• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

近40年粤港澳大湾区水资源演变与生态环境格局变化

赵良杰, 王莹, 栾崧, 杨杨, 吴树诚, 王喆, 李录娟

赵良杰,王莹,栾崧,杨杨,吴树诚,王喆,李录娟. 2025. 近40年粤港澳大湾区水资源演变与生态环境格局变化[J]. 中国地质, 52(1): 215−231. DOI: 10.12029/gc20231108001
引用本文: 赵良杰,王莹,栾崧,杨杨,吴树诚,王喆,李录娟. 2025. 近40年粤港澳大湾区水资源演变与生态环境格局变化[J]. 中国地质, 52(1): 215−231. DOI: 10.12029/gc20231108001
Zhao Liangjie, Wang Ying, Luan Song, Yang Yang, Wu Shucheng, Wang Zhe, Li Lujuan. 2025. Evolution of water resources and changes of ecological environment pattern in Guangdong−Hong Kong−Macao Greater Bay Area in the past 40 years[J]. Geology in China, 52(1): 215−231. DOI: 10.12029/gc20231108001
Citation: Zhao Liangjie, Wang Ying, Luan Song, Yang Yang, Wu Shucheng, Wang Zhe, Li Lujuan. 2025. Evolution of water resources and changes of ecological environment pattern in Guangdong−Hong Kong−Macao Greater Bay Area in the past 40 years[J]. Geology in China, 52(1): 215−231. DOI: 10.12029/gc20231108001

近40年粤港澳大湾区水资源演变与生态环境格局变化

基金项目: 国家自然科学青年基金(42102296)、国家重点研发计划项目(2023YFB3907703)、广东省水资源调查监测评价及广西重点研发计划项目(桂科AB21220044)联合资助。
详细信息
    作者简介:

    赵良杰,男,1986年生,副研究员,从事水资源评价工作;E-mail: zhaoliangjie@mail.cgs.gov.cn

    通讯作者:

    王莹,女,1985年生,高级工程师,从事地下水调查监测评价工作;E-mail: wymail5@163.com

    杨杨,女,1988年生,高级工程师,从事岩溶水资源评价工作;E-mail: yangyang_a@mail.cgs.gov.cn

  • 中图分类号: P641.3

Evolution of water resources and changes of ecological environment pattern in Guangdong−Hong Kong−Macao Greater Bay Area in the past 40 years

Funds: Supported by National Natural Science Youth Foundation of China (No.42102296), National Key Research and Development Program of China (No.2023YFB3907703), Guangdong Province Water Resources Survey, Monitoring and Evaluation and Guangxi Key Research and Development Program (No. Gui Ke AB21220044).
More Information
    Author Bio:

    ZHAO Liangjie, male, born in 1986, associate researcher, engaged in water cycle and water resources evaluation; E-mail: zhaoliangjie@mail.cgs.gov.cn

    Corresponding author:

    WANG Ying, female, born in 1985, senior engineer, engaged in groundwater investigation, monitoring and evaluation; E-mail: wymail5@163.com

    YANG Yang, female, born in 1988, senior engineer, engaged in karst water resources investigation, monitoring and evaluation; E-mail: yangyang_a@mail.cgs.gov.cn.

  • 摘要:
    研究目的 

    受气候变化与人类活动的双重影响,亟需深化对粤港澳大湾区水资源演变规律的认识,以期为实现区域水资源的可持续管理提供科学依据和决策支持。

    研究方法 

    本文采用定性与定量相结合、历史文献资料的深度挖掘以及多源水资源监测数据,全面分析大湾区自1980年以来近40年间的水文、降水、地表覆盖等水资源环境格局变化及其区域分异规律。

    研究结果 

    大湾区水资源状况总体上呈现"西多东少、北多南少"的分布特征,1980—2022年平均气温22.2℃,降雨2022.1 mm, 主要变化周期约4.1 a。西江、北江、东江干流平均径流量分别为11231.09 m3/s、1479.63 m3/s、809.42 m3/s,径流变差系数介于0.19~0.27,气候格局呈现出暖湿化的趋势,水体总量出现减少趋势,植被覆盖整体上升但局部出现退化,显著退化面积6225.98 km2,改善面积9537.31 km2;水体(含湿地)面积变化速率呈现“缓慢萎缩−加速萎缩−稳步增长−缓慢增长”的阶段性特征。

    结论 

    提出具有开发远景的41处应急备用水源地,允许开采量达234.26万m3/d。大湾区具有水资源与经济发展的不协调、水生态服务功能退化、水资源时空分布不均及以地表水为主的供水水源结构单一等特点。

    创新点:

    (1)全面分析大湾区自1980年以来的水文、降水、地表覆盖等水资源环境格局变化及其区域分异规律;(2)大湾区水资源状况总体上呈现出"西多东少、北多南少"的分布特征,水体(含湿地)面积变化速率呈现“缓慢萎缩−加速萎缩−稳步增长−缓慢增长”的阶段性特征,提出具有开发远景的41处应急备用水源地,允许开采量达234.26万m3/d。

    Abstract:

    This paper is the result of hydrogeological survey engineering.

    Objective 

    Due to the dual impacts of climate change and human activities, there is an urgent need to deepen the understanding of the evolution of water resources in the Greater Bay Area of Guangdong, Hong Kong and Macao, with a view to providing a scientific basis and decision−making support for the realization of the sustainable management of regional water resources.

    Methods 

    This paper employs a combination of qualitative and quantitative methods, leveraging in−depth analysis of historical literature alongside multi−source water resource monitoring data to comprehensively examine changes in hydrology, precipitation, land cover, and other environmental factors related to water resources in the Greater Bay Area over the past 40 years (1980–2020). It also explores the regional patterns of differentiation in these changes.

    Results 

    Our findings reveal a general water resource distribution trend of "abundance in the west and north, scarcity in the east and south," with an average temperature of 22.2℃ and annual precipitation of 2022.1 mm from 1980 to 2022. The study observes a major cyclical change every 4.1 years. The average runoff of the Xijiang, Beijiang, and Dongjiang Rivers is quantified, alongside the variation in runoff coefficients, reflecting a warm and humid climatic trend. Concurrently, the total volume of water bodies exhibits a declining trajectory, while vegetation cover overall shows an increase but with local degradation.

    Conclusions 

    The study identifies 41 potential emergency backup water sources, with a sustainable extraction capacity of 2342600 m3/day.It highlights the ongoing mismatch between water resources and economic development in the Greater Bay Area, the reduction of water ecosystem service functions, the spatial and temporal imbalances in water resource distribution, and the region's over−reliance on a predominantly surface water−based supply structure.

    Highlights:

    (1) This comprehensive examination sheds light on the evolution of environmental patterns related to hydrology, precipitation, and surface coverage within the Greater Bay Area since 1980, elucidating the regional divergences in these patterns; (2) The distribution of water resources across the Greater Bay Area typically exhibits a pattern characterized by abundance in the west and scarcity in the east, with a greater availability in the north compared to the south. The dynamic changes in the expanse of aquatic territories, including wetlands, undergo a phased progression marked by initial gradual reduction, followed by a phase of accelerated contraction, transitioning into a period of stable expansion, and culminating in a phase of gradual increase. In this context, we have identified 41 potential emergency backup water sources, with a collective feasible extraction volume amounting to 2342600 cubic meters per day.

  • 近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。

    在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。

    研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。

    图  1  区域构造位置图(a)、矿区地质简图(b)、勘探线剖面图(c)及萤石矿岩心(d)
    Figure  1.  Regional structure location map (a), brief geological diagram of ore district (b), prospecting line profile map (c) and cores specimen of fluorite deposit (d)

    在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。

    (1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。

    (2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。

    本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。

  • 图  1   粤港澳大湾区地理位置及水系

    Figure  1.   Geographic location and water system in Guangdong−Hong Kong−Macao Greater Bay Area

    图  2   粤港澳大湾区1980—2020年气温变化趋势格局

    Figure  2.   Patterns of temperature change trends in Guangdong−Hong Kong−Macao Greater Bay Area from 1980 to 2020

    图  3   气温傅里叶变换确定周期性

    Figure  3.   Temperature Fourier transform to determine periodicity

    图  4   粤港澳大湾区1980—2020年降水变化趋势格局

    Figure  4.   Trend patterns of precipitation changes in Guangdong−Hong Kong−Macao Greater Bay Area from 1980 to 2020

    图  5   降水傅里叶变换确定周期性

    Figure  5.   Precipitation Fourier transform to determine periodicity

    图  6   大湾区主要河流水文格局变化

    Figure  6.   Changes in hydrologic patterns of major rivers in Guangdong−Hong Kong−Macao Greater Bay Area

    图  7   大湾区水资源量变化

    Figure  7.   Changes in the amount of water resources in Guangdong−Hong Kong−Macao Greater Bay Area

    图  8   2000—2020粤港澳大湾区植被覆盖度显著性变化空间分布

    Figure  8.   Spatial distribution of significant changes in vegetation cover in Guangdong−Hong Kong−Macao Greater Bay Area from 2000 to 2020

    图  9   粤港澳大湾区1980—2000年水体湿地格局变化

    Figure  9.   Changes of wetland patterns in water bodies in Guangdong−Hong Kong−Macao Greater Bay Area from 1980 to 2000

    图  10   粤港澳大湾区2000—2020年水体湿地格局变化

    Figure  10.   Changes of wetland patterns in water bodies in Guangdong−Hong Kong−Macao Greater Bay Area from 2000 to 2020

    图  11   大湾区2020年人口密度分布

    Figure  11.   Distribution of population density in Guangdong−Hong Kong−Macao Greater Bay Area in 2020

    图  12   大湾区人口与供水总量

    Figure  12.   Total population and water supply in Guangdong−Hong Kong−Macao Greater Bay Area

    图  13   粤港澳大湾区应急水源地分布

    Figure  13.   Distribution of emergency water sources in Guangdong−Hong Kong−Macao Greater Bay Area

    表  1   大湾区水体面积变化特征

    Table  1   Characteristics of water body area changes in Guangdong−Hong Kong−Macao Greater Bay Area

    时间 阶段性特征 变化量/km2 变化率/(km2/a)
    1980—1990 缓慢萎缩 −218 −21.8
    1990—2000 加速萎缩 −463 −46.3
    2000—2010 稳步增长 218 21.8
    2010—2020 缓慢增长 119 11.9
    合计 −344 −8.6
    下载: 导出CSV

    表  2   主要水源地靶区允许开采量

    Table  2   Allowable extraction in the target area of the main water source

    所属地级市 水源地名称 面积/
    km2
    允许开采量/
    (104m3/d)
    地下水类型
    江门市 开平—恩平 412.50 26.66 孔隙潜水−承压水
    惠州市 水口—良井 278.00 15.05 孔隙水
    肇庆市 怀集—大岗 237.30 15.03 覆盖型岩溶水
    广州市 花都—新华 169.65 13.29 覆盖型岩溶水
    肇庆市 四会—大旺 369.40 12.29 孔隙潜水
    惠州市 龙溪—博罗 364.80 12.28 孔隙潜水−承压水
    广州市 龙潭—神岗 235.30 11.50 孔隙潜水
    佛山市 丹灶—西樵 312.40 10.32 孔隙潜水
    下载: 导出CSV
  • [1]

    Cao Jianwen, Xia Riyuan, Tang Zhonghua, Zhao Liangjie, Wang Zhe, Luan Song, Wang Song. 2021. Groundwater resources in Guangdong−Hong Kong−Macao Greater Bay Area and its development potential[J]. Geology in China, 48(4): 1075−1093 (in Chinese with English abstract).

    [2]

    Cheng L, Song S, Xie Y. 2022. Evaluation of water resources utilization efficiency in Guangdong Province based on the DEA–Malmquist Model[J]. Frontiers in Environmental Science, 10: 17.

    [3]

    Feng Xianhui, Zeng Zhilin, Zhang Deshun. 2022. Temporal–spatial evolution of vegetation coverage in Guangdong–Hong Kong–Macao Greater Bay Area based on MODIS NDVI Data[J]. Journal of Chinese Urban Forestry, 20(1): 1−6 (in Chinese with English abstract).

    [4]

    Fu Xiang, Liu Hao. 2023. Spatial–temporal variation of vegetation NDVI and its response to climate in Guangdong–Hong Kong–Macao Greater Bay Area from 2012 to 2021[J]. Pearl River, 44(5): 73−80 (in Chinese with English abstract).

    [5]

    Huang Y, Cai Y, Xie Y. 2022. An optimization model for water resources allocation in Dongjiang River Basin of Guangdong–Hong Kong–Macao Greater Bay Area under multiple complexities[J]. Science of the Total Environment, 820: 153198. doi: 10.1016/j.scitotenv.2022.153198

    [6]

    Huang Yangman, Chen Xiaohong. 2023. The evolution of water ecological state and driving mechanism in Guangdong–Hong Kong–Macao Greater Bay Area[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 62(2): 93−103 (in Chinese with English abstract).

    [7]

    Jiang H, Peng J, Dong J. 2021. Linking ecological background and demand to identify ecological security patterns across the Guangdong–Hong Kong–Macao Greater Bay Area in China[J]. Landscape Ecology, 36: 2135−2150. doi: 10.1007/s10980-021-01234-6

    [8]

    Ke Zongxian, Wang Donghai, Zeng Zhilin, Zhang Chunyan, Liang Zhaoming, Zhang Yu. 2023. Underlying surface effect on the extreme heavy rainfall event on 22 May 2020 in the Guangdong–Hong Kong–Macao Greater Bay Area[J]. Meteorological Monthly, 49(1): 12−26 (in Chinese with English abstract).

    [9]

    Li Baihe, Gong Jianzhou. 2021. The variation of temperature in Guangdong–Hong Kong–Macao Greater Bay Area in recent 60 years[J]. Journal of Guangzhou University (Natural Science Edition), 20(1): 78−86 (in Chinese with English abstract).

    [10]

    Li L, Chan P W, Deng T. 2021. Review of advances in urban climate study in the Guangdong–Hong Kong–Macau greater bay area, China[J]. Atmospheric Research, 261: 105759. doi: 10.1016/j.atmosres.2021.105759

    [11]

    Li Jie, Li Yuanyuan, Ji Hongxiang. 2021. Study on countermeasures for water supply security in Guangdong, Hong Kong and Macao Greater Bay Area[J]. Pearl Rive, (102): 1−5 (in Chinese with English abstract).

    [12]

    Li Jingxian, Wang Jun, Du Yihang, Cai Ailing. 2019. Change characteristics of coastal wetlands in the Pearl River Delta under rapid urbanization[J]. Wetland Science, 17(3): 267−276 (in Chinese with English abstract).

    [13]

    Li Juan, Li Xingpin, Li Jie. 2022. Status quo of and countermeasures for water rescources management in Guangdong–Hong Kong–Macao Greater Bay Area[J]. Water Resources Development Research, 22(10): 65−70 (in Chinese with English abstract).

    [14]

    Li Ningning, Qiu Jing, Chen Xiaohong, Li Zejun, Chen Yingyi. 2023. Analysis of temporal and spatial variation characteristics of rainfall in Dongjiang River Basin within Guangdong Province[J]. Journal of China Hydrology, 43(4): 74−80 (in Chinese with English abstract).

    [15]

    Li Q, Wu J, Su Y. 2022. Estimating ecological sustainability in the Guangdong–Hong Kong–Macao Greater Bay Area, China: retrospective analysis and prospective trajectories[J]. Journal of Environmental Management, 303: 114167. doi: 10.1016/j.jenvman.2021.114167

    [16]

    Lin Hui, Zhang Hongsheng, Lin Yinyi, Wei Shan, Wu Zhifeng. 2018. Spatiotemporal changes of gridded urban population in the Guangdong–Hong Kong–Macao Greater Bay Area based on impervious surface–population correlation[J]. Progress in Geography, 37(12): 1644−1652 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2018.12.006

    [17]

    Liu Chang, Lin Shenhui, Jiao Xueyao, Shen Xiaoxue, Li Ruili. 2019. Problems and treatment countermeasures of water environment in Guangdong–Hong Kong–Macao Greater Bay Area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(6): 1085−1096 (in Chinese with English abstract).

    [18]

    Liu Youping. 2020. Tendency of fluvial process and hydrologic extreme events in river network of Pearl Delta under Changing environment[J]. Journal of China Hydrology, 40(3): 71−75 (in Chinese with English abstract).

    [19]

    Mao Zhihui, Li Lili, Du Jianjun. 2021. Research on temporal and spatial evolution of extreme temperature in Guangdong Province during past 60 years[J]. Journal of Zhongkai University of Agriculture and Engineering, 34(4): 30−39 (in Chinese with English abstract).

    [20]

    Meng Ruifang, Yang Huifeng, Bao Xilin, Xu Buyun, Li Lei, Li Jjinzheng. 2024. Prospect analysis of unconventional water resources utilization and eco−environmental effects in Beijing−Tianjin−Hebei Plain[J]. Geology in China, 51(1): 221−233 (in Chinese with English abstract).

    [21]

    Song Song, Wu Zhifeng, Cao Zheng, Sun Fangdi, Yang Jinxin, Zhang Qifei. 2023. The changing trend and driving factors of water frequency fluctuations in the Guangdong–Hong Kong–Macao Greater Bay Area[J]. Tropical Geography, 43(3): 372−383 (in Chinese with English abstract).

    [22]

    Sun Zhangtao, Yu Zhengwei, Shu Siqi, Xu Chuangsheng, Shu Yang. 2023. Evaluation of ecosystem services of Chinese provincial land and suggestions for ecological geological survey[J]. Geology in China, 50(2): 479−494 (in Chinese with English abstract).

    [23]

    Tan Qifeng, Cui Fuyi, Zhi Shiping, Zheng Hanggui. 2020. Researh Report on Water Resources in Guangdong, Hong Kong and Macao Greater Bay Area [M]. Beijing: Social Science Literature Publishing House (in Chinese with English abstract).

    [24]

    Wang Y, Han Z, Gao R. 2021. Changes of extreme high temperature and heavy precipitation in the Guangdong–Hong Kong–Macao Greater Bay Area[J]. Geomatics, Natural Hazards and Risk, 12(1): 1101–1126.

    [25]

    Wang Y, Huang C, Wu G. 2022. Status and challenges of water resources and supply in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China[J]. Water Cycle, 3: 65−70. doi: 10.1016/j.watcyc.2022.05.001

    [26]

    Wu Pan, Zhao Xinwen, Gu Tao, Jiang Tuo, Wang Xusheng, Feng Yuqing. 2021. Water resources in the Guangdong–Hong Kong–Macao Greater Bay Area and its co–evolution trend with social economy: A comparative study with the international bay area[J]. Geology in China, 48(5): 1357−1367 (in Chinese with English abstract).

    [27]

    Wu Yufan, Wang Jiangbo, Gou Aiping. 2023. The temporal and spatial evolution characteristics and driving factors of surface water in the Guangdong–Hong Kong–Macao Greater Bay Area since 1985[J]. Tropical Geography, 43(3): 395−407 (in Chinese with English abstract).

    [28]

    Xia Riyuan, Lu Haiping, Cao Jianwen, Zhao Liangjie, Wang Zhe, Luan Song. 2022. Characteristics of groundwater resources of karst areas in the Southern China and water resources guarantee countermeasures[J]. Geology in China, 49(4): 1139−1153 (in Chinese with English abstract).

    [29]

    Yang Chenchen, Gan Huayang, Wan Rongsheng, Zhang Yaoming. 2021. Spatiotemporal evolution and influencing factors of coastline in the Guangdong–Hong Kong–Macao Greater Bay Area from 1975 to 2018[J]. Geology in China, 48(3): 697−707 (in Chinese with English abstract

    [30]

    Yang J, Huang X. 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 13(8): 3907−3925. doi: 10.5194/essd-13-3907-2021

    [31]

    Yang Yang, Zhao Liangjie, Xia Ri Yuan. 2022. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. Carsologica Sinica, 41(4): 562−576 (in Chinese with English abstract).

    [32]

    Yang Yuandong, Wang Yonghong, Cai Silong, Liu Feng. 2019. Interannual and intra–annual variation characteristics of runoff in downstream areas of Pearl River Basin during 1960–2017[J]. Bulletin of Soil and Water Conservation, 39(5): 23−31 (in Chinese with English abstract).

    [33]

    Yin Nannan, Tang Jun, Yang Yuanwei, Gao Xianjun, Song Shuhua, Hu Qian. 2023. Variations of shoreline and land use in Guangdong–Hong Kong–Macao Greater Bay Area from 1989 to 2021[J]. Marine Geology Frontiers, 39(5): 1−11 (in Chinese with English abstract

    [34]

    You X, Li Q, Monahan K M. 2022. Can collaborative innovation constrain ecological footprint? Empirical evidence from Guangdong–Hong Kong–Macao Greater Bay Area, China[J]. Environmental Science and Pollution Research, 29(36): 54476−54491. doi: 10.1007/s11356-022-19648-3

    [35]

    Yu Bowei, Xie Yiliang, Ma Xiyao, Cui Baoshan. 2022. Wetland landscape pattern change and its damage degree in Guanddong–Hong Kong–Macau Bay Area in recent 40 years[J]. Environmental Ecology, 4(5): 59−68 (in Chinese with English abstract) .

    [36]

    Zhang Ling Jiang Zhijian, Huang Xiaoping. 2022. The protecting strategies about the atmosphere, water and wetland in Guangdong–Hong Kong–Macau Greater Bay Area[J]. Environmental Science and Management, 47(11): 160−165 (in Chinese with English abstract).

    [37]

    Zhang Zhilin, Qiu Jing, Cheng Tao, Huang Bensheng, Feng Ziying. 2022. Urban flood issues and analysis in the Guangdong–Hong Kong–Macao Greater Bay Area[J]. Journal of Hydraulic Engineering, 53(7): 823−832 (in Chinese with English abstract).

    [38]

    Zhao Liangjie, Yang Yang, Cao Jianwen, Xia Riyuan, Wang Zhe, Luan Song, Lin Yushan. 2021. Groundwater resources evaluation and problem analysis in Pearl River Basin[J]. Geology in China, 48(4): 1020−1031 (in Chinese with English abstract).

    [39]

    Zhao Lingling, Xia Jun, Yang Fang, Yang Long, Xu Fei. 2021. Current situation, framework, problems and prospect of water ecological restoration in Guangdong–Hong Kong–Macao Greater Bay Area[J]. Acta Ecologica Sinica, 41(12): 5054−5065 (in Chinese with English abstract).

    [40]

    Zhou Y, Luo Z, Li S. 2022. Temporal and spatial variations of extreme precipitation in the Guangdong–Hong Kong–Macao Greater Bay area from 1961 to 2018[J]. Journal of Water and Climate Change, 13(1): 304−314. doi: 10.2166/wcc.2021.078

    [41] 曹建文, 夏日元, 唐仲华, 赵良杰, 王喆, 栾崧, 王松. 2021. 粤港澳大湾区地下水资源特征及开发潜力[J]. 中国地质, 48(4): 1075−1093. doi: 10.12029/gc20210407
    [42] 冯娴慧, 曾芝琳, 张德顺. 2022. 基于 MODIS NDVI 数据的粤港澳大湾区植被覆盖时空演变[J]. 中国城市林业, 20(1): 1−6.
    [43] 付翔, 刘昊. 2023. 2012—2021 年粤港澳大湾区植被 NDVI 时空变化及其对气候响应[J]. 人民珠江, 44(5): 73−80. doi: 10.3969/j.issn.1001-9235.2023.05.010
    [44] 黄洋漫, 陈晓宏. 2023. 粤港澳大湾区水生态状态演变及驱动机制研究[J]. 中山大学学报(自然科学版), 62(2): 93–103.
    [45] 柯宗贤, 王东海, 曾智琳, 张春燕, 梁钊明, 张宇. 2023. 粤港澳大湾区下垫面对 “5· 22” 极端强降水过程影响的研究[J]. 气象, 49(1): 12–26.
    [46] 李佰和, 龚建周. 2021. 近 60 年来粤港澳大湾区气温变化规律[J]. 广州大学学报 (自然科学版), 20(1): 78−86.
    [47] 李杰, 李媛媛, 吉红香. 2021. 粤港澳大湾区供水安全对策研究[J]. 人民珠江, (102): 1–5
    [48] 李婧贤, 王钧, 杜依杭, 蔡爱玲. 2019. 快速城市化背景下珠江三角洲滨海湿地变化特征[J]. 湿地科学, 17(3): 267−276.
    [49] 李娟, 李兴拼, 李杰. 2022. 粤港澳大湾区水资源管理形势及对策[J]. 水利发展研究, 22(10): 65−70.
    [50] 李宁宁, 邱静, 陈晓宏, 李泽君, 陈颖毅. 2023. 广东省东江流域降水时空变化特征分析[J]. 水文, 43(4): 74−80.
    [51] 林珲, 张鸿生, 林殷怡, 魏姗, 吴志峰. 2018. 基于城市不透水面—人口关联的粤港澳大湾区人口密度时空分异规律与特征[J]. 地理科学进展, 37(12): 1644−1652.
    [52] 刘畅, 林绅辉, 焦学尧, 沈小雪, 李瑞利. 2019. 粤港澳大湾区水环境状况分析及治理对策初探[J]. 北京大学学报(自然科学版), 55(6): 1085−1096.
    [53] 刘幼萍. 2020. 珠江三角洲河网区变化环境下的河床演变趋势和水文极端事件[J]. 水文, 40(3): 71−75.
    [54] 毛智慧, 黎丽莉, 杜建军. 2021. 广东省近 60 年极端气温的时空演变研究[J]. 仲恺农业工程学院学报, 34(4): 30−39. doi: 10.3969/j.issn.1674-5663.2021.04.006
    [55] 孟瑞芳, 杨会峰, 包锡麟, 徐步云, 李磊, 李谨丞. 2024. 京津冀平原非常规水资源利用前景分析及其生态环境效应[J]. 中国地质, 51(1): 221−233. doi: 10.12029/gc20220615001
    [56] 宋松, 吴志峰, 曹峥, 孙芳蒂, 杨锦鑫, 张棋斐. 2023. 粤港澳大湾区水体淹没频率变化及驱动力分析[J]. 热带地理, 43(3): 372−383.
    [57] 孙张涛, 余正伟, 舒思奇, 许闯胜, 舒阳. 2023. 中国省域生态系统服务价值评价与生态地质调查工作建议[J]. 中国地质, 50(2): 479−494. doi: 10.12029/gc20221027001
    [58] 谭奇峰, 崔福义, 支世平, 郑航桅. 2020. 粤港澳大湾区水资源研究报告[M]. 北京: 社会科学文献出版社.
    [59] 吴盼, 赵信文, 顾涛, 江拓, 王旭升, 冯雨晴. 2021. 粤港澳大湾区水资源现状及其与社会经济协同演化趋势—与国际湾区对比研究[J]. 中国地质, 48(5): 1357−1367. doi: 10.12029/gc20210503
    [60] 吴宇凡, 王江波, 苟爱萍. 2023. 1985年以来粤港澳大湾区地表水体时空演变特征与驱动因素[J]. 热带地理, 43(3): 395−407.
    [61] 夏日元, 卢海平, 曹建文, 赵良杰, 王喆, 栾崧. 2022. 南方岩溶区地下水资源特征与水资源保障对策[J]. 中国地质, 49(4): 1139−1153. doi: 10.12029/gc20220408
    [62] 杨晨晨, 甘华阳, 万荣胜, 张耀明. 2021. 粤港澳大湾区1975—2018年海岸线时空演变与影响因素分析[J]. 中国地质, 48(3): 697−707. doi: 10.12029/gc20210302
    [63] 杨杨, 赵良杰, 夏日元, 王莹. 2022. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶, 41(4): 562−576. doi: 10.11932/karst20220515
    [64] 杨远东, 王永红, 蔡斯龙, 刘锋. 2019. 1960–2017 年珠江流域下游径流年际与年内变化特征[J]. 水土保持通报, 39(5): 23−31.
    [65] 尹楠楠, 汤军, 杨元维, 高贤军, 宋树华, 胡谦. 2023. 1989–2021年粤港澳大湾区海岸线变迁及土地利用变化[J]. 海洋地质前沿, 39(5): 1−11.
    [66] 于博威, 谢毅梁, 马曦瑶, 崔保山. 2022. 近40年粤港澳大湾区湿地景观及其受损程度时空变化[J]. 环境生态学, 4(5): 59−68.
    [67] 张凌, 江志坚, 黄小平. 2022. 粤港澳大湾区大气、水环境及滨海湿地的保护研究[J]. 环境科学与管理, 47(11): 160−165 doi: 10.3969/j.issn.1673-1212.2022.11.032
    [68] 张之琳, 邱静, 程涛, 黄本胜, 冯紫荧. 2022. 粤港澳大湾区城市洪涝问题及其分析[J]. 水利学报, 53(7): 823−832.
    [69] 赵良杰, 杨杨, 曹建文, 夏日元, 王喆, 栾崧, 林玉山. 2021. 珠江流域地下水资源评价及问题分析[J]. 中国地质, 48(4): 1020−1031. doi: 10.12029/gc20210403
    [70] 赵玲玲, 夏军, 杨芳, 杨龙, 徐飞. 2021. 粤港澳大湾区水生态修复及展望[J]. 生态学报, 41(12): 5054−5065.
图(13)  /  表(2)
计量
  • 文章访问数:  2496
  • HTML全文浏览量:  456
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-02-14
  • 网络出版日期:  2025-01-19
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回
x 关闭 永久关闭