Reservoir characteristics and natural gas accumulation of shales within the Cambrian Shuijingtuo Formation in the Yichang region, middle Yangtze Platform
-
摘要:研究目的
湖北省宜昌地区是中扬子地台页岩气勘探的重要前沿领域之一,近年来的野外调查与钻探工作表明该地区的寒武系水井沱组是极具潜在工业价值的页岩气勘探靶区。
研究方法本文针对该地区最新的钻孔资料,利用多学科交叉手段,查明该地区水井沱组优质页岩储层的特征以及油气富集规律。
研究结果水井沱组页岩有机质丰度高,有机碳含量(TOC)主要分布在0.56%~8.42%,干酪根以II1型和I型为主,Ro等效值分布在2.4%~3.2%。水井沱组页岩储层孔隙度主要分布在0.5%~9.1%,渗透率主要分布在0.019×10−3~0.540×10−3 μm2。水井沱组页岩的储集空间主要包括有机孔隙、无机孔隙以及裂缝等类型。储集空间的发育程度主要与有机质富集程度、黏土矿物含量以及页理缝的发育程度有关。天然气主要以吸附气(45.21%~81.44%)和游离气(18.56%~54.79%)的状态赋存于水井沱组页岩储层中,溶解气的比例相对较小。水井沱组页岩储层的含气性主要受有机碳含量、脆性矿物比例以及裂缝发育程度有关。有机碳比例、脆性矿物比例和裂缝发育程度越高,储层含气性越好。
结论综合地球化学、岩石物理和现场实测数据,认为宜昌地区水井沱组页岩气极具商业价值,是中国南方理想的页岩气勘探开发目标之一。
创新点:基于多学科交叉手段查明了水井沱组页岩储层特征及天然气富集规律;联系受控基底断裂构造影响,将宜昌地区水井沱组岩气保存模式确定为“基底控藏型”保存模型。
Abstract:This paper is the result of oil and gas exploration engineering.
ObjectiveThe Yichang area of Hubei Province is one of the important frontier areas of shale gas exploration on the middle Yangtze platform. Field investigation and drilling works in recent years show that the Cambrian Shuijngtuo Formation in this area is a shale gas exploration target with great potential industrial value.
MethodsBased on the latest borehole data in this area, the characteristics of high−quality shale reservoirs and the hydrocarbon accumulation patterns are identified by means of multidisciplinary methods.
ResultsThe shale of the Shuijngtuo Formation has high organic matter abundance, with TOC mainly distributed in the range of 0.56%−8.42%. Organic matter is dominated by type II1 and type I kerogen, and Ro equivalent value is distributed in the range of 2.4%−3.2%. Porosity and permeability values of shale reservoirs within the Shuijngtuo formation are mainly in the range of 0.5%−9.1% and 0.019×10−3−0.540×10−3 μm2. Reservoir pore spaces of shales within the Shuijngtuo Formation mainly includes organic pores, inorganic pores and fractures. Occurrence of pore spaces is mainly related to the enrichment degree of organic matter, the content of clay minerals and the development degree of fractures. Natural gas is mainly attached to the shale reservoir in the form of adsorbed gas (45.21%−81.44%) and free gas (18.56%−54.79%), and the proportion of dissolved gas is relatively small. The gas bearing property of the shale reservoir is mainly related to the content of organic carbon, the proportion of brittle minerals and the degree of fracture development. The higher the proportion of organic carbon, the proportion of brittle minerals, and the degree of fracture development, the better the gas bearing property of the reservoir becomes.
ConclusionsBased on the geochemical, petrophysical and field measurement data, the shale gas of the Shuijingtuo Formation in Yichang area has great commercial value and is one of the ideal targets for shale gas exploration and development in southern China.
Highlights:Based on multidisciplinary cross−means, the shale reservoir characteristics and natural gas enrichment rules of Shuijingtuo Formation were identified. Based on the influence of the controlled basement fault structure, the rock gas preservation model of the Shuijingtuo Formation in Yichang area is determined as the “basement−controlled reservoir−type” preservation model.
-
-
图 1 钻井及钻孔位置分布图(据罗胜元等,2020)
Figure 1. Distribution of drilling and borehole location (after Luo Shengyuan et al., 2022)
图 4 鄂宜地2井岩家河—水井沱组孔隙度、渗透率频率分布图与统计柱状图
a—孔隙度分布频率图;b—各小层孔隙度统计图;c—渗透率分布频率图;d—各小层渗透率统计图.
Figure 4. Frequency distribution diagram and statistical histogram of porosity and permeability of Yanjiahe−Shuijingtuo Formation in Well Eyidi 2
a−Porosity distribution frequency diagram; b−Porosity statistical chart of each layer; c−Permeability distribution frequency diagram; d−Permeability statistics of each layer
图 6 鄂宜地2井水井沱组岩心裂缝照片
a—1660.76~1662.21 m垂直缝,方解石全充填;b—1699.68~1701.34 m高角度裂缝,全充填;c—1724.2~1724.5 m高角度直劈缝,方解石全充填;d—裂缝FMI动态图像特征
Figure 6. Core fracture photos of Shuijingtuo Formation in Well Eyidi 2
a−1660.76−1662.21 m vertical fracture, calcite full filling; b−1699.68−1701.34 m high angle cracks, full filling; c−1724.2−1724.5 m high angle straight split fracture, calcite full filling; d−Fracture FMI dynamic image characteristics
图 7 鄂宜地2井水井沱组页岩孔隙度与不同物质含量的关系
a—TOC;b—黏土矿物;c—伊利石孔;d—伊蒙混层;e—石英;f—长石;g—碳酸盐矿物
Figure 7. Relationship between porosity and different material contents of Shuijingtuo Formation shale in Well Eyidi 2
a−TOC; b−Clay minerals; c−Illite pores; d−Mixed−layer illite−smectite; e−Quartz; f−Feldspar; g−Carbonate minerals
图 10 鄂宜页1井水井沱组裂缝分布特征(据罗胜元等,2019)
a—裂缝倾向玫瑰花图;b—裂缝倾角概率分布图
Figure 10. Fracture distribution characteristics of Shuijingtuo Formation in Well Eyiye 1 (after Luo Shengyuan et al., 2019)
a−Fracture tendency rose diagram; b−Fracture dip angle probability distribution diagram
图 11 典型区块页岩含气性、赋存状态及与地层压力间关系(据Hill and Nelson,2000)
Figure 11. Gas−bearing property, occurrence state and relationship with formation pressure of shale in typical block (after Hill and Nelson, 2000)
图 12 宜页1井寒武系页岩气“基底控藏型”保存模式(据陈孝红等,2018)
K+Q—第四系+白垩系;P+T1—二叠系+下侏罗统;S+D—志留系+泥盆系;O—奥陶系;Є2—中寒武统;Є2sp—寒武系石牌组;Z2Єy+Є1-2n—寒武系岩家河组+寒武系牛蹄塘组;Z2d+Z2dy—震旦系陡山沱组+震旦系灯影组;Nh—南华系
Figure 12. Preservation mode of Cambrian shale gas "basement−controlled reservoir" in Well Yiye 1 (after Chen Xiaohong et al., 2018)
K+Q−Quaternary+Cretaceous; P+T1−Permian+Lower Jurassic; S+D−Silurian+Devonian system; O−Ordovician system; Є2−Middle Cambrian; Є2sp−Cambrian Shipai Formation; Z2Єy+Є1-2n−Cambrian Yanjiahe Formation+Cambrian Niutitang Formation; Z2d+Z2dy−Cambrian Doushantuo Formation+Cambrian Dengying Formation; Nh−South China Faction
表 1 中国南方扬子地台下寒武统不同区域富有机质页岩储层有机质地化特征
Table 1 Geochemical characteristics of organic matter in organic−rich shale reservoirs in different regions of the Lower Cambrian in the Yangtze Platform, South China
层位 时代 分布区域 主要岩性 主要沉积相类型 TOC分布 有机类型 有机质成熟度 水井沱组 寒武纪早期 黄陵背斜周缘 灰岩—灰质页岩 陆棚相沉积 (下段)1.32%~8.42% Ⅱ1 过成熟演化阶段 牛蹄塘组 寒武纪早期 黔东南地区 黑色炭质页岩 深水陆棚相 0.79%~6.01%* I 高−过成熟演化阶段 筇竹寺组 寒武纪早期 川西川中 深灰—灰黑色页岩 深水陆棚相 1.6%~10%* I 高−过成熟演化阶段 注:*文献数据来源:张天怡等,2023。 表 2 长阳鸭子口剖面水井沱组干酪根镜鉴统计
Table 2 Statistics of kerogen of Shuijingtuo Formation in Changyang Yazikou section
剖面 样品 腐泥组 镜质体 类型指数 无定型体 碎屑体 合计 无结构体 碎屑体 合计 类型 长
阳
鸭
子
口Є1sh12-1 171 58 229 41 30 71 58.5 57.0 19.3 76.3 13.7 10.0 23.7 Ⅱ1 Є1sh11-1 154 59 213 54 33 87 49.3 51.3 19.7 71.0 18.0 11.0 29.0 Ⅱ1 Є1sh10-1 173 46 219 50 31 81 52.8 57.7 15.3 73.0 16.7 10.3 27.0 Ⅱ1 Є1sh7-1 162 57 219 52 29 81 52.8 54.0 19.0 73.0 17.3 9.7 27.0 Ⅱ1 表 3 宜昌主要区域寒武系水井沱组泥页岩成熟度统计
Table 3 Statistics of shale maturity of Cambrian Shuijingtuo Formation in Yichang main area
地理位置 钻井及剖面 Ro等效值/% 平均值/% 宜昌土城 鄂宜地2井 2.26~2.37 2.35 长阳乐园 ZK03 2.96~3.36 3.16 宜都聂河 ZK05 2.46~3.15 2.85 长阳鸭子口 白竹岭 2.56~2.67 2.62 兴山 南阳 2.19~3.07 2.63 表 4 鄂宜地2井、宜10井水井沱组全岩X衍射组分统计
Table 4 X-ray diffraction component statistics of whole rock of Shuijingtuo Formation in Well Eyidi 2 and Well Yi 10
井号 小层 样品个数 全岩X衍射分析结果/% 石英 长石 碳酸盐矿物 黄铁矿 黏土 水四段 13 2.0~18.7 0~3.7 62.5~95.2 0~1.5 1.3~13.8 鄂 6.4 2 86.9 0.2 4.5 宜 水三段 16 3.9~28.6 0~3.7 6.4~87.9 0~5.8 7.0~61.3 地 14.5 1.9 52.1 3.3 27.3 2 水二段 21 8.1~33.2 0.7~6.0 11.8~84.0 0~6.2 8.3~54.7 井 21.4 2.8 35.8 3.7 37.6 水一段 23 16.5~39.1 1.7~11.2 13.1~86.9 2.0~14.9 2.7~46.0 29.2 4.4 29.6 5 32.7 水四段 7 9.8~40.4 5.0~15.1 31.8~82.1 0 1.9~12.8 17.6 7.8 70.7 3.9 宜 水三段 1 50.9 13 13.5 0 22.6 10 水二段 3 34.9~45.6 8.3~14.2 28.3~39.7 0~1.9 12.0~15.1 井 41.6 10.3 33.3 1 13.8 水一段 5 31.2~49.2 4.8~9.5 41.0~58.0 0.5~1.8 8.0~11.5 39.3 7.5 49.34 1.2 9.6 注:区间数值下方为平均值。 表 5 鄂宜地2井、宜10井水井沱组黏土X衍射组分统计
Table 5 X-ray diffraction component statistics of clay in Shuijingtuo Formation of Well Eyidi 2 and Well Yi 10
井号 小层 样品个数 黏土X衍射分析结果/% 黏土总含量 伊蒙混层 伊利石 绿泥石 水四段 3 9.6~13.8 5.7~6.6 3.6~5.1 0~2.8 鄂 11.2 6.1 4.2 0.9 宜 水三段 16 7.0~61.3 2.5~26.4 2.1~14.8 2.5~20.8 地 27.3 11.8 7.5 7.9 2 水二段 21 8.3~54.7 3.6~33.3 1.7~12.6 2.4~11.9 井 37.6 20.6 8.9 8.3 水一段 23 2.7~46.0 7.6~25.8 3.6~20.1 0.4~8.1 32.7 19.3 11.8 3.2 水四段 7 1.9~12.8 0.8~4.5 1.0~5.6 0.1~2.7 鄂 3.9 1.5 1.9 0.5 宜 水三段 1 22.6 5.4 12.4 4.7 10 水二段 3 12.0~15.1 3.7~4.5 5.5~7.7 2.5~4.1 井 13.8 4.1 6.5 3.2 水一段 5 8.0~11.5 3.2~4.7 3.0~6.0 0.8~2.1 9.6 3.8 4.4 1.4 注:区间数值下方为平均值。 表 6 鄂宜页1井现场解析数据
Table 6 Field analytical data of Well Eyiye 1
编号 深度/m 解吸气量/ (m3/t) 损失气量/ (m3/t) 总含气量/ (m3/t) 游离气占比/% 吸附气占比/% CY−1 1762.38 0.221 0.0937 0.315 29.78 70.22 CY−2 1763.78 0.404 0.271 0.675 40.10 59.90 CY−3 1766.57 0.297 0.127 0.424 29.90 70.10 CY−4 1772.54 0.294 0.169 0.463 36.53 63.47 CY−5 1775.74 0.334 0.258 0.591 43.59 56.41 CY−6 1777.56 0.203 0.122 0.326 37.57 62.43 CY−7 1780.05 0.258 0.161 0.418 38.38 61.62 CY−8 1782.74 0.226 0.104 0.330 31.60 68.40 CY−9 1790.17 0.551 0.212 0.763 27.82 72.18 CY−10 1791.56 0.446 0.165 0.610 26.95 73.05 CY−11 1792.02 0.415 0.206 0.621 33.18 66.82 CY−12 1792.51 0.558 0.189 0.747 25.31 74.69 CY−13 1793.97 0.434 0.145 0.579 25.02 74.98 CY−14 1795.70 0.553 0.188 0.741 25.35 74.65 CY−15 1804.91 0.539 0.179 0.718 24.96 75.04 CY−16 1809.14 0.750 0.271 1.02 26.52 73.48 CY−17 1809.73 0.922 0.378 1.30 29.08 70.92 CY−18 1813.01 0.980 0.409 1.39 29.45 70.55 CY−19 1814.32 0.608 0.155 0.762 20.30 79.70 CY−20 1816.48 0.663 0.151 0.814 18.56 81.44 CY−21 1820.02 0.607 0.191 0.798 23.99 76.01 CY−22 1821.88 0.943 0.265 1.21 21.90 78.10 CY−23 1823.68 1.07 0.654 1.72 38.02 61.98 CY−24 1826.79 1.41 1.17 2.57 45.33 54.67 CY−25 1828.89 1.06 0.476 1.54 30.96 69.04 CY−26 1831.42 1.03 0.348 1.37 25.28 74.72 CY−27 1833.05 0.925 0.263 1.19 22.16 77.84 CY−28 1835.45 0.948 0.328 1.28 25.69 74.31 CY−29 1837.69 1.12 1.07 2.19 48.88 51.12 CY−30 1839.52 1.20 0.933 2.14 43.68 56.32 CY−31 1841.24 1.30 1.05 2.35 44.59 55.41 CY−32 1843.20 1.41 1.32 2.73 48.33 51.67 CY−33 1843.75 1.17 0.836 2.01 41.62 58.38 CY−34 1846.47 1.40 0.833 2.23 37.29 62.71 CY−35 1849.14 1.35 1.10 2.45 44.84 55.16 CY−36 1851.22 1.39 1.23 2.63 46.96 53.04 CY−37 1853.31 1.44 1.13 2.57 44.14 55.86 CY−38 1854.35 1.69 1.67 3.36 49.66 50.34 CY−39 1856.64 1.53 1.56 3.08 50.46 49.54 CY−40 1858.72 1.50 1.82 3.31 54.79 45.21 CY−41 1860.51 1.57 1.31 2.88 45.45 54.55 CY−42 1862.43 2.38 2.39 4.77 50.10 49.90 CY−43 1864.60 2.72 2.76 5.48 50.34 49.66 CY−44 1866.06 1.93 1.84 3.77 48.83 51.17 CY−45 1868.43 1.71 1.57 3.28 47.77 52.23 CY−46 1870.84 2.62 2.21 4.83 45.80 54.20 -
[1] Cao Huanyu, Zhu Chuanqing, Qiu Nansheng. 2015. Thermal evolution of Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Journal of Earth Sciences and Environment, 37(6): 22−32 (in Chinese with English abstract).
[2] Chalmers G R L, Bustin R M. 2012. Geological evaluation of Halfway−Doig−Montney hybrid gas shale−tight gas reservoir, northeastern British Columbia[J]. Marine and Petroleum Geology, 38(1): 53−72. doi: 10.1016/j.marpetgeo.2012.08.004
[3] Chen L, Zhang B M, Chen X H, Jiang S, Zhang G T, Lin W B, Chen P, Liu Z H. 2022. Depositional environment and organic matter accumulation of the Lower Cambrian Shuijingtuo Formation in the middle Yangtze area, China[J]. Journal of Petroleum Science and Engineering, 208: 109339. doi: 10.1016/j.petrol.2021.109339
[4] Chen Xiaohong, Wei Kai, Zhang Baoming, Li Peijun, Li Hai, Liu An, Luo Shengyuan. 2018. Main geological factors controlling shale gas reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns[J]. Geology in China, 45(2): 207−226 (in Chinese with English abstract).
[5] Chen Xiaohong, Wang Chuanshang, Liu Anyuan, Li Hai, Wei Kai. 2017. The discovery of the shale gas in the Cambrian Shuijingtuo Formation of Yichang area, Hubei Province[J]. Geology in China, 44(1): 188−189 (in Chinese).
[6] Curtis M E, Cardott B J, Sondergeld C H. 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 103: 26−31. doi: 10.1016/j.coal.2012.08.004
[7] Du X B, Lu Y C, Chen P, Li X Q, Song X D. 2019. The Lower Yangtze area: A next shale gas block for China? Preliminary potential assessment from some geology and organic geochemistry information[J]. Geological Journal, 55(4): 3157−3178.
[8] Fathi E, Akkutlu I Y. 2009. Matrix heterogeneity effects on gas transport and adsorption in coalbed and shale gas reservoirs[J]. Transport in Porous Media, 80(2): 281−304. doi: 10.1007/s11242-009-9359-4
[9] Gong Yue, Gao Hequn, Li Xiaoyue, Shao Lin. 2023. Study on the distribution characteristics of occurrence modes of shale gas in the Sichuan Basin and its periphery[J]. Unconventional Oil & Gas, 10(2): 49−56 (in Chinese with English abstract).
[10] Gu Heng, Wang Jian, Wei Hengye, Fu Xiugen. 2023. Controlling factors of organic enrichment in the Shuijingtuo Formation in the Lower Cambrian of the Chengkou area, Sichuan Basin[J]. Acta Sedimentologica Sinica, 42(3): 1073−1091 (in Chinese with English abstract).
[11] Guo Xusheng, Tenggeer, Wei Xiangfeng, Yu Lingjie, Lu Xiancai, Sun Lei Wei Fubin. 2022. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 43(4): 453−468 (in Chinese with English abstract).
[12] Guo Yinghai, Zhao Difei. 2015. Analysis of micro−scale heterogeneity characteristics in marine shale gas reservoirs[J]. Journal of China University of Mining & Technology, 44(2): 300−307 (in Chinese with English abstract).
[13] He Xipeng, He Guisong, Gao Yuqiao, Zhang Longsheng, He Qing, Zhang Peixian, Wang Wei, Huang Xiaozhen. 2023. Progress in and research direction of key technologies for normal−pressure shale gas exploration and development[J]. Natural Gas Industry, 43(6): 1−14 (in Chinese with English abstract).
[14] Hill D G, Nelson C R. 2000. Gas productive fractured shales: An overview and update[J]. Gas TIPS, 6(2): 4−13.
[15] Huang Zhenkai, Chen Jianping, Xue Haitao, Wang Yijun, Wang Ming, Deng Chunping. 2013. Microstructural characteristics of the Cretaceous Qingshankou Formation shale, Songliao Basin[J]. Petroleum Exploration and Development, 40(1): 58−65 (in Chinese with English abstract).
[16] Ji Wenming, Zhu Mengfan, Song Yan, Jiang Zhenxue. 2022. Evolution characterization of marine shale gas occurrence state in South China[J]. Journal of Central South University (Science and Technology), 53(9): 3590−3602 (in Chinese with English abstract).
[17] Jin C S, Li C, Algeo T J, Wu S Y, Cheng M, Zhang Z H, Shi W. 2020. Controls on organic matter accumulation on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 11: 75−87.
[18] Li Xiaoming, Wang Yarong, Gui Wen, Ma Lihong, Liu Dexun, Liu Jirong, Zhang Yu. 2022. Micro−pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, Hubei Province[J]. Natural Gas Geoscience, 33(4): 629−641 (in Chinese with English abstract).
[19] Li Xiaoxia, Gu Yuantao, Wan Quan, Yang Shuguang. 2023. Micro−architecture, deformation and source−reservoir significance of organic−clay composites in shale[J]. Oil & Gas Geology, 44(2): 452−467 (in Chinese with English abstract).
[20] Liu Jiangtao, Wu Fafu, Wang Jianxiong, Xiang Yuanchuan, El Hmidi Khalid. 2017. Design of a geochemical data processing model based on ArcGIS model builder and its application in Morocco geochemical mapping project[J]. Geological Science and Technology Information, 36(5): 1−6 (in Chinese with English abstract).
[21] Luo Shengyuan, Chen Xiaohong, Li Hai, Liu An, Wang Chuanshang. 2019. Shale gas accumulation conditions and target optimization of Lower Cambrian Shuijingtuo Formation in Yichang Area, West Hubei[J]. Earth Science, 44(11): 3598−3615 (in Chinese with English abstract).
[22] Luo Shengyuan, Chen Xiaohong, Yue Yong, Li Peijun, Cai Quansheng, Yang Ruizhi. 2020. Analysis of sedimentary−tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze[J]. Natural Gas Geoscience, 31(8): 1052−1068 (in Chinese with English abstract).
[23] Pu Boling, Dong Dazhong, Niu Jiayu, Wang Manyu, Huang Jinglaing. 2014. Principal progresses in shale gas reservoir research[J]. Geological Science and Technology Information, 33(2): 98−104 (in Chinese with English abstract).
[24] Robert G. Loucks, Robert M. Reed, Stephen C. Ruppel, Daniel M. Jarvie. 2009. Morphology, genesis, and distribution of nanometer−scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 79(12): 848−861. doi: 10.2110/jsr.2009.092
[25] Ross D J K, Bustin R M. 2012. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 86(17/18): 2696−2706.
[26] Tan J Q, Wang Z H, Wang W H, Hilton J, Guo J H, Wang X K. 2021. Depositional environment and hydrothermal controls on organic matter enrichment in the lower Cambrian Niutitang shale, southern China[J]. AAPG Bulletin, 105(7): 1329−1356. doi: 10.1306/12222018196
[27] Wang Xingmeng. 2022. Formation and Evolution of Pores in Organic−rich Shale and Its Controlling on Shale Gas Content[D]. Beijing: China University of Petroleum (Beijing), 1−117 (in Chinese with English abstract).
[28] Wei Sile. 2021. Reservoir Characteristics and Shale Gas Occurrence Mechanism of the Lower Cambrian Shuijingtuo Shale in the South of Huangling Anticline, Western Hubei[D]. Wuhan: China University of Geosciences, 1−155 (in Chinese with English abstract).
[29] Weng Jianqiao, Li Xiawei, Qi Minghui, Zhang Yeyu, Wang Yu, Zhang Wei. 2022. Study on porosity measurement determination methods of a shale reservoir in the Longmaxi Formation, Sichuan Basin[J]. Rock and Mineral Analysis, 41(4): 598−605 (in Chinese with English abstract).
[30] Zhang Baomin, Cai Quansheng, Chen Xiaohong, Wang Chuanshang, Zhang Guotao, Chen Lin, Li Peijun, Li Yangui. 2021. Reservoir characteristics and gas−bearing capacity of the Wufeng−Longmaxi Formation in the Well Eyy2, east Huangling Uplift, western Hubei Province[J]. Geology in China, 48(5): 1485−1498 (in Chinese with English abstract).
[31] Zhang Bo, Cao Taotao, Wang Qingtao, Xiao Juanyi, Huang Xin, Tao Yuli, Shi Fulun. 2023. Reservoir gas−bearing characteristics and their controlling factors of Wufeng−Longmaxi formations in northern Guizhou[J]. Natural Gas Geoscience, 34(8): 1412−1424 (in Chinese with English abstract).
[32] Zhang J F, Zhai G Y, Wang D M, Bao S J, Chen K, Li H H, Song T, Wang P, Zhou Z. 2020. Tectonic evolution of the Huangling dome and its control effect on shale gas preservation in the north margin of the Yangtze Block, South China[J]. China Geology, 3(1): 28−37. doi: 10.31035/cg2020025
[33] Zhang Liyu, Chen Qianglu, Li Maowen, Yuan Kun, Ma Xiaoxiao, Xi Binbin, Yue Yong, Huang Taiyu. 2023. Comparative study on the organic enrichment mechanism during the Early Cambrian in the Western Hubei and Northeastern Guizhou[J]. Earth Science Frontiers, 30(6): 181−198 (in Chinese with English abstract).
[34] Zhang Tongwei, Luo Huan, Meng Kang. 2023. Main factors controlling the shale gas content of Cambrian shales of southern China−adiscussion[J]. Earth Science Frontiers, 30(3): 1−13 (in Chinese with English abstract).
[35] Zhang Zhikai. 2022. Fracture development characteristics of deep buried hill YL2 well in Qiongdongnan Basin[J]. Petrochemical Industry Technology, 29(9): 138−140 (in Chinese with English abstract).
[36] Zhang T Y, Huang S P, Li X Q, Jiang H, Zeng F Y, Ma Y L. 2023. Sedimentary geochemical characteristics and organic matter enrichment of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin[J]. Natural Gas Geoscience, 35(4): 688−703.
[37] 曹环宇, 朱传庆, 邱楠生. 2015. 川东地区下志留统龙马溪组热演化[J]. 地球科学与环境学报, 37(6): 22−32. doi: 10.3969/j.issn.1672-6561.2015.06.003 [38] 陈孝红, 危凯, 张保民, 李培军, 李海, 刘安, 罗胜元. 2018. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 45(2): 207−226. doi: 10.12029/gc20180201 [39] 陈孝红, 王传尚, 刘安元, 李海, 危凯. 2017. 湖北宜昌地区寒武系水井沱组探获页岩气[J]. 中国地质, 44(1): 188−189. doi: 10.12029/gc20170113 [40] 龚月, 高和群, 李小越, 邵林. 2023. 四川盆地及周缘页岩气赋存方式展布特征研究[J]. 非常规油气, 10(2): 49−56. [41] 古恒, 王剑, 韦恒叶, 付修根. 2023. 四川盆地城口地区下寒武统水井沱组有机质富集控制因素[J]. 沉积学报, 42(3): 1073−1091. [42] 郭旭升, 腾格尔, 魏祥峰, 俞凌杰, 陆现彩, 孙磊, 魏富彬. 2022. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 43(4): 453−468. doi: 10.7623/syxb202204001 [43] 郭英海, 赵迪斐. 2015. 微观尺度海相页岩储层微观非均质性研究[J]. 中国矿业大学学报, 44(2): 300−307. [44] 何希鹏, 何贵松, 高玉巧, 张龙胜, 贺庆, 张培先, 王伟, 黄小贞. 2023. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业, 43(6): 1−14. doi: 10.3787/j.issn.1000-0976.2023.06.001 [45] 黄振凯, 陈建平, 薛海涛, 王义军, 王民, 邓春萍. 2013. 松辽盆地白垩系青山口组泥页岩孔隙结构特征[J]. 石油勘探与开发, 40(1): 58−65. [46] 纪文明, 朱孟凡, 宋岩, 姜振学. 2022. 南方海相页岩气赋存状态演化规律[J]. 中南大学学报(自然科学版), 53(9): 3590−3602. [47] 李小明, 王亚蓉, 吝文, 马丽红, 刘德勋, 柳吉荣, 张宇. 2022. 湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J]. 天然气地球科学, 33(4): 629−641. [48] 李晓霞, 谷渊涛, 万泉, 杨曙光. 2023. 泥页岩中有机质−黏土复合体的微观结构、变形作用及源−储意义[J]. 石油与天然气地质, 44(2): 452−467. doi: 10.11743/ogg20230216 [49] 刘江涛, 吴发富, 王建雄, 向运川, El Hmidi Khalid. 2017. 基于ArcGIS建模器的数据处理模型在摩洛哥地球化学填图中的应用[J]. 地质科技情报, 36(5): 1−6. [50] 罗胜元, 陈孝红, 李海, 刘安, 王传尚. 2019. 鄂西宜昌下寒武统水井沱组页岩气聚集条件与含气特征[J]. 地球科学, 44(11): 3598−3615. [51] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 2020. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 31(8): 1052−1068. [52] 蒲泊伶, 董大忠, 牛嘉玉, 王玉满, 黄金亮. 2014. 页岩气储层研究新进展[J]. 地质科技情报, 33(2): 98−104. [53] 王幸蒙. 2022. 富有机质页岩孔隙形成演化及其对含气性的控制[D]. 北京: 中国石油大学(北京), 1−117. [54] 魏思乐. 2021. 鄂西黄陵背斜南翼下寒武统水井沱组页岩储层特征及页岩气赋存机理 [D]. 武汉: 中国地质大学, 1−155. [55] 翁剑桥, 李夏伟, 戚明辉, 张烨毓, 王禹, 张伟. 2022. 四川盆地龙马溪组页岩孔隙度实验方法分析[J]. 岩矿测试, 41(4): 598−605. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204008 [56] 张保民, 蔡全升, 陈孝红, 王传尚, 张国涛, 陈林, 李培军, 李炎桂. 2021. 鄂西黄陵隆起东缘鄂宜2井五峰组—龙马溪组页岩气储层特征与含气性[J]. 中国地质, 48(5): 1485−1498. doi: 10.12029/gc20210513 [57] 张博, 曹涛涛, 王庆涛, 肖娟宜, 黄鑫, 陶玉丽, 石富伦. 2023. 黔北地区五峰组—龙马溪组页岩储层含气性特征及其影响因素[J]. 天然气地球科学, 34(8): 1412−1424. [58] 张力钰, 陈强路, 黎茂稳, 袁坤, 马晓潇, 席斌斌, 岳勇, 黄泰誉. 2023. 鄂西−黔东北地区早寒武世有机质富集机理对比研究[J]. 地学前缘, 30(6): 181−198. [59] 张同伟, 罗欢, 孟康. 2023. 我国南方不同地区寒武系页岩含气性差异主控因素探讨[J]. 地学前缘, 30(3): 1−13. [60] 张智凯. 2022. 琼东南盆地深水潜山YL2井裂缝发育特征[J]. 石化技术, 29(9): 138−140. doi: 10.3969/j.issn.1006-0235.2022.09.046 [61] 张天怡, 黄士鹏, 李贤庆, 姜华, 曾富英, 马以勒. 2023. 四川盆地下寒武统筇竹寺组沉积地球化学特征与有机质富集机制[J]. 天然气地球科, 35(4): 688−703.