类型孔隙与分形维数的相关性,并结合岩相分析,优选出硅质页岩岩相是黔北地区五峰组—龙马溪组页岩储层最有利的岩相,为黔北地区进一步的勘探开发提供理论指导。
Abstract:This paper is the result of oil and gas exploration engineering.
ObjectiveThe heterogeneity is the inherent nature of shale. Study of the microheterogeneity of shale is of great significance for determining the enrichment mechanism of shale gas and the selection of high−quality reservoirs.
MethodsThis study investigated the marine shale of the Wufeng−Longmaxi Formation in the northern Guizhou area. Through XRD mineralogy, low−temperature N2 adsorption and high−pressure mercury intrusion (HPMI) analyses, we explored the macro and micro heterogeneity characteristics of pore structures of this formation.
ResultsThe Wufeng−Longmaxi Formation shales in the northern Guizhou area are mainly of siliceous lithofacies, followed by mixed lithofacies and clayish lithofacies. The shales of different lithofacies exhibit large differences in total organic carbon (TOC) contents, mineral compositions, and pore structure characteristics. The FHH fractal model of N2 adsorption curves, and the porous fractal theory of HPMI methods, were utilized to calculate the low pressure fractal dimension D1 (0<P/P0<0.45) of N2 adsorption as 2.5351−2.6722, and the high pressure fractal dimension D2 (0.45<P/P0<1) as 2.8311−2.9113. Additionally, the fractal dimension DHg of HPMI was determined to be 2.0904−2.3736, indicating strong heterogeneity within the Wufeng−Longmaxi Formation shale pore structures. A larger fractal dimension corresponds to a more complex pore structure within the shale reservoir and stronger adsorption capacity for shale gas. Furthermore, there are notable differences between various types of pore fractal dimensions and TOC content, mineral composition, pore structure parameters, and other influencing factors. Specifically, it has been found that the fractal dimension DHg exhibits a strong correlation with different mineral contents, suggesting that macropore fractal characteristics are primarily influenced by mineral components. Moreover, there is a clear correlation between fractal dimensions D1 and D2 with TOC content and pore specific surface area parameters within the shale, indicating that micropore and mesopore heterogeneity are mainly influenced by organic carbon contents and development of organic pores.
ConclusionsGenerally, siliceous shale exhibits relatively high total organic carbon (TOC) contents, high proportions of brittle minerals, and high fractal dimensions. This confirms the siliceous shales are the primary high−quality lithofacies within the Wufeng−Longmaxi Formation in the northern Guizhou area, followed by the mixed lithofacies. Meanwhile, higher organic matter contents indicate not only more favorable conditions for hydrocarbon generation, but also better conditions for shale gas exploration and extraction. Our study offers theoretical and practical support for guiding the optimal selection of favorable reservoirs in marine shales in the northern Guizhou area.
Highlights:Through multiple methods, this paper investigated the macroscopic and microscopic heterogeneity characteristics of marine shale reservoirs from the Wufeng−Longmaxi Formation in the northern Guizhou area. The fractal dimensions were calculated based on N2 adsorption and high−pressure mercury injection experimental data. to the relationship between different types of fractal dimensions and different types of pores has been discussed. In combination with lithofacies analyses, we consider that the siliceous shale lithofacies are the most favorable lithofacies of shale reservoirs in the Wufeng−Longmaxi Formation shales in the northern Guizhou area. Our results provide important guidance for exploration and extraction of shale gas in the northern Guizhou area.
-
1. 引 言
世界卫生组织及中国饮用水标准规定砷浓度不可超过10 μg/L(WHO, 2017)。长期饮用高砷地下水可导致慢性砷中毒及皮肤癌等疾病,全球有70多个国家,超过1.5亿人的饮用水安全受到高砷地下水的威胁(韩双宝等,2010;郭华明等,2013;Wang et al., 2020;曹文庚等,2022; 张卓等,2023a)。沉积物中的固相砷是地下水中砷的主要来源。多数岩石中砷含量范围为0.5~2.5 μg/g(Mandal and Suzuki, 2002),松散沉积物中砷的含量范围通常为3~10 μg/g(Smedley and Kinniburgh, 2002; 何锦等,2020;马雪梅等,2020),富含砷矿物的沉积物中砷含量可达170 μg/g(Cook et al., 1995)。研究含水层中砷的迁移转化,除了查明沉积物总固态砷的含量,还需分析砷在沉积物中的赋存形态(van Herreweghe et al., 2003;朱丹尼等,2021;Drahota et al., 2021)。沉积物中固相砷赋存形态的微小差别可能引起地下水砷浓度的显著差异(Meharg et al., 2006; 张卓等,2023b)。分步提取实验是获取沉积物中砷赋存状态信息的主要手段。在之前的研究中,已经在分步提取过程中研究了萃取剂溶液的最优选择性(Paul et al., 2009;Eiche et al., 2010)。国外学者就河流三角洲沉积物中砷的赋存形态开展了大量研究。Eiche et al.(2008)研究表明,磷酸盐提取释放的强吸附砷是越南红河三角洲沉积物中砷的主要赋存形态。印度孟加拉三角洲平原的含水层中也发现了类似的结果(Neidhardt et al., 2014)。然而在内陆盆地,有关沉积物砷赋存形态的系统性研究相对缺乏。
河套盆地是中国西北地区典型的内陆盆地,地下水As浓度高达857 μg/L,远超中国饮用水标准(Guo et al., 2008)。因此,本研究选取河套盆地,通过刻画岩性与地球化学特征和开展砷的分步提取与解吸附实验,对比分析低砷和高砷含水层中沉积物砷的赋存形态与吸附特征。研究结果将有助于查明内陆盆地高砷地下水的形成机理,为合理开发可饮用地下水提供科学依据。
2. 研究区概况
河套盆地地处阴山隆起与鄂尔多斯台地之间,西界和北界均为狼山山前断裂,南界为鄂尔多斯北缘断裂,东界为乌梁素海断裂。研究区位于河套盆地西北侧,地处狼山山脉与主排干渠之间,包括山前冲洪积扇区和南部平原区,地理坐标为40°55′31″N~41°08′15″N,106°46′30″E~107°03′28″E(图1)。受沉积条件制约,研究区含水层具有明显的分带性。山前冲洪积扇区含水层沉积物主要由中砂、细砂组成,黏土在其中所占比重小于5%;平原区含水层沉积物主要由细砂、粉砂、粉质黏土和偶有泥炭夹层的淤泥质黏土组成,粉土和不同种类的黏土是其中的主要组成部分。
研究区浅层地下水受到大气降雨入渗补给、灌溉水补给和渠水的侧渗补给,深层地下水受到山前裂隙水的侧向补给和浅层地下水的垂向入渗。浅层地下水的排泄途径是蒸发作用、人工抽取、流入排干沟和垂向入渗到深层地下水,深层地下水的排泄路径是农业开采。原来研究区地下水流向大体是由西北向东南,但过度开采导致地下水流向逐渐转变为山前冲洪积扇由北向南、平原区由南向北的流动方向。地下水水化学类型受地势地貌、气候条件影响明显,具有显著的差异性。浅层地下水受强烈蒸发运移影响,水化学类型有HCO3−(Cl)−Na、Cl−HCO3−Na·Mg和Cl−SO4(HCO3)−Na·Mg型。深层地下水由山前冲洪积扇的Cl−HCO3−Ca·Mg型转变为平原区的Cl−Na型。高砷地下水主要分布在平原区(Zhang et al., 2020)。
3. 材料与方法
3.1 沉积物样品采集与测试
本研究从钻孔K02和K01中分别取出25和26个沉积物样品(图1)。其中,K2钻孔位于山前冲洪积扇区,坐标为41°01′07.37″N、106°57′41.41″E,钻孔深度约为80 m;K1钻孔位于平原区,位置坐标为41°00′13.73″N、106°58′16.85″E,钻孔深度约为81 m。获取的沉积物去掉外层沉积物后,马上用锡箔纸包裹,密封在装有纯N2(> 99.999%)的无菌塑料袋中,尽可能减少与O2的接触,并在−20℃的条件下保存。带回到实验室后,样品分装为两份,一份储存于−20℃的冰箱中,另一份进行冷冻干燥。
在色度分析和含水率测试之前,−20 ℃条件下保存的样品放入厌氧箱解冻。色度分析采用光谱色度计(CM-700d,Konica Minolta),测试之前对光谱色度计进行白板校正和零点校正。测试过程中保证切面平整,并在切口表面铺上一层高净度聚乙烯薄膜,每个样品测试3次。测试结束后计算出530 nm和520 nm的光谱反射差(R530-520),该差值能够指示沉积物的氧化还原环境(Horneman et al., 2004)。含水率测试采用通用的烘干法,用铝盒准确称取烘干前的原状土样质量,放入105℃恒温干燥箱中烘干后放入干燥器冷却,准确称量烘干后的土样质量,通过计算得出含水率。
沉积物电导率和pH的测量采用Bélanger and VanRees(2007)的方法。冷冻干燥后的沉积物与去离子水以1∶5的比例置于PE离心管中,25℃状态下以150 rpm转速震荡1 h。震荡完毕后,将离心管置于离心机中以5000 rpm转速离心20 min并取上清液用0.22 μm纤维滤膜过滤。所得部分滤液通过电导率仪(DDS-307A, SHKY)进行电导率的检测,所得电导率值可以反映出沉积物的可溶性组分含量。沉积物样品与超纯水以1∶2.5比例充分混合后,摇匀,静置1 h使用pH检测仪(HI 8424,HANNA)对其进行pH测定。
沉积物样品中的主量和微量元素的测定采用手持便携式XRF仪(XL3t800, Thermo Niton)进行测定,测试元素主要包括Ca、Sr、As、Fe和Mn。测试之前将样品冷冻干燥,并研磨至200目,取适量于专用测量杯中,压实后放置在手持XRF仪光源处,每个样品测试3次。2个标准物质(GBW07303,GBW07305)用于确保数据的准确性,测试偏差均小于20%,其中As元素的测试偏差均小于5%。
3.2 室内实验
3.2.1 分步提取实验
为查明沉积物中砷的赋存状态,本研究开展了分步提取实验(Sequential extraction procedure,SEP)。分步提取方法参照Eiche et al.(2008, 2010)的研究,该提取方法也是基于Keon et al.(2001)和Wenzel et al.(2001)等研究的改进(表1)。每个新鲜沉积物样称取0.5 g,放入离心管中,加入适量的提取剂。由于分步提取后提取液盐度较高,需稀释测试,这就要求测试仪器需要较低的检出限和较高的分析精度。ICP−MS的分析精度为±3.0%,检出限为0.01 μg/L,能够满足测试要求。其中分步提取第六步(F6)的提取液中含有高浓度的HF,会损坏仪器影响测试精度。因此,F6的提取液在测试之前,需要在电热板加热进行赶酸处理。
表 1 分步提取实验具体步骤Table 1. Sequential extraction procedure步骤 目标物 提取剂 条件 F1 弱吸附态砷 0.05 mol/L (NH4)2SO4 25 mL,25℃,4 h,重复一次,水洗一次 F2 强吸附态砷 0.5 mol/L NaH2PO4 40 mL,25℃,16 h及24 h各一次,每个时间段重复一次,水洗一次 F3 与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷 1 mol/L HCl 40 mL,25℃,1 h,重复一次,水洗一次 F4 与无定形态铁氧化物或氢氧化物共存的砷 0.2 mol/L NH4H2C2O3 40 mL,25℃,2 h,pH=3,黑暗条件下,重复一次,水洗一次 F5 与结晶态铁氧化物或氢氧化物
共存的砷0.5 mol/L NaC6H8O7
1 mol/L NaHCO3,Na2S2O4XH2O35 mL NaC6H8O7+2.5 mL NaHCO3(加热至85℃),加0.5 g Na2S2O4XH2O,15 min在85℃,重复一次,水洗一次 F6 与硅酸盐有关的砷 10 mol/L HF,H3BO3 40 mL,25℃,1 h、24 h、16 h后各加5 g硼酸,每个时间段重复一次,热水洗一次 F7 含砷硫化物,与硫化物和有机质
共沉淀的砷16 mol/L HNO3,30% H2O2 先加入10 mL HNO3,反应过后加入多次30%过氧化氢,加热,冷却后稀释到100 mL,离心、过滤、测试 3.2.2 解吸附实验
本研究从钻孔K02和K01各选取一个典型沉积物进行pH和反离子效应对砷的解吸附影响的批实验。该实验主要包括三部分内容:解吸附动力学实验、pH对解吸附影响的实验、反离子效应(Na/Ca0.5(M/M))对砷解吸附影响的实验。
(1)解吸附动力学实验
为查明砷解吸附达到平衡的时间,本研究开展了解吸附动力学实验。分别称取0.6 g新鲜沉积物放入厌氧瓶中,然后加入24 mL、125 mmol/L NaCl和1.5 mmol/L CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。混合溶液离子强度约为130 mmol/L,Na/Ca0.5比值约为102,pH值为7.6。为保证沉积物颗粒与溶液均匀混合,超声15 min后放入150 r/min的恒温振荡箱中。取样间隔为1 h、3 h、5 h、7 h、10 h、14 h、20 h、28 h、36 h、48 h和60 h。取样之前保证溶液混合均匀,每次取样量为2 mL,用0.22 μm过滤器过滤到2 mL离心管中,放入4℃冰箱中保存,一周之内完成测试工作。
(2)pH对解吸附影响的实验
控制Na/Ca0.5(M/M)比值约为102和离子强度约为130 mmol/L,探究不同pH值对沉积物中砷解吸附的影响。将Na/Ca0.5比值为102的NaCl和CaCl2的混合溶液分装为5份,并将溶液pH值分别调到5.4、6.7、7.6、8.6和9.6。在5个厌氧瓶中,分别称取0.6g新鲜沉积物,并加入24 mL不同pH值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。
(3)反离子效应对砷解吸附影响的实验
控制离子强度为(130±5)mmol/L,通过改变NaCl和CaCl2的浓度来改变Na/Ca0.5比值(表2)。在7个厌氧瓶中,分别称取0.6 g新鲜沉积物,并分别加入24 mL不同Na/Ca0.5比值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。
表 2 离子强度为(130±5)mmol/L条件下,不同浓度NaCl和CaCl2混合液的Na/Ca0.5(M/M)比值Table 2. Na/Ca0.5(M/M) ratio of the mixed solution of different concentrations of NaCl and CaCl2 under the condition of ionic strength of about (130±5) mmol/LNaCl/(mmol/L) CaCl2/(mmol/L) Na/Ca0.5 2 43 0.3 5 42 0.7 10 40 1.6 30 35 5.0 60 23 13 110 7 42 125 1.5 102 4. 结果与讨论
4.1 沉积物的岩性特征
研究区的山前冲洪积扇区钻孔K02和平原区钻孔K01沉积物的岩性特征如图2所示。钻孔K02沉积物的组成是从粗砂到黏土,而钻孔K01主要从中砂到黏土。对于钻孔K02,14 m以上的沉积物主要由砂质黏土和粉质黏土组成,14~42 m主要以砂质含水层为主。在42~44 m存在约2 m厚的黏土层,42 m以下主要以砂质含水层为主同时伴有砂质黏土互层(图2a)。与钻孔K02不同,位于平原区的钻孔K01沉积物颗粒整体较细且含有大量的黏土互层。其中,8 m以上主要以黏土为主,8~40 m则主要以砂质含水层为主并且常常伴有砂质黏土互层,40~42 m出现黏土层,42 m以下为颗粒较细的细砂含水层,这个研究结果与Shen et al.(2018)一致。总体来看,研究区近表层沉积物主要以粉质黏土为主,地表以下10~40 m是砂质含水层,地表以下40 m处存在1~2 m厚的相对连续的黏土层将40 m以上和约42 m以下的含水层隔开。
沉积物的色度特征能够指示沉积物的氧化还原环境和铁氧化物的还原程度(Horneman et al., 2004)。钻孔K02和K01沉积物色度随深度的变化均是由浅黄色变为深灰色,说明深部含水层处于一个相对还原的环境当中,铁氧化物的还原程度也较强。而从整体来看,两个钻孔的色度特征有较大差异,相对于钻孔K02,钻孔K01的沉积物色度更深,这可能是因为平原沉积物颗粒较细,含水层处于更封闭的还原环境,铁锰氧化物的还原程度更强(van Geen et al., 2013)。
沉积物含水率主要受其岩性控制。两个钻孔表层5 m以上沉积物尽管颗粒较细,含水率仍然较低,主要由于其处于非饱和带。而在饱和带,沉积物含水率随深度的变化主要受岩性影响,沉积物岩性颗粒越细,含水率越高。两个钻孔沉积物电导率在近地表较高(图2),主要是因为研究区为干旱半干旱气候,蒸发蒸腾作用较强,使得近地表沉积物含有大量的可溶盐(Yuan et al., 2017)。沿深度随沉积物岩性的变化而波动,沉积物岩性越细,电导率越大,这是由于颗粒较细的黏土颗粒表面有大量可交换的离子。此外,由于钻孔K01位于平原区,沉积物颗粒整体较细且地下水水位埋深较浅蒸发作用强,导致其沉积物电导率(均值为395 μS/cm)大于钻孔K02(均值为308 μS/cm)。
4.2 沉积物的地球化学特征
研究区沉积物中0~10 m、40~45 m和75~80 m含水层位的Ca和Sr的含量明显高于其他含水层(图3)。微量元素As、Fe和Mn也有相似的分布特征。沉积物的岩性特征表明,10 m以上的沉积物主要以黏土和粉质黏土为主,40~45 m是不连续的黏土层,而75~80 m也是颗粒较细的黏土层。对比钻孔的黏土层和砂层沉积物的地球化学特征发现,K02钻孔黏土层沉积物Ca含量中值为53.6 mg/g,而砂层沉积物Ca含量中值为33.0 mg/g;K01钻孔中两者中值分别为48.3 mg/g和31.6 mg/g。黏土层和砂层沉积物中微量元素的含量差异更为明显,K02钻孔黏土层沉积物As含量中值为17.6 μg/g,而砂层沉积物As含量中值为8.6 μg/g;K01钻孔中两者中值分别为20.1 μg/g和7.9 μg/g。这主要是因为砂层沉积物中富含石英,含Ca和Sr矿物的含量低于黏土层(李晓峰,2018)。其次是因为黏土层表面吸附能力强,能够吸附As、Fe和Mn等微量元素(崔邢涛等,2015)。
两个钻孔沉积物的地球化学特征也有一定的差异。普遍表现为钻孔K02的Ca、Sr、As、Fe和Mn含量大于钻孔K01,且在深层沉积物中表现更为明显(图3)。钻孔K02沉积物中Ca的含量范围为12.2~86.9 mg/g,平均值为37.9 mg/g,钻孔K01沉积物中Ca的含量范围为9.6~68.7 mg/g,平均值为35.7 mg/g。K02钻孔沉积物中As的浓度范围为4.6~33.1 μg/g,平均值13.1 μg/g;K01钻孔沉积物中As的浓度范围为5.3~34.0 μg/g,平均值12.9 μg/g,表明冲洪积扇边缘地区沉积物总As的含量略大于平原区。两个钻孔沉积物中Fe和Mn含量的差异更为明显,钻孔K02沉积物中Fe的含量比K01高13.7%,其Mn的含量比K01高14.1%。这主要是由于钻孔K01位于平原区,沉积物经历了更强的风化作用,且积物颗粒整体较细,地下水流速慢,水岩作用强烈,有利于沉积物中化学组分向地下水中释放(张文凯等,2020)。此外,平原区含水层较为封闭,沉积物的色度特征也表明含水层长期处于较为还原的环境中,变价微量元素被还原为较低价态,易于向地下水中迁移。因此,钻孔K02和K01沉积物地球化学的微小差异主要受沉积环境和水动力条件控制。
4.3 沉积物中砷的赋存形态
山前冲洪积扇的含水层的沉积物岩性主要以中砂、细砂和黏土为主,平原区含水层的沉积物则以细砂、粉砂和黏土为主。因此,本研究从钻孔K02和K01各选取3个不同岩性的代表性沉积物用于分步提取实验(SEP)(表3)。实验过程选用GBW07303和GBW07305作为标准样品检验回收率,结果表明:对于GBW07303不同状态As的提取实验的回收率分别为81%,GBW07305不同状态As的提取实验的回收率分别为88%。分步提取实验获取的7种形态砷的总和与XRF测得的总固相砷的相对偏差均小于10%。
表 3 用于分步提取的沉积物信息Table 3. Sediment information for SEP编号 岩性 采样深度/m K02−M 中砂 38.35 K02−F 细砂 62.25 K02−C 黏土 41.95 K01−F 细砂 55.15 K01−S 粉砂 30.95 K01−C 黏土 37.85 分步提取结果表明,K02钻孔中砂、细砂和黏土沉积物固相砷主要以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷(F4)为主,占比分别为33%、40%和43%(图4a、b、c)。其次是结晶态铁氧化物或氢氧化物结合态(F5)和强吸附态砷(F2)。砂层沉积物中与无定形态铁氧化物或氢氧化物结合的固相砷(F3)占比大于与硅酸盐结合的砷(F6),前者占比均大于10%,后者均小于5%,而黏土沉积物中两者的占比分别为7%和12%。最容易释放到地下水中的弱吸附态砷(F1)和最顽固的与硫化物和有机质共沉淀的固相砷(F7)占比较小,均低于5%。钻孔K01细砂沉积物的固相砷以F4为主(35%),其次分别是F2(32%)和F6(16%)(图4d)。粉砂和黏土沉积物则以F2为主(分别为43%和40%),其次以F4为主(分别为12%和18%);两个沉积物中F3所占的比例均超过10%(图4e、f)。细砂、粉砂和黏土沉积物中F1和F7均小于5%。
对比山前冲洪积扇的钻孔K02和平原区的钻孔K01发现,前者沉积物中固相砷主要以F4为主,后者则主要以F2为主。钻孔K02黏土沉积物中F4达到11.3 μg/g,明显高于K01的4.6 μg/g。而钻孔K02黏土沉积物中F2仅有5.8 μg/g,低于钻孔K01的10.3 μg/g(图4c、f)。钻孔K01砂层沉积物中的F2也明显大于K02。此外,平原区沉积物的F3含量也大于山前冲洪积扇沉积物。这说明平原区沉积物经历更强的风化侵蚀作用后,固相砷活性增强,向更具迁移性的吸附态和完全无定形铁氧化物或氢氧化物结合态转化。大量研究表明吸附态的砷迁移性较强,通过竞争解吸附或者弱碱条件下的解吸附,更容易释放到地下水中,而无定形态铁氧化物或氢氧化物结合态砷相对稳定,需要通过还原性溶解才能释放到地下水中(Smedley and Kinniburgh, 2002)。这也解释了为何平原区地下水砷浓度普遍高于山前冲洪扇的地下水(李晓峰,2018; Zhang et al., 2020)。除了含水层沉积物本身物源的影响,含水层所处的环境和地下水的化学特征也会影响砷的解吸附。
4.4 砷的解吸附
以往的研究表明,研究区地下水pH和Na/Ca0.5(M/M)与砷浓度均有较好的正相关关系(Zhang et al., 2020),因此,本研究选取钻孔K02和K01的沉积物(表3),分别探讨了pH和Na/Ca0.5(M/M)对砷解吸附的影响。动力学实验结果表明,在pH为7.6、离子强度为130 mmol/L和Na/Ca0.5比值为102的条件下,砷解吸附能够48 h时基本达到平衡(图5a)。为确定砷解吸附达到平衡,实验设定反应时间为60 h。
4.4.1 pH的影响
实验设定离子强度为130 mmol/L,Na/Ca0.5比值为102。pH条件分别设定为5.4、6.7、7.6、8.6和9.6。当pH为5.4时,K02−F和K01−F沉积物释放的砷占总吸附砷的比值分别为0.54和0.44;当pH升高至6.7时,砷释放量所占总吸附砷比值分别降为0.32和0.30(图5b),这可能是因为较低的pH可能使铁氧化物发生少量溶解导致砷的释放。pH从6.7上升至8.6的过程中,沉积物砷的释放量并没有明显增加,仅上升0.03左右。而pH由8.6上升至9.6,沉积物砷的释放量显著增加,释放量上升0.15。这是由于随着pH升高沉积物颗粒表面带负电荷,与含砷阴离子形成静电斥力导致吸附态的砷发生解吸附,进入水溶液中(Masue et al., 2007)。
4.4.2 反离子效应的影响
许多学者认为,沉积物颗粒表面存在扩散双电子层(Dzombak and Morel, 1990; 刘新敏,2014),相比于以Na+为主的地下水系统,以Ca2+为主的地下水系统能够导致带负电的沉积物颗粒表面与带负电的含砷弱阴离子之间的斥力减小,有利于砷的吸附,这种现象被称为反离子效应(Masue et al., 2007; Fakhreddine et al., 2015)。当水中离子强度一定时,带有两个正电荷Ca2+被单电荷Na+替换时,即Na/Ca0.5比值增加时,这种反离子效应就会减弱,促进吸附态的砷释放到地下水中。
实验过程中保持pH和离子强度不变,通过调节溶液中Na+和Ca2+浓度改变Na/Ca0.5比值。结果表明,砷解吸附的量随Na/Ca0.5比值的增加而增加(图5c)。当Na/Ca0.5比值为0.3时,K02−F和K01−F沉积物砷的解吸附量占总吸附态砷的比值分别为0.12和0.11。而当Na/Ca0.5比值增加到102时,K02−F沉积物砷的解吸附量占总吸附态砷的比值能够达到0.37,在K01−F沉积物中这一比值为0.47。
4.5 地下水开发利用建议
河套盆地是中国的塞上粮仓,对水资源的需求较大。研究区地势较高,引黄河入河套盆地并难以满足居民的农业和生活需求,因此,居民普遍开采地下水用于农业灌溉和日常生活,这虽然解决水量的问题,却忽视了原生劣质地下水的危害。根据国家《生活饮用水卫生标准》(GB 5749—2022)和《地下水质量标准》(GB/T14848—2017),砷浓度大于10 μg/L的地下水为高砷地下水,摄入后对人体有害。以往的研究发现高砷地下水主要集中在平原区,浓度高达857 μg/L(Guo et al., 2008)。本研究发现,山前冲洪积扇区的含水层沉积物固相砷相对稳定,而平原区的含水层沉积物固相砷迁移性相对较强,且平原区沉积物吸附态砷在弱碱性和高Na/Ca0.5摩尔比值条件下,容易向地下水迁移,导致砷的富集。因此,当地居民种植农作物时避免使用碱性复合肥,从而减少碱性水的向下补给。此外,生活污水中Na+较高,建议适当处理后排放。用于日常生活的地下水,建议采用混凝沉淀或吸附法降砷。
5. 结 论
山前冲洪积扇区含水层处于相对氧化的环境中,其沉积物以细砂和中粗砂为主,而平原区含水层处于封闭的还原环境中,沉积物以粉细砂为主。两者沉积物总固相砷含量相差不大,但固相砷的赋存形态差别较大。山前冲洪积扇区含水层沉积物固相砷以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷为主(33%~43%),平原区含水层沉积物固相砷则以强吸附态砷为主(32%~43%),后者沉积物的中固相砷迁移性更强,容易通过解吸附释放到地下水中。此外,当pH值由6.1上升到9.6时,山前和平原区沉积物解吸附砷占总吸附砷的比值分别上升0.16和0.22。同时,Na/Ca0.5摩尔比值的增加,会导致反离子效应减弱,比值由0.3增加到102时,山前沉积物和平原区解吸附砷占总吸附砷的比值分别上升0.26和0.36。可见含水层中pH的升高和Na/Ca0.5摩尔比值的增加,都会促使沉积物中的砷发生解吸附,导致地下水中砷的富集。因此,当地居民应减少碱性以及富含Na+的生产生活用水的排放,同时平原区用于日常生活的地下水,建议当地居民采用混凝沉淀或吸附法降砷。
-
图 4 黔北地区五峰组—龙马溪组页岩扫描电镜特征
a—AY−1井,2323.8 m,极富有机质硅质页岩中有机质孔发育特征;b—AY−1井,2323.8 m,极富有机质硅质页岩中溶蚀孔发育特征;c—BZ−1井,1113.0 m,富有机质硅质页岩黏土矿物层间孔发育特征;d—SD−1井,1135.4 m,中等有机质硅质页岩有机质赋存特征;e—SD−1井,1135.4 m,中等有机质硅质页岩黄铁矿晶间孔发育特征;f—BZ−1井,1112.8 m,中等有机质混合质页岩微裂缝发育特征
Figure 4. Scanning electron microscope (SEM) characteristics of the Wufeng−Longmaxi Formation shales in the northern Guizhou area
a−Well AY−1, 2323.8 m, characteristics of organic matter (OM) pores (OM−ultra rich siliceous shale); b−Well AY−1, 2323.8 m, characteristics of dissolution pores (OM−ultra rich siliceous shale); c−Well BZ−1, 1113.0 m, interlayer pores characteristics of clay minerals (OM−rich siliceous shale); d−Well SD−1, 1135.4 m, characteristics of organic matter occurrence (OM−moderate siliceous shale); e−Well SD−1, 1135.4 m, intraparticla pores characteristics of pyrite (OM−moderate siliceous shale); f−Well BZ−1, 1112.8 m, microfracture characteristics (OM−moderate mixed facies shale)
图 5 黔北地区五峰—龙马溪组不同岩相页岩N2吸附孔隙结构定量表征
a—N2吸附曲线;b—孔径−孔体积分布;c—孔径−比表面积分布
Figure 5. Quantitative characterization of N2 adsorption of different lithofacies shales from the Wufeng−Longmaxi Formation in the northern Guizhou area
a−N2 adsorption curve; b−Distribution of pore size vs. pore volume; c−Distribution of pore size vs. pore specific surface area
图 6 黔北地区五峰—龙马溪组不同岩相页岩高压压汞孔隙结构定量表征
a—高压压汞吸附曲线;b—高压压汞孔径−孔体积分布
Figure 6. Quantitative characterization of high−pressure mercury intrusion of different lithofacies shales from the Wufeng−Longmaxi Formation in the northern Guizhou area
a−HPMI adsorption curve; b−Distribution of pore size vs. pore volume distribution
表 1 黔北五峰组—龙马溪组页岩有机地化与物性参数
Table 1 The organic geochemistry and physical property parameters of the Wufeng−Longmaxi Formation shales in the northern Guizhou area
井号有机地化参数 物性参数 TOC/% Ro 有机质类型 Φ/% K/mD AY−1 2.92∼5.974.67 2.00∼2.072.02 I 0.13∼1.460.66 0.0004∼0.30340.0350 SD−1 0.33∼6.142.33 2.10∼2.432.32 I 0.29∼2.001.05 0.0008∼0.06970.0204 BZ−1 0.29∼4.951.85 2.51∼2.752.65 I/II1 0.15∼3.231.29 0.0006∼1.69000.2400 注:最小值∼最大值平均值。 表 2 页岩实验样品基础信息
Table 2 Information of analyzed shale samples
编号 井号 深度/m 层位 岩相 USS−17 AY−1 2323.80 龙马溪组 极富有机质硅质页岩 RSS−11 BZ−1 1113.00 龙马溪组 富有机质硅质页岩 RMS−1 AY−1 2331.20 五峰组 富有机质混合质页岩 MSS−1 BZ−1 1118.25 五峰组 中等有机质硅质页岩 MMS−13 BZ−1 1112.80 龙马溪组 中等有机质混合质页岩 LSS−15 BZ−1 1112.00 龙马溪组 贫有机质硅质页岩 LMS−1 SD−1 1140.80 五峰组 贫有机质混合质页岩 LCS−25 BZ−1 1089.75 龙马溪组 贫有机质黏土质页岩 表 3 黔北地区五峰组—龙马溪组不同岩相页岩N2吸附分形维数
Table 3 N2 adsorption fractal dimension of different lithofacies shales from the Wufeng−Longmaxi Formation in the northern Guizhou area
岩相不同孔径范围累积
孔体积/(cm3/g)不同孔径范围累积
比表面积/(m2/g)P/P0<0.5 P/P0>0.5 0~2 nm 2~50 nm >50 nm 0~2 nm 2~50 nm >50 nm 拟合系数R2 分形维数D1 拟合系数R2 分形维数D2 USS−17 0.0052 0.0170 0.0184 16.134 25.261 25.323 0.9931 2.6722 0.8987 2.9113 RSS−11 0.0050 0.1070 0.0191 15.888 24.910 24.995 0.9944 2.6488 0.9243 2.8884 RMS−1 0.0046 0.0146 0.0167 14.285 21.834 21.920 0.9936 2.6478 0.9482 2.8892 MSS−1 0.0031 0.0115 0.0133 9.4016 16.064 16.136 0.9981 2.6101 0.9523 2.8864 MMS−13 0.0016 0.0078 0.0095 4.7206 9.2929 9.3620 0.9988 2.6104 0.9640 2.8622 LSS−15 0.0012 0.0063 0.0078 3.3643 7.0746 7.1357 0.9992 2.5351 0.9705 2.8422 LMS−1 0.0015 0.0083 0.0106 4.2739 8.9615 9.0539 0.9995 2.5922 0.9761 2.8311 LCS−25 0.0034 0.0151 0.0181 10.196 18.794 18.920 0.9991 2.5968 0.9717 2.8539 表 4 黔北地区五峰组—龙马溪组不同岩相页岩高压压汞分形维数
Table 4 High pressure mercury injection fractal dimensions of different lithofacies shales from the Wufeng Formation−Longmaxi Formation in the northern Guizhou area
岩相 孔隙度
/%渗透率
/mD孔体积
/(cm3/g)比表面积
/(m2/g)平均孔径
/nm最大进汞饱和度/% 拟合系数
/R2分形维数
/DHgUSS−17 1.6256 2.1975 0.0065 2.735 9.51 16.00 0.9942 2.2198 RSS−11 2.1780 0.1582 0.0087 3.133 11.10 15.95 0.9006 2.2978 RMS−1 1.6459 2.1254 0.0063 1.773 14.11 14.55 0.9196 2.1404 MSS−1 1.0814 1.2244 0.0041 1.112 14.59 14.22 0.9753 2.1230 MMS−13 2.7113 6.0540 0.0107 2.964 14.45 15.59 0.9656 2.0904 LSS−15 1.7096 0.5540 0.0064 0.768 33.27 13.99 0.9811 2.3736 LMS−1 3.1702 15.4231 0.0118 1.513 31.12 13.82 0.9966 2.1320 LCS−25 3.0875 2.8005 0.0115 4.249 10.78 13.81 0.9786 2.1037 -
[1] An Cheng, Liu Guangdi, Sun Mingliang, You Fuliang, Wang Zixin, Cao Yushun. 2023a. Development characteristics and classification of shale laminae in the Chang 73 sub−member of the Triassic Yanchang Formation in the Ordos Basin[J]. Petroleum Science Bulletin, 8(2): 125−140 (in Chinese with English abstract).
[2] An Cheng, Liu Guangdi, Sun Mingliang, You Fuliang, Wang Zixin, Cao Yushun. 2023b. Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: A case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. Petroleum Geology & Experiment, 45(3): 576−586 (in Chinese with English abstract).
[3] Avnir D, Jaroniec M. 1989. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 5(6): 1431−1433. doi: 10.1021/la00090a032
[4] Bai Lixun, Gao Zhiye, Wei Weihang, Yang Biding. 2023. Comparative study on pore structure of deep−deep shale in Longmaxi Formation in southern Sichuan Basin[J]. Special Oil & Gas Reservoirs, 30(4): 54−62 (in Chinese with English abstract).
[5] Cai Y, Liu D, Pan Z, Yao Y, Li J, Qiu Y. 2013. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 103: 258−268. doi: 10.1016/j.fuel.2012.06.055
[6] Chang Deshuang, Han Bing, Zhu Douxing, Jiang Liwei, Wang Yongli, Zhou Chuanjiang, Cao Lili, Li Yan. 2021. Control of Yanshanian movement on shale gas preservation conditions: A case study on the Longmaxi Formation shale gas in Taiyang−Haiba Block of northern Yunnan and Guizhou[J]. Natural Gas Industry, 41(S1): 45−50 (in Chinese with English abstract).
[7] Du W, Lin R, Shi F, Luo N, Wang Y, Fan Q, Cai J, Zhang Z, Liu L, Yin W, Zhao F, Sun Z, Chen Y. 2022. Multi−scale pore structure characterization of silurian marine shale and its coupling relationship with material composition: A case study in the Northern Guizhou Area[J]. Frontiers in Earth Science, 10: 930650. doi: 10.3389/feart.2022.930650
[8] Gao Fenglin, Wang Chengxi, Song Yan, Jiang Zhenxue, Li Zhuo, Liu Qingxin, Liang Zhikai, Zhang Xinxin. 2021. Pore evolution of organic maceral in Shahezi Formation shale of Changling fault depression, Songliao Basin[J]. Geology in China, 48(3): 948−958 (in Chinese with English abstract).
[9] Gao Z, Hu Q. 2016. Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition[J]. AAPG Bulletin, 100(1): 101−114. doi: 10.1306/09141514095
[10] Gao Zhiye, Fan Yupeng, Hu Qinhong, Jiang Zhenxue, Huang Zhilong, Wang Qianyou, Cheng Yu. 2020. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the south Sichuan Basin[J]. Petroleum Science Bulletin, 5(1): 1−16 (in Chinese with English abstract).
[11] Giesche H. 2006. Mercury porosimetry: A general (practical) overview[J]. Particle & Particle Systems Characterization, 23(1): 9−19.
[12] Guo Xusheng, Hu Zongquan, Li Shuangjian, Zheng Lunju, Zhu Dongya, Liu Junlong, Shen Baojian, Du Wei, Yu Lingjie, Liu Zengqin, Huang Fu Ruilin. 2023. Progress and prospect of natural gas exploration and research in deep and ultra−deep strata[J]. Petroleum Science Bulletin, 8(4): 461−474 (in Chinese with English abstract).
[13] Guo Yinghai, Zhao Difei. 2015. Analysis of micro−scale heterogeneity characteristics in marine shale gas reservoir[J]. Journal of China University of Mining & Technology, 44(2): 300−307 (in Chinese with English abstract).
[14] Ji W, Song Y, Jiang Z, Meng M, Liu Q, Chen L, Wang P, Gao F, Huang H. 2016. Fractal characteristics of nano−pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, South China[J]. Marine and Petroleum Geology, 78: 88−98. doi: 10.1016/j.marpetgeo.2016.08.023
[15] Jiang Yuqiang, Song Yitao, Qi Lin, Chen Lei, Tao Yanzhong, Gan Hui, Wu Peijin, Ye Ziyi. 2016. Fine lithofacies of China's marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin China[J]. Earth Science Frontiers, 23(1): 107−118 (in Chinese with English abstract).
[16] Lai Jin, Wang Guiwen, Zheng Yiqiong, Li Weiling, Cai Chao. 2013. Method for calculating the fractal dimension of the pore structure of low permeability reservoirs: A case study on the Xujiahe formation reservoir in central Sichuan basin[J]. Journal of Northeast Petroleum University, 37(1): 1−8 (in Chinese with English abstract).
[17] Li Canxing, Liu Dongdong, Xiao Lei, Jiang Zhenxue, Li Zhuo, Guo Jing. 2021. Research into pore evolution in Cretaceous continental shales in the Songliao Basin[J]. Petroleum Science Bulletin, 6(2): 181−195 (in Chinese with English abstract).
[18] Li Qiqi, Xu Shang, Chen Ke, Song Teng, Meng Fanyang, He Sheng, Lu Yongchao, Shi Wanzhong, Gou Qiyang, Wang Yuxuan. 2022. Analysis of shale gas accumulation conditions of the Upper Permian in the Lower Yangtze Region[J]. Geology in China, 49(2): 383−397 (in Chinese with English abstract).
[19] Li Yanran, Hu Zhiming, Liu Xiangui, Cai Changhong, Mu Ying, Zhang Qingxiu, Zeng Shuti, Guo Jingshu. 2022. The pore structure characteristics of deep shale in Longmaxi Formation of Luzhou area[J]. Fault−Block Oil & Gas Field, 29(5): 584−590 (in Chinese with English abstract).
[20] Li Yuegang, Zhou Anfu, Xie Wei, Qiu Zhiyi, Dai Yun, Hu Xi, Cheng Xiaoyan, Jiang Yuqiang, Fu Yonghong, Wang Zimeng. 2022. Lithofacies division and main controling factors of reservoir development in Wufeng Formation−Long11 sub−member shale in the Luzhou region, South Sichuan Basin[J]. Natural Gas Industry, 42(8): 112−123 (in Chinese with English abstract).
[21] Li Z, Shen X, Qi Z, Hu R. 2018. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods[J]. Journal of Natural Gas Science and Engineering, 53: 12−21. doi: 10.1016/j.jngse.2018.02.027
[22] Lian Mengli, Liu Dadong, Lin Ruiqin, Wang Yisong, Shi Fulun, Cai Junying, Fan Qingqing, Zhang Ziya, Zhao Fuping, Chen Yi, Du Wei. 2022. Sedimentary environment and organic matter enrichment mechanism of Wufeng−Longmaxi shale in the northern Guizhou area[J]. Journal of Central South University(Science and Technology), 53(9): 3756−3772 (in Chinese with English abstract).
[23] Liang C, Jiang Z, Cao Y, Zhang J Guo L. 2017. Sedimentary characteristics and paleoenvironment of shale in the Wufeng−Longmaxi Formation, North Guizhou Province, and its shale gas potential[J]. Journal of Earth Science, 28: 1020−1031. doi: 10.1007/s12583-016-0932-x
[24] Liu Dongdong, Guo Jing, Pan Zhankun, Du Wei, Zhao Fuping, Chen Yi, Shi Fulun, Song Yan, Jiang Zhenxue. 2021. Overpressure evolution process in shale gas reservoir: Evidence from the fluid inclusions in the fractures of Wufeng Formation−Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 41(9): 12−22 (in Chinese with English abstract).
[25] Long Shengxiang, Lu Ting, Li Qianwen, Yang Guoqiao, Li Donghui. 2021. Discussion on China's shale gas development ideas and goals during the 14th Five−Year Plan[J]. Natural Gas Industry, 41(10): 1−10 (in Chinese with English abstract).
[26] Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of nanometer−scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of sedimentary research, 79(12): 848−861. doi: 10.2110/jsr.2009.092
[27] Pan Zhankun, Liu Dongdong, Huang Zhixin, Jiang Zhenxue, Song Yan, Guo Jing, Li Canxing. 2019. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng−Longmaxi shales in the Luzhou area southern Sichuan Basin[J]. Petroleum Science Bulletin, 4(3): 242−253 (in Chinese with English abstract).
[28] Pfeifer P, Obert M, Cole M W. 1989. Fractal BET and FHH theories of adsorption: A comparative study[J]. Proceedings of the Royal Society A: Mathematical, Physical Sciences and Engineering Science, 423(1864): 169−188.
[29] Qu Kaixuan, Guo Shaobin. 2022. Tightening genesis and gas charging characteristics of the Taiyuan Formation sandstone reservoir in the Taikang Uplift, southern North[J]. Petroleum Science Bulletin, 7(3): 294−308 (in Chinese with English abstract).
[30] Shu Honglin, He Fangyu, Li Jilin, Zhang Jiehui, Li Minglong, Rui Yun, Zou Chen, Yao Qiuchang, Mei Jue, Li Yanjun. 2023. Geolocical characteristics and favorable exploration areas of Wufeng Formation−Longmaxi Formation deep shale in the Da'an Block Sichuan Basin[J]. Natural Gas Industry, 43(6): 30−43 (in Chinese with English abstract).
[31] Si Chunsong, Zhang Runhe, Yao Genshun, Guo Qingxin, Zhu Zhenhong, Lou Zhanghua, Jin Chong, Jin Aimin, Huang Ling. 2016. Tectonism and hydrocarbon preservation conditions of Qianbei depression and its margin[J]. Journal of China University of Mining & Technology, 45(5): 1010−1021 (in Chinese with English abstract).
[32] Sun M, Yu B, Hu Q, Zhang Y, Li B, Yang R, Melnichenko Y B, Cheng G. 2017. Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small−angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm[J]. International Journal of Coal Geology, 171: 61−68. doi: 10.1016/j.coal.2016.12.004
[33] Tang Xuan, Zheng Fengzan, Liang Guodong, Ma Zijie, Zhang Jiazheng, Wang Yufang, Zhang Tongwei. 2023. Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China[J]. Earth Science Frontiers, 30(3): 110−123 (in Chinese with English abstract).
[34] Wang J Y, Guo S B. 2021. Study on the relationship between hydrocarbon generation and pore evolution in continental shale from the Ordos Basin, China[J]. Petroleum Science, 18(5): 1305−1322. doi: 10.1016/j.petsci.2021.01.002
[35] Wang Jing, Xi Zhaodong, Lu Donghua. 2021. Pore structure of shale gas reservois revealed by constant−speed mercury lnjection experiments: A case study of Wufeng Formation shale from northwestern Hunan Province[J]. Geology and Exploration, 57(2): 450−456 (in Chinese with English abstract).
[36] Wang M, Xue H, Tian S, Wilkins R W T, Wang Z. 2015. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 67: 144−153. doi: 10.1016/j.marpetgeo.2015.05.011
[37] Wang P, Nie H, Liu Z, Sun C, Cao Z, Wang R, Li P. 2023. Differences in pore type and pore structure between Silurian Longmaxi marine shale and Jurassic Dongyuemiao lacustrine shale and their influence on shale−gas enrichment[J]. Minerals, 13(2): 190. doi: 10.3390/min13020190
[38] Wang Yisong, Hu Hanwen, Shi Fulun, Lin Ruiqin, Liu Dadong, Feng Xia, Zhang Daquan, Zhou Zhe, Zhao Fuping, Sun Zhao, Chen Yi, Du Wei. 2023. Reservoir−forming process of shale gas in Wufeng−Longmaxi Formations in northern Guizhou Province and its exploration implications: Evidence from fluid inclusions[J]. Natural Gas Geoscience, 34(1): 140−152 (in Chinese with English abstract).
[39] Wang Yuman, Wang Shufang, Dong Dazhong, Li Xinjing, Huang Jinliang, Zhang Chenchen, Guan Quanzhong. 2016. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 23(1): 119−133 (in Chinese with English abstract).
[40] Xiao Dianshi, Zhao Renwen, Yang Xiao, Fang Dazhi, Li Bo, Sun Xingxing. 2019. Characterization classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 40(6): 1215−1225 (in Chinese with English abstract).
[41] Yang F, Ning Z, Liu H. 2014. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 115: 378−384. doi: 10.1016/j.fuel.2013.07.040
[42] Zhang Peng, Huang Yuqi, Zhang Jinchuan, Li Bo, Liu Hongyang, Yang Junwei. 2020. Study on shale heterogeneity in western Hunan and Hubeia case study of the Longmaxi Formation in well Ld1[J]. Acta Geologica Sinica, 94(5): 1568−1577 (in Chinese with English abstract).
[43] Zhang Zheng, Shang Shaoshi, Zhang Zhibing, Li Huaibin, Huang Hua. 2021. Characterization of shale organic−pore structure using the nitrogen adsorption method[J]. Geology and Exploration, 57(6): 1408−1415 (in Chinese with English abstract).
[44] Zhao Yue, Li Lei, Si Yunhang, Wang Huimin. 2022. Fractal characteristics and controling factors of pores in shallow shale gas reservoirs: A case study of Longmaxi Formation in Zhaotong Area, Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 52(6): 1813−1829 (in Chinese with English abstract).
[45] 安成, 柳广弟, 孙明亮, 游富粮, 王子昕, 曹玉顺. 2023a. 鄂尔多斯盆地三叠系延长组长73亚段页岩纹层发育特征及类型划分[J]. 石油科学通报, 8(2): 125−140. [46] 安成, 柳广弟, 孙明亮, 游富粮, 王子昕, 曹玉顺. 2023b. 基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征—以鄂尔多斯盆地华池地区长7段为例[J]. 石油实验地质, 45(3): 576−586. [47] 白立勋, 高之业, 魏维航, 杨弼鼎. 2023. 川南地区龙马溪组中深层与深层页岩孔隙结构对比研究[J]. 特种油气藏, 30(4): 54−62. [48] 常德双, 韩冰, 朱斗星, 蒋立伟, 王永莉, 周川江, 曹丽丽, 李燕. 2021. 燕山运动对页岩气保存条件的控制作用—以滇黔北地区太阳—海坝区块龙马溪组页岩气为例[J]. 天然气工业, 41(S1): 45−50. [49] 高凤琳, 王成锡, 宋岩, 姜振学, 李卓, 刘庆新, 梁志凯, 张欣欣. 2021. 松辽盆地长岭断陷沙河子组页岩有机显微组分孔隙演化规律研究[J]. 中国地质, 48(3): 948−958. [50] 高之业, 范毓鹏, 胡钦红, 姜振学, 黄志龙, 王乾右, 成雨. 2020. 川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 5(1): 1−16. doi: 10.3969/j.issn.2096-1693.2020.01.001 [51] 郭旭升, 胡宗全, 李双建, 郑伦举, 朱东亚, 刘君龙, 申宝剑, 杜伟, 俞凌杰, 刘增勤, 皇甫瑞麟. 2023. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报, 8(4): 461−474. [52] 郭英海, 赵迪斐. 2015. 微观尺度海相页岩储层微观非均质性研究[J]. 中国矿业大学学报, 44(2): 300−307. [53] 蒋裕强, 宋益滔, 漆麟, 陈雷, 陶艳忠, 甘辉, 吴佩津, 叶子亿. 2016. 中国海相页岩岩相精细划分及测井预测: 以四川盆地南部威远地区龙马溪组为例[J]. 地学前缘, 23(1): 107−118. [54] 赖锦, 王贵文, 郑懿琼, 李维岭, 蔡超. 2013. 低渗透碎屑岩储层孔隙结构分形维数计算方法—以川中地区须家河组储层41块岩样为例[J]. 东北石油大学学报, 37(1): 1−8. doi: 10.3969/j.issn.2095-4107.2013.01.001 [55] 李灿星, 刘冬冬, 肖磊, 姜振学, 李卓, 郭靖. 2021. 松辽盆地白垩系陆相页岩孔隙演化过程研究[J]. 石油科学通报, 6(2): 181−195. [56] 李琪琪, 徐尚, 陈科, 宋腾, 孟凡洋, 何生, 陆永潮, 石万忠, 苟启洋, 王雨轩. 2022. 下扬子地区上二叠统页岩气成藏条件分析[J]. 中国地质, 49(2): 383−397. [57] 李嫣然, 胡志明, 刘先贵, 蔡长宏, 穆英, 张清秀, 曾术悌, 郭静姝. 2022. 泸州地区龙马溪组深层页岩孔隙结构特征[J]. 断块油气田, 29(5): 584−590. [58] 李跃纲, 周安富, 谢伟, 邱峋晰, 戴赟, 胡曦, 程晓艳, 蒋裕强, 付永红, 王子萌. 2022. 四川盆地南部泸州地区五峰组—龙一1亚段页岩岩相划分及储层发育主控因素[J]. 天然气工业, 42(8): 112−123. [59] 连梦利, 刘达东, 林瑞钦, 王奕松, 石富伦, 蔡俊滢, 范青青, 张子亚, 赵福平, 陈祎, 杜威. 2022. 黔北地区五峰组—龙马溪组页岩沉积环境及有机质富集机理[J]. 中南大学学报(自然科学版), 53(9): 3756−3772. [60] 刘冬冬, 郭靖, 潘占昆, 杜威, 赵福平, 陈祎, 石富伦, 宋岩, 姜振学. 2021. 页岩气藏超压演化过程: 来自四川盆地南部五峰组—龙马溪组裂缝流体包裹体的证据[J]. 天然气工业, 41(9): 12−22. [61] 龙胜祥, 卢婷, 李倩文, 杨国桥, 李东晖. 2021. 论中国页岩气“十四五”发展思路与目标[J]. 天然气工业, 41(10): 1−10. [62] 潘占昆, 刘冬冬, 黄治鑫, 姜振学, 宋岩, 郭靖, 李灿星. 2019. 川南地区泸州区块五峰组—龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复[J]. 石油科学通报, 4(3): 242−253. [63] 屈凯旋, 郭少斌. 2022. 南华北盆地太康隆起太原组砂岩储层致密成因及天然气充注特征[J]. 石油科学通报, 7(3): 294−308. [64] 舒红林, 何方雨, 李季林, 张介辉, 李明隆, 芮昀, 邹辰, 姚秋昌, 梅珏, 李延钧. 2023. 四川盆地大安区块五峰组—龙马溪组深层页岩地质特征与勘探有利区[J]. 天然气工业, 43(6): 30−43. [65] 斯春松, 张润合, 姚根顺, 郭庆新, 朱振宏, 楼章华, 金宠, 金爱民, 黄羚. 2016. 黔北坳陷及周缘构造作用与油气保存条件研究[J]. 中国矿业大学学报, 45(5): 1010−1021. [66] 唐玄, 郑逢赞, 梁国栋, 马子杰, 张家政, 王玉芳, 张同伟. 2023. 黔北寒武系牛蹄塘组页岩孔隙分形表征[J]. 地学前缘, 30(3): 110−123. [67] 王静, 郗兆栋, 陆冬华. 2021. 基于恒速压汞技术研究页岩气储层孔隙结构: 以湘西北地区五峰组页岩为例[J]. 地质与勘探, 57(2): 450−456. [68] 王奕松, 胡瀚文, 石富伦, 林瑞钦, 刘达冬, 冯霞, 张大权, 周喆, 赵福平, 孙钊, 陈祎, 杜威. 2023. 黔北地区五峰组—龙马溪组页岩气成藏过程及勘探启示: 来自流体包裹体的证据[J]. 天然气地球科学, 34(1): 140−152. [69] 王玉满, 王淑芳, 董大忠, 李新景, 黄金亮, 张晨晨, 管全中. 2016. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 23(1): 119−133. [70] 肖佃师, 赵仁文, 杨潇, 房大志, 李勃, 孙星星. 2019. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 40(6): 1215−1225. [71] 张鹏, 黄宇琪, 张金川, 李博, 刘洪洋, 杨军伟. 2020. 湘鄂西页岩非均质性研究—以Ld1井龙马溪组为例[J]. 地质学报, 94(5): 1568−1577. [72] 张征, 商少石, 张志炳, 李怀彬, 黄华. 2021. 基于氮气吸附法的页岩有机孔隙结构表征[J]. 地质与勘探, 57(6): 1408−1415. [73] 赵越, 李磊, 司运航, 王会敏. 2022. 浅层页岩气储层孔隙分形特征及控制因素—以云南昭通地区龙马溪组为例[J]. 吉林大学学报(地球科学版), 52(6): 1813−1829.