• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

共和盆地恰卜恰深部花岗岩热储时频电磁法探测及干热岩体预测

程正璞, 魏强, 连晟, 张海江, 胡文广, 米晓利, 雷鸣, 李戍, 于蕾

程正璞,魏强,连晟,张海江,胡文广,米晓利,雷鸣,李戍,于蕾. 2025. 共和盆地恰卜恰深部花岗岩热储时频电磁法探测及干热岩体预测[J]. 中国地质, 52(2): 1−14. DOI: 10.12029/gc20231115001
引用本文: 程正璞,魏强,连晟,张海江,胡文广,米晓利,雷鸣,李戍,于蕾. 2025. 共和盆地恰卜恰深部花岗岩热储时频电磁法探测及干热岩体预测[J]. 中国地质, 52(2): 1−14. DOI: 10.12029/gc20231115001
Cheng Zhengpu, Wei Qiang, Lian Sheng, Zhang Haijiang, Hu Wenguang, Mi Xiaoli, Lei Ming, Li Shu, Yu Lei. 2025. Deep−seated granite thermal reservoir exploration and hot dry rock potential assessment in the Qiabuqia Area, Gonghe Basin: A time−frequency electromagnetic method approach[J]. Geology in China, 52(2): 1−14. DOI: 10.12029/gc20231115001
Citation: Cheng Zhengpu, Wei Qiang, Lian Sheng, Zhang Haijiang, Hu Wenguang, Mi Xiaoli, Lei Ming, Li Shu, Yu Lei. 2025. Deep−seated granite thermal reservoir exploration and hot dry rock potential assessment in the Qiabuqia Area, Gonghe Basin: A time−frequency electromagnetic method approach[J]. Geology in China, 52(2): 1−14. DOI: 10.12029/gc20231115001

共和盆地恰卜恰深部花岗岩热储时频电磁法探测及干热岩体预测

基金项目: 中国地质调查局项目(DD20190131、DD20211336、DD20230018)资助。
详细信息
    作者简介:

    程正璞,男,1990年生,博士生,高级工程师,主要从事电磁法数据处理解释、深部地热与油气勘查研究;E-mail:czp1990@126.com

    通讯作者:

    魏强,男,1982年生,高级工程师,主要从事电磁法数据处理解释、深部地热与油气勘查研究;E-mail:xyyhwei@163.com。

Deep−seated granite thermal reservoir exploration and hot dry rock potential assessment in the Qiabuqia Area, Gonghe Basin: A time−frequency electromagnetic method approach

Funds: Supported by China Geological Survey (No.DD20190131, No.DD20211336, No.DD20230018).
More Information
    Author Bio:

    CHENG Zhengpu, male, born in 1990, Ph.D. candidate, senior engineer, mainly engaged in data processing and interpretation of electromagnetic method, deep geothermics and oil−gas exploration; E-mail: czp1990@126.com

    Corresponding author:

    WEI Qiang, male, born in 1982, senior engineer, mainly engaged in electromagnetic data processing and interpretation, deep geothermal and oil and gas exploration; E-mail: xyyhwei@163.com.

  • 摘要:
    研究目的 

    共和盆地恰卜恰地区是国内花岗岩热储型干热岩研究热点区域。本文旨在查明恰卜恰地区盖层厚度和花岗岩基底起伏形态,分析花岗岩体的空间分布特征,预测干热岩体的空间分布。

    研究方法 

    本文首次将主要用于深部油气勘探的时频电磁法应用于干热岩探测,在获取高品质原始数据的基础上,采用数据预处理、电性参数提取、约束反演等技术,得到了电阻率反演剖面;采用综合解释技术,结合已有的地质、钻孔、测井及其他物探资料,得到了研究区地层构造、花岗岩体与干热岩体的分布特征。

    研究结果 

    (1)时频电磁法可有效识别10 km以浅地层电性变化特征,时频电磁法电阻率反演剖面整体表现为典型的H型电性特征(次高阻层—低阻层—高阻层),盖层厚度呈东薄西厚,厚900~1400 m;10 km深度范围内,整体上花岗岩电阻率随深度的增加而变大,表现为A型电性特征,顶界面埋深呈东浅西深,为−900~−2900 m。(2)结合钻孔测温资料,预测了恰卜恰干热岩体和达连海干热岩体的空间展布特征。

    研究结论 

    (1)通过对热流传导规律的分析,认为岩体较完整的岩基和岩株是主要的热流汇聚区,最有可能是干热岩体。(2)深部岩浆在上侵时存在不均一性,导致花岗岩体呈深部岩基、中部岩株、浅部岩床的分布特征。③花岗岩体内电阻率存在一定的差异,在一定程度上指示了花岗岩体的完整性,深部岩基、中部岩株较浅部岩床更加完整。

    创新点:

    本文首次将时频电磁法应用于青海共和干热岩探测,查明了恰卜恰地区盖层厚度和花岗岩基底起伏形态,分析了花岗岩的空间分布特征,论述了花岗岩体完整性与大地热流传导规律之间的关系,预测了干热岩体的空间分布。

    Abstract:

    This paper is the result of geothermal survey engineering.

    Objective 

    The Qiabuqia area within China's Gonghe Basin represents a key research zone for granite−hosted hot dry rock (HDR) systems. This study systematically investigates the caprock thickness variation and granite basement topography while elucidating the spatial configuration of granitic bodies to establish predictive models for HDR reservoir distribution.

    Methods 

    Innovatively applying the Time−Frequency Electromagnetic (TFEM) method−traditionally employed in deep hydrocarbon exploration − to HDR characterization, we implemented a comprehensive workflow encompassing advanced data preprocessing, electrical parameter optimization, and constrained inversion modeling. Integrated interpretation of resistivity profiles with multi−source datasets (geological mapping, borehole logs, and auxiliary geophysical surveys) enabled three−dimensional reconstruction of stratigraphic architecture, granitic intrusion geometry, and HDR reservoir characteristics.

    Results 

    (1) TFEM demonstrates exceptional capability in resolving electrical stratigraphy within 10 km depth. Resistivity profiles reveal a tripartite H−type structure comprising a sub−high−resistivity superficial layer (900−1,400 m thickness, eastward−thinning), an intermediate conductive zone, and a high−resistivity basement. Granitic bodies exhibit A−type resistivity progression with depth, featuring westward−deepening top surfaces (−900 to −2900 m elevation). (2) Thermal logging−constrained models delineate distinct spatial configurations of the Qiabuqia and Dalianhai HDR reservoirs, demonstrating strong correlation with structural highs.

    Conclusions 

    (1)Thermo−structural analysis identifies competent batholiths and stocks as preferential heat flow conduits, serving as prime HDR exploration targets. (2)Magmatic emplacement heterogeneity drives vertical zonation: deep−seated batholiths transition upward through intermediate stocks to shallow sills. (3)Resistivity anomalies within granitic masses reflect structural integrity gradients, with batholiths and stocks exhibiting superior mechanical continuity compared to fractured sill complexes.

    Highlights:

    In this paper, the time−frequency electromagnetic method is applied for the first time to detect the dry hot rock in Gonghe, Qinghai Province. It identifies the overburden thickness and the undulating morphology of the granite basement in the Chabcha area, analyzes the spatial distribution characteristics of granitic rocks, discusses the relationship between the integrity of granite bodies and geothermal heat flow conduction patterns, and predicts the spatial distribution of HDR reservoirs.

  • 图  1   共和盆地简要构造位置及时频电磁法测线部署图(据张超等,2018修改)

    1—地名;2—地热钻孔;3—测线;4—坳陷区;5—黄河;6—隆起区

    Figure  1.   Brief structural position of Gonghe Basin and line deployment diagram of TFEM (modified from Zhang Chao et al., 2018)

    1−Place name; 2−Geothermal drilling; 3−Survey line; 4−Depression area; 5−The Yellow River; 6−Uplift area

    图  2   时频电磁法野外施工示意图

    Figure  2.   Schematic diagram of TFEM exploration field construction

    图  3   时频电磁数据综合处理解释流程

    Figure  3.   Flow chart of comprehensive processing and interpretation of time-frequeney electromagnetic data

    图  4   L2线电阻率剖面标定

    Figure  4.   Resistivity Profile Calibration of Line2

    图  5   恰卜恰地区花岗岩顶界面埋深海拔图

    1—测点;2—地热钻孔;3—断裂;4—测线;5—地名

    Figure  5.   Altitude Map of Buried Depth of Granite Top Surface in Qiabuqia Area

    1−Measuring point; 2−Geothermal drilling; 3−Faults; 4−Survey line; 5−Place name

    图  6   研究区TFEM电阻率反演剖面拟三维图

    Figure  6.   Pseudo-3D map of TFEM resistivity inversion profile in the study area

    图  7   基于L2测线电阻率剖面与DR2孔测温曲线的干热岩体标定图

    Figure  7.   Calibration diagram of HDR mass based on resistivity profile of line L2 and temperature measurement curve of hole DR2

    图  8   基于L3测线电阻率剖面与DR4、GR1孔测温曲线的干热岩体标定图

    Figure  8.   Calibration diagram of HDR mass based on resistivity profile of line L3 and temperature measurement curve of hole DR4 and GR1

    图  9   恰卜恰—达连海干热岩体平面分布预测图

    1—测点;2—地热钻孔;3—断裂;4—测线;5—地名

    Figure  9.   Plane distribution prediction map of Qiabuqia-Dalianhai hot dry rock mass

    1−Measuring point; 2−Geothermal drilling; 3−Faults; 4−Survey line; 5−Place name

    图  10   恰卜恰—达连海隐伏花岗岩/干热岩体顶界面立体显示

    Figure  10.   Stereo display of top surface of Qiabuqia−Dalianhai concealed granite/hot dry rock mass

    表  1   多种地球物理勘探方法对比

    Table  1   Comparison of various geophysical exploration methods

    方法 探测深度/km 分辨率 抗干扰能力 施工效率 施工成本 适用范围
    AMT 2 中浅水热
    MT 30 深部热源机制
    CSAMT 2 中浅水热
    TFEM 10 中深水热或干热
    人工地震 5 中深水热或干热
      注:横向分辨率为点距的二分之一;深度不同,纵向分辨率不同。
    下载: 导出CSV

    表  2   时频电磁法数据采集针对性措施

    Table  2   Targeted measures for data acquisition of time-frequency electromagnetic method

    工序名称干扰特征处理措施
    测量工序县城、村庄、河流、公路、光伏电厂、
    高压线、信号塔等
    合理布设测点,避开明显干扰源
    发射工序大功率(200 kw)建场,大电流(100 A)发射
    接收工序车辆、行人、风动干扰等采用不极化电极罐,配对误差小于2 mv,深埋地下大于30 cm;所有线缆分段压实
    现场资料预处理坏点、异常点分析坏点或异常点原因,及时返工
    下载: 导出CSV
  • [1]

    Brown D. 1995. The US hot dry rock program−20 years of experience in reservoir testing[C]// Proceedings of World Geothermal Congress, 2607−2611.

    [2]

    Cheng Zhengpu, Lei Ming, Li Shu, Lian Sheng, Wei Qiang. 2023. Research on time−frequency electromagnetic method detection of deep karst thermal reservoir and prediction of favorable area in Dongli Lake of Tianjin[J]. North China Geology, 46(2): 1−8 (in Chinese with English abstract).

    [3]

    Cheng Zhengpu, Lian Sheng, Wei Qiang, Hu Wenguang, Lei Ming, Li Shu. 2023. Research on time−frequency electromagnetic method detection of Wumishan Formation thermal reservoir in deep Xiong’an New Area[J]. Geophysical and Geochemical Exploration, 47(6): 1400−1409 (in Chinese with English abstract).

    [4]

    Dong W B, Zhao X M, Liu F, Zhao G. 2008. The time frequency electromagnetic method and its application in western China[J]. Applied Geophysics, 5(2): 127−135. doi: 10.1007/s11770-008-0020-8

    [5]

    He Zhanxiang, Dong Weibin, Zhao Guo, Hou Yujian, Shen Yibin, Liu Xuejun. 2021. Time−frequency electromagnetic (TFEM) technology: Data processing[J]. Oil Geophysical Prospecting, 56(6): 1391−1399 (in Chinese with English abstract).

    [6]

    He Zhanxiang, Hu Zuzhi, Wang Zhigang, Zhao Yunsheng, Shen Yibin, Liu Xuejun. 2020. Time−frequency electromagnetic(TFEM) technique: Step−by−step constraint inversion based on artificial fish swarm algorithm[J]. Oil Geophysical Prospecting, 55(4): 898−905 (in Chinese with English abstract).

    [7]

    He Z X, Suo X D, Hu Z Z, Shi Y L, Shi D Y, Dong W B. 2019. Time frequency electromagnetic method for exploring favorable deep igneous rock targets: A case study from north Xinjiang[J]. Journal of Environmental and Engineering Geophysics, 24(2): 215−224. doi: 10.2113/JEEG24.2.215

    [8]

    He Zhanxiang. Chen Zhongchang, Ren Wenjing, Pang Hengchang, Tian Zhiquan, Shen Yibin. 2020. Time−frequency electromagnetic(TFEM) method: Data acquisition system and its application[J]. Oil Geophysical Prospecting, 55(5): 1131−1138 (in Chinese with English abstract).

    [9]

    Hou Z Y, Xu T F, Jiang Z J, Feng B. 2018. Geochemical and isotopic characteristics of geothermal water in the Gonghe Basin of the northeast Tibetan Plateau, China[C]// Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University.

    [10]

    Li Linguo, Li Baixiang. 2017. A discussion on the heat source mechanism and geothermal system of Gonghe−Guide basin and mountain geothermal field in Qinghai Province[J]. Geophysical and Geochemical Exploration, 41(1): 29−34 (in Chinese with English abstract).

    [11]

    Li Y L, Jin F M, W Q. 2016. Hydrocarbon prediction with TFEM in buried hills. Jizhong Depression. Petroleum Geophysical Exploration, 51(S): 137−143.

    [12]

    Li Yongge. 2006. Hydrogeochemical Characteristics and Origin Analysis of Geothermal Water in the Qabhcha Area, Gonghe Basin, Qinghai Province[D]. Nanchang: East China University of Technology, 1− (in Chinese with English abstract).

    [13]

    Lin Wenjing, Wang Guiling, Zhang Shengsheng, Zhao Zhen, Xing Linxiao, GanHaonan. 2022. Hot−dry−rock heat source mechanism of Gonghe Basin on the northeast margin of Qinghai−Tibet Plateau[J]. Geothermal Energy, (3): 14−24 (in Chinese with English abstract).

    [14]

    Mao Xiang, Guo Dianbin, Luo Lu, Wang Tinghao. 2019. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review, 65(6): 1462−1472 (in Chinese with English abstract).

    [15]

    Mu Qunying, Wei Qi, Pang Hengchang, Feng Yongqiang, Zhang Qimao. 2017. System composition and functions of the TFEM network time frequency electromagnetic acquisition system[J]. Equipment for Geophysical Prospecting, 27(1): 67−70 (in Chinese with English abstract).

    [16]

    Pang Hengchang, Gao Hua. 2009. Introduction on the high−power constant−current time−frequency electromagnetic instrument[J]. Equipment for Geophysical Prospecting, (S1): 49−53 (in Chinese with English abstract).

    [17]

    Shi Zhuo, Zhang Hui, Duan Tao, Zhang Peng. 2018. Investigation of oil and gas reservoir in Jizhong depression based on time−frequency electromagnetic method[J]. Global Geology, 37(2): 585−594 (in Chinese with English abstract).

    [18]

    Sun Zhixin, Li Baixiang, Wang Zhilin. 2011. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology Engineering Geology, (2): 119−124 (in Chinese with English abstract).

    [19]

    Wang Bin, Li Baixiang, Ma Xinhua. 2015. Prediction of heat storage temperature and depth in exploration and evaluation of hot dry rocks in Gonghe−Guide, Qinghai[J]. Ground Water, 37(3): 28−30 (in Chinese with English abstract).

    [20]

    Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2007. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449−459 (in Chinese with English abstract).

    [21]

    Wang Ruizhen, Wang Jinkuan, Yan Feng, Li Haidong, Han Li, Wu Peipei. Research on seismic exploration technology of hot dry rock in Gonghe Basin[J]. Unconventional Oil & Gas, 9(4): 9−15 (in Chinese with English abstract).

    [22]

    Wang Zhigang, He Zhanxiang, Qin Jingcheng, Wang Zihan, Zhang Lin, Zhang Yongfu. 2016. Advances of TFEM technique and its application[J]. Oil Geophysical Prospecting, 51(S1): 144−151 (in Chinese with English abstract).

    [23]

    Xing Congcong. 2017. Application of Gravity and Magnetic Data Processing in the Qiapuqia Area, Qinghai Province[D]. Changchun: Jilin University, 1− (in Chinese with English abstract).

    [24]

    Xu Tianfu, Hu Zixu, Li Shengtao, Jiang Zhenjiao, Hou Zhaoyun, Li Fengyu, Liang Xu, Feng Bo. 2018. Enhanced geothermal system: International progress and research status of China[J]. Acta Geologica Sinica, 92(9): 1936−1947 (in Chinese with English abstract).

    [25]

    Xu T F, Yuan Y L, Jia X F, Lei Y D, Li S T, Feng B, Hou Z Y, Jiang Z J. 2018. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China[J]. Energy, 148(1): 196−207.

    [26]

    Xue Jianqiu, Gan Bin, Li Baixiang, Wang Zhilin, 2013. Geological−geophysical characteristics of enhanced geothermal systems(hot dry rocks) in gonghe−guide basin [J]. Geophysical and Geochemical Exploration, 37(1): 35−41 (in Chinese with English abstract).

    [27]

    Yan Weide. 2015. Characteristics of Gonghe Basin hot dry rock and its utilization prospects[J]. Science & Technology Review, 33(19): 54−57 (in Chinese with English abstract).

    [28]

    Yue Gaofan, Deng Xiaofei, Xing Linxiao, Lin Wenjing, Liu Feng, Liu Yanguang, Wang Guiling, 2015. Numerical simulation of hot dry rock exploitation using enhanced geothermal systems in Gonghe Basin[J]. Science & Technology Review, 33(19): 62−67 (in Chinese with English abstract).

    [29]

    Yun Xiaorui, Chen Xijie, Cai Zhihui, He Bizhu, Zhang Shengsheng, Lei Min, Xiang Hua. 2020. Preliminary study on magmatic emplacement and crystallization conditions and deep structure of hot dry rock in the northeastern Gonghe basin, Qinghai Province[J]. Acta Petrologica Sinica, 36(10): 3171−3191 (in Chinese with English abstract).

    [30]

    Zhang Chao, Hu Shengbiao, Song Rongcai, Zuo Yinhui, Jiang Guangzheng, Lei Yude, Zhang Shengsheng, Wang Zhuting. 2020. Genesis of the hot dry rock geothermal resources in the Gonghe basin: constraints from the radiogenic heat production rate of rocks[J]. Chinese Journal of Geophysics, 63(7): 2697−2709 (in Chinese with English abstract).

    [31]

    Zhang C , Jiang G Z, Shi Y Z, Wang Z T, Wang Y, Li S T, Jia X F, Hu S B. 2018. Terrestrial heat flow and crustal thermal structure of the Gonghe−Guide area, northeastern Qinghai−Tibetan plateau[J]. Geothermics, 72: 182−192.

    [32]

    Zhang Chao, Zhang Shengsheng, Li Shengtao, Jia Xiaofeng, Jiang Guangzheng, Gao Peng, Wang Yibo, Hu Shengbiao. 2018. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 61(11): 4545−4557 (in Chinese with English abstract).

    [33]

    Zhang Chunhe, Liu Xuejun, He Lanfang, He Weihui, Zhou Yinming, Zhu Yongshan, Cui Zhiwei, Kuang Xihan. 2013. A study of exploration organic rich shales using Time−Frequency Electromagnetic Method (TFEM)[J]. Chinese Journal of Geophysics, (9): 3173−3183 (in Chinese with English abstract).

    [34]

    Zhang Senqi, Fu Lei, Zhang yang, Song Jian, Wang Fuchun, Huang Jinhui, Jia Xiaofeng. Li Shengtao, Zhang Linyou, Feng Qingda. 2020. Delineation of hot dry rock exploration target area in the gonghe Basin based on high−precision aeromagnetic data[J]. Natural Gas Industry, 40(9): 156−169 (in Chinese with English abstract).

    [35]

    Zhang Senqi, Li Xufeng, Song Jian, Wen Dongguang, Li Zhiwei, Li Dunpeng, Cheng Zhengpu, Fu Lei, Zhang Linyou, Feng Qingda, Yang Tao, Niu Zhaoxuan. 2021. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 46(4): 1416−1433 (in Chinese with English abstract).

    [36]

    Zhang Senqi, Yan Weide, Li Dunpeng, Jia Xiaofeng, Zhang Shengsheng. Li Shengtao, Fu Lei, Wu Haidong, Zeng Zhaofa, Li Zhiwei, Mu Jianqiang, Cheng Zhengpu, Hu Lisha. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Acta Geologica Sinica, 45(6): 1087−1100 (in Chinese with English abstract).

    [37]

    Zhang Shengsheng, Zhang Lei, Tian Chengcheng, Cai Jingshou, Tang Baochun. 2019. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin[J]. Journal of Geomechanics, 25(4): 501−508 (in Chinese with English abstract).

    [38]

    Zhao Zhen, Chen Hujuan, Ma Jianqing, Liang Zhixiang. 2009. Evaluation and development of geothermal resources in the Qabhcha Area, Gonghe Basin, Qinghai Province[J]. Journal of Qinghai Environment, (2): 81−84 (in Chinese with English abstract).

    [39] 程正璞, 雷鸣, 李戍, 连晟, 魏强. 2023. 天津东丽湖深部岩溶热储时频电磁法探测及有利区预测[J]. 华东地质, 46(2): 1−8.
    [40] 程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 2023. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 47(6): 1400−1409.
    [41] 何展翔, 陈忠昌, 任文静, 庞恒昌, 田志权, 沈义斌. 2020. 时频电磁(TFEM)勘探技术: 数据采集系统[J]. 石油地球物理勘探, 55(5): 1131−1138.
    [42] 何展翔, 董卫斌, 赵国, 侯宇健, 沈义斌, 刘雪军. 2021. 时频电磁(TFEM)技术: 数据处理[J]. 石油地球物理勘探, 56(6): 1391−1399.
    [43] 何展翔, 胡祖志, 王志刚, 赵云生, 沈义斌, 刘雪军. 2020. 时频电磁(TFEM)技术: 数据联合约束反演[J]. 石油地球物理勘探, 55(4): 898−905.
    [44] 李林果, 李百祥. 2017. 从青海共和—贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 41(1): 29−34.
    [45] 李永革. 2006. 青海省共和盆地恰卜恰地区地下热水水文地球化学特征及成因分析[D]. 南昌: 东华理工大学, 1−.
    [46] 蔺文静, 王贵玲, 张盛生, 赵振, 邢林啸, 甘浩男. 2022. 青藏高原东北缘共和盆地干热岩热源机制[J]. 地热能, (3): 14−24.
    [47] 毛翔, 国殿斌, 罗璐, 王婷灏. 2019. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 65(6): 1462−1472.
    [48] 穆群英, 魏启, 庞恒昌, 冯永强, 张启卯. 2017. TFEM组网式时频电磁采集系统组成及功能[J]. 物探装备, 27(1): 67−70. doi: 10.3969/j.issn.1671-0657.2017.01.018
    [49] 庞恒昌, 高华. 2009. 大功率恒流时频电磁仪[J]. 物探装备, (S1): 49−53. doi: 10.3969/j.issn.1671-0657.2009.z1.011
    [50] 石卓, 张辉, 段涛, 张鹏. 2018. 基于时频电磁法的冀中坳陷油气藏勘探调查[J]. 世界地质, 37(2): 585−594. doi: 10.3969/j.issn.1004-5589.2018.02.025
    [51] 孙知新, 李百祥, 王志林. 2011. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, (2): 119−124. doi: 10.3969/j.issn.1000-3665.2011.02.021
    [52] 王斌, 李百祥, 马新华. 2015. 青海共和−贵德干热岩勘查评价中热储温度与深度预测[J]. 地下水, 37(3): 28−30. doi: 10.3969/j.issn.1004-1184.2015.03.011
    [53] 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2007. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459.
    [54] 王瑞贞, 王金宽, 晏丰, 李海东, 韩力, 武佩佩. 2022. 共和盆地干热岩地震勘探技术研究[J]. 非常规油气, 9(4): 9−15.
    [55] 王志刚, 何展翔, 覃荆城, 王子晗, 张林, 张永富. 2016. 时频电磁技术的新进展及应用效果[J]. 石油地球物理勘探, 51(S1): 144−151.
    [56] 邢琮琮. 2017. 重磁数据处理在青海恰卜恰地区的应用研究[D]. 长春: 吉林大学, 1−.
    [57] 许天福, 胡子旭, 李胜涛, 姜振蛟, 侯兆云, 李凤昱, 梁旭, 冯波. 2018. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 92(9): 1936−1947.
    [58] 薛建球, 甘斌, 李百祥, 王志林. 2013. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探, 37(1): 35−41.
    [59] 严维德. 2015. 共和盆地干热岩特征及利用前景[J]. 科技导报, 33(19): 54−57.
    [60] 贠晓瑞, 陈希节, 蔡志慧, 何碧竹, 张盛生, 雷敏, 向华. 2020. 青海共和盆地东北部干热岩岩浆侵位结晶条件及深部结构初探[J]. 岩石学报, 36(10): 3171−3191.
    [61] 岳高凡, 邓晓飞, 邢林啸, 蔺文静, 刘峰, 刘彦广, 王贵玲. 2015. 共和盆地增强型地热系统开采过程数值模拟[J]. 科技导报, 33(19): 62−67.
    [62] 张超, 胡圣标, 宋荣彩, 左银辉, 姜光政, 雷玉德, 张盛生, 王朱亭. 2020. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束[J]. 地球物理学报, 63(7): 2697−2709. doi: 10.6038/cjg2020N0381
    [63] 张超, 张盛生, 李胜涛, 贾小丰, 姜光政, 高堋, 王一波, 胡圣标. 2018. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报, 61(11): 4545−4557. doi: 10.6038/cjg2018L0747
    [64] 张春贺, 刘雪军, 何兰芳, 何委徽, 周印明, 朱永山, 崔志伟, 邝锡汉. 2013. 基于时频电磁法的富有机质页岩层系勘探研究[J]. 地球物理学报, (9): 3173−3183. doi: 10.6038/cjg20130930
    [65] 张森琦, 付雷, 张杨, 宋健, 王富春, 黄金辉, 贾小丰, 李胜涛, 张林友, 冯庆达. 2020. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业, 40(9): 156−169. doi: 10.3787/j.issn.1000-0976.2020.09.019
    [66] 张森琦, 李旭峰, 宋健, 文冬光, 李志伟, 黎敦朋, 程正璞, 付雷, 张林友, 冯庆达, 杨涛, 牛兆轩. 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学, 46(4): 1416−1436.
    [67] 张森琦, 严维德, 黎敦朋, 贾小丰, 张盛生, 李胜涛, 付雷, 吴海东, 曾昭发, 李志伟, 穆建强, 程正璞, 胡丽莎. 2018. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 45(6): 1087−1102. doi: 10.12029/gc20180601
    [68] 张盛生, 张磊, 田成成, 蔡敬寿, 唐保春. 2019. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 25(4): 501−508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048
    [69] 赵振, 陈惠娟, 马建青, 梁志祥. 2009. 青海省共和盆地恰卜恰地区地热资源评价与开发利用[J]. 青海环境, (2): 81−84. doi: 10.3969/j.issn.1007-2454.2009.02.010
图(10)  /  表(2)
计量
  • 文章访问数:  1928
  • HTML全文浏览量:  205
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2024-02-18
  • 网络出版日期:  2025-01-13

目录

    /

    返回文章
    返回
    x 关闭 永久关闭