Ecosystem service function and security pattern of Tianshan Mountains in Xinjiang from 1990 to 2050
-
摘要:研究目的
在全球气候变化和人类活动不断扩展的背景下,自然生态系统及其提供的服务功能面临着日益严重的威胁和衰退。为应对这一挑战,确定并保护对生态可持续性具有重大价值的关键地点变得至关重要。生态安全格局是指一种全面策略和方法,旨在保障区域生态可持续性。
研究方法本研究基于In−VEST模型、PLUS模型和电路理论等,对西北干旱区天山地区生态系统服务与生态安全格局(ESP)的动态变化进行了评价。
研究结果1990—2050年土地利用/覆盖变化(LUCC)空间分布上基本稳定。近30年来总转换面积为32.52×103 km2,主要是荒地和草地之间的转化。与2020年相比,2050年自然增长(ND)、生态保护(EP)和城市发展(UD)情景下的土地总转换面积分别为21.43×103 km2、23.09×103 km2、22.87×103 km2,其中林地面积净增加的最多,主要由草地转化而成。EP情景下林地、草地和水体面积增加。其他两种情景下建设用地和耕地面积大幅扩大。与ND和UD情景相比,EP情景的生态系统服务功能更大。1990—2050年天山地区ESP存在明显的空间差异,较大的生态源和较小的阻力廊道主要分布在天山地区生态系统服务功能较高的中部和北部。相反,破碎的生态源和较大的抗性廊道大多分布在被沙地、裸地或山地阻隔的西部地区。东南部为荒漠地区,没有生态源,缺乏生态廊道。近30年来,生态源区面积减少了1.84×103 km2,呈现破碎化趋势,生态网络更加复杂。与2020年相比,2050年EP情景下的生态源面积和夹点面积分别增加10.53×103 km2和0.11×103 km2,生态障碍带点面积减少0.38×103 km2。除EP场景外,其余两种情景的生态源面积也有所增加,但低于EP场景。
结论生态保护情景在塑造LUCC的过程中起到了重要的作用,对维护生态安全和生态系统的完整性具有极大的意义。
创新点:(1)通过量化过去和未来生态系统服务来构建生态源和阻力面;(2)对未来土地利用类型模拟,构建2050年不同情境下的生态安全格局;(3)揭示1990—2050年天山地区不同时期的生态安全格局动态变化特征。
Abstract:This paper is the result of ecological geological survey engineering.
ObjectiveUnder the background of global climate change and the continuous expansion of human activities, natural ecosystems and their service functions are facing increasingly serious threats and recessions.In order to address this challenge, it is critical to identify and protect key sites that are of great value to ecological sustainability. Ecological security pattern refers to a comprehensive strategy and method to ensure regional ecological sustainability.
MethodsBased on the In−VEST model, PLUS model and circuit theory, this study evaluated the dynamic changes of ecosystem services and ecological security pattern (ESP) in the Tianshan Mountains in the arid region of Northwest China.
ResultsThe spatial distribution of land use type (LUCC) was basically stable from 1990 to 2050. In the past 30 years, the total conversion area was 32.52×103 km2, which was mainly the conversion between wasteland and grassland. Compared with 2020, the total land conversion areas under the scenarios of Natural development scenario (ND), Ecological protection scenario (EP) and Urban development scenario (UD) in 2050 are 21.43×103 km2, 23.09×103 km2 and 22.87×103 km2, respectively. Among them, the net increase of forest land area is the most, which is mainly transformed from grassland. The area of forest land, grassland and water body increased under EP scenario. In the other two scenarios, the area of construction land and cultivated land has expanded significantly. Compared with ND and UD scenarios, the ecosystem service function of EP scenario is greater. There are obvious spatial differences in ESP in the Tianshan Mountains from 1990 to 2050. The larger ecological sources and smaller resistance corridors are mainly distributed in the central and northern parts of the Tianshan Mountains with higher ecosystem service functions. On the contrary, broken ecological sources and large resistance corridors are mostly distributed in the western region blocked by sand, bare land or mountains. The southeast is a desert area, with no ecological source and lack of ecological corridors. In the past 30 years, the area of ecological source area has decreased by 1.84×103 km2, showing a trend of fragmentation, and the ecological network is more complex. Compared with 2020, the area of ecological source and pinch point under EP scenario in 2050 will increase by 10.53×103 km2 and 0.11×103 km2 respectively, and the area of ecological barrier zone will decrease by 0.38×103 km2. In addition to the EP scenario, the ecological source area of the other two scenarios also increased, but lower than the EP scenario.
ConclusionsEcological protection scenarios play a vital role in shaping LUCC and are of great significance for maintaining ecological security and ecosystem integrity.
Highlights:(1) Constructing ecological sources and resistance surfaces by quantifying past and future ecosystem services. (2) Simulating the future land use types and constructing the ecological security pattern under different scenarios in 2050. (3) Revealing the dynamic change characteristics of ecological security pattern in different periods of Tianshan Mountains from 1990 to 2050.
-
-
图 1 研究区位置示意图(基于自然资源部标准地图服务网站GS(2019)1823号的标准地图绘制,底图边界无修改,后图同)
Figure 1. Location diagram of the study area (Based on the standard map drawing of the standard map service website GS (2019) 1823 of the Ministry of Natural Resources, the boundary of the base map is not modified, and the following diagram is the same)
表 1 数据来源及描述
Table 1 Data sources and description
数据 描述 数据来源 1990、2000、2010、2020年土地利用类型数据 空间分辨率为30 m https://zenodo.org 温度/℃ 逐月平均温度数据,空间分辨率为1 km 国家青藏高原科学数据中心https://data.tpdc.ac.cn/home 降水/mm 逐月平均温度数据,空间分辨率为1 km 降雨侵蚀性因子 反映研究区的降雨强度和时间 通过降雨数据计算获得 土壤数据 用于计算植物可利用水分(PAWC)和土壤侵蚀性因子 国家青藏高原科学数据中心https://data.tpdc.ac.cn/home 地上碳密度/(t/hm2) 地上生物量的碳密度 查阅相关文献(许文强等, 2016;Lu et al., 2022;如克亚·热合曼等, 2022) 地下碳密度/(t/hm2) 地下生物量的碳密度 土壤碳密度/(t/hm2) 土壤的碳密度 死亡有机质/(t/hm2) 死亡有机物碳密度 数字高程模型/m 用于计算坡向、坡度、地形起伏,空间分辨率为30 m 地理空间数据云
https://www.gscloud.cn国内生产总值/(万元/km2) 栅格单元所在的县级行政区单元的GDP统计值,空间分辨率为1 km 中国科学院资源环境科学数据中心 https://www.resdc.cn 人口网格化数据集/(人/km2) 栅格单元所在的县级行政区单元的人口统计值,空间分辨率为1 km 道路数据 计算到道路的距离 OpenStreetMap Data extract (https://www.openstreetmap.org) 河网数据 计算到河道的距离 政府位置 计算到政府的距离 全国地理信息资源目录服务系统
https://www.webmap.cn表 2 不同土地利用类型的碳密度(t/hm2)
Table 2 Carbon density of different land use types (t/hm2)
土地利用
类型地上
碳密度地下
碳密度土壤
碳密度死亡有机质
数据耕地 2.9 3.44 76.6 1.24 林地 30.89 9.12 107.82 2.48 草地 0.49 4.29 75.54 0.22 水体 0.64 0.45 0 0 雪/冰 0 0 0 0 荒地 0.45 0.87 38.55 0 不透水面 2.26 1.45 0 0 湿地 1.85 1.48 212.68 0 表 3 生境对各胁迫因子的敏感性
Table 3 Sensitivity of habitats to various stress factors
地类代码 地类 生境适宜性 城市 铁路 主干道 次干道 1 耕地 0.3 0.5 0.2 0.2 0.2 2 林地 1 1 0.7 0.6 0.5 3 草地 0.9 0.7 0.6 0.6 0.3 4 水体 1 0.9 0.6 0.5 0.6 5 雪/冰 0.1 0.2 0.2 0.2 0 6 荒地 0.1 0 0.1 0.1 0 7 不透水面 0 0 0 0 0.2 8 湿地 0.4 0.6 0.3 0.4 0.6 表 4 1990—2050年研究区土地利用类型面积变化(103 km2)
Table 4 Changes in land use types in the study area from 1990 to 2050 ( 103 km2 )
土地利用类型 1990年 2020年 2050年 转化面积(2020—2050)年 ND EP UD ND EP UD 耕地 12.83 17.57 21.91 15.23 21.92 4.34 −2.33 4.35 林地 6.84 12.52 17.83 19.97 17.79 5.31 7.46 5.27 草地 180.02 165.06 154.96 168.25 154.87 −10.10 3.19 −10.19 水体 1.79 2.50 3.13 2.51 3.10 0.64 0.01 0.60 雪/冰 13.66 12.37 12.33 13.07 12.61 −0.03 0.71 0.24 荒地 247.56 251.64 251.06 242.61 250.39 −0.58 −9.03 −1.25 不透水面 0.13 0.94 1.19 0.75 1.73 0.25 −0.18 0.79 湿地 0.23 0.48 0.66 0.67 0.66 0.18 0.18 0.18 总计 463.07 463.07 463.07 463.07 463.07 注:ND—自然增长型;EP—生态保护型;UD—城市发展型。 表 5 天山地区生态安全格局特征
Table 5 Characteristics of ecological security pattern in Tianshan area
类别 1990年 2020年 2050年 ND EP UD 生态源 数量/个 190 258 284 285 286 面积/(103 km2) 77.05 75.21 80.44 85.74 79.93 生态廊道 数量/个 390 532 576 580 589 长度/km 9083 10466 8926 9634 9407 生态夹点 面积/103 km2 1.62 1.57 1.41 1.68 1.54 生态障碍点 面积/103 km2 1.21 1.39 1.52 1.01 1.41 注:ND—自然增长型;EP—生态保护型;UD—城市发展型。 表 6 1990—2050年天山地区生态源所处地类的变化
Table 6 Changes of land types of ecological sources in Tianshan Mountains from 1990 to 2050
类型 1990年面积
/(103 km2)2020年面积
/(103 km2)2050年面积/(103 km2) NG EP UD 耕地 5.20 6.93 7.90 5.55 7.82 林地 0.39 2.67 8.59 8.64 8.62 草地 66.63 58.60 55.77 63.83 55.84 雪/冰 2.97 2.76 2.95 2.41 2.56 荒地 1.86 3.87 4.62 4.71 4.50 总计 77.05 74.83 79.83 85.14 79.34 -
[1] Adriaensen F, Chardon J P, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E. 2003. The application of 'least−cost' modelling as a functional landscape model[J]. Landscape and Urban Planning, 64(4): 233−247. doi: 10.1016/S0169-2046(02)00242-6
[2] Beier P, Majka D R, Spencer W D. 2008. Forks in the road: Choices in procedures for designing wildland linkages[J]. Conservation Biology, 22(4): 836−851. doi: 10.1111/j.1523-1739.2008.00942.x
[3] Cao Jiajie, Fu Jianwei. 2023. Research on the construction method of urban green space habitat network based on InVEST model and Least–cost path: A case study of Nanjing[J]. Chinese Landscape Architecture, 39(1): 53−58 (in Chinese with English abstract).
[4] Carroll C, Roberts D R, Michalak J L, Lawler J J, Nielsen S E, Stralberg D, Hamann A, Mcrae B H, Wang T L. 2017. Scale–dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change[J]. Global Change Biology, 23(11): 4508−4520. doi: 10.1111/gcb.13679
[5] Chen Y, Li W, Deng H, Fang G, Li Z. 2016. Changes in central Asia’s water tower: Past, present and future[J]. Scientific Reports, 6(1): 35458. doi: 10.1038/srep35458
[6] Cook B I, Mankin J S, Marvel K, Williams A P, Smerdon J E, Anchukaitis K J. 2020. Twenty−first century drought projections in the CMIP6 forcing scenarios[J]. Earths Future, 8(6): e2019EF001461. doi: 10.1029/2019EF001461
[7] Dai Lu, Liu Yaobin, Huang Kaizhong. 2020. Construction of an ecological security network for waterfront cities based on MCR model and DO index: A case study of Jiujiang City[J]. Acta Geographica Sinica, 75(11): 2459−2474 (in Chinese with English abstract).
[8] Dong J Q, Peng J, Xu Z H, Liu Y X, Wang X Y, Li B. 2021. Integrating regional and interregional approaches to identify ecological security patterns[J]. Landscape Ecology, 36(7): 2151−2164. doi: 10.1007/s10980-021-01233-7
[9] FAO, IIASA. 2021. China Soil Map Based Harmonized World Soil Database (HWSD) (v1.1) (2009) [M].
[10] Fu Yujia, Tan Changhai, Liu Xiaohuang, Sun Xingli, Yuan Zemin, Zheng Yiwen. 2022. Definition, classification, observation and monitoring of natural resourcesand their application in territorial planning and governance[J]. Geology in China, 49(4): 1048−1063 (in Chinese with English abstract).
[11] Gao J B, Du F J, Zuo L Y, Jiang Y. 2021. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern[J]. Landscape Ecology, 36(7): 2113−2133. doi: 10.1007/s10980-020-01100-x
[12] Gao M W, Hu Y C, Bai Y P. 2022. Construction of ecological security pattern in national land space from the perspective of the community of life in mountain, water, forest, field, lake and grass: A case study in Guangxi Hechi, China[J]. Ecological Indicators, 139: 108867. doi: 10.1016/j.ecolind.2022.108867
[13] Gerten D, Rockström J, Heinke J, Steffen W, Richardson K, Cornell S. 2015. Response to comment on "Planetary boundaries: Guiding human development on a changing planet"[J]. Science, 348(6240): 1217.
[14] Gong J Z, Liu Y S, Xia B C, Zhao G W. 2009. Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China[J]. Ecological Modelling, 220(24): 3612−3620. doi: 10.1016/j.ecolmodel.2009.10.018
[15] Groombridge B, Jenkins M. 2000. Global Biodiversity: Earth’s living resources in the 21st Century[C]//: Cambridge, UK: World Conservation Press, 2000
[16] Guo F, Liu X, Mamat Z, Zhang W, Xing L, Wang R, Luo X, Wang C, Zhao H. 2023. Analysis of spatiotemporal variations and influencing factors of soil erosion in the Jiangnan Hills red soil zone, China[J]. Heliyon, 9(9): e19998. doi: 10.1016/j.heliyon.2023.e19998
[17] Han Wangya, Xia Shuangshuang, Zhou Wei, Shen Yu, Su Xukun, Liu Guohua. 2023. Constructing ecological security pattern based on ecological corridoridentification in Lhasa River Basin[J]. Acta Ecologica Sinica, 43(21): 8948−8957 (in Chinese with English abstract).
[18] Han Zongwei, Jiao Sheng, Hu Liang, Yang Yumin, Cai Qing, Li Bei, Zhou Min. 2019. Construction of ecological security pattern based on coordination between corridors and sources in national territorial space[J]. Journal of Natural Resources, 34(10): 2244−2256 (in Chinese with English abstract). doi: 10.31497/zrzyxb.20191019
[19] Hu Ruji. 2004. Natural Geography of Tianshan Mountains, China [M]. Beijing: China Environmental Science Press(in Chinese with English abstract).
[20] Huang K X, Peng L, Wang X H, Deng W. 2022. Integrating circuit theory and landscape pattern index to identify and optimize ecological networks: A case study of the Sichuan Basin, China[J]. Environmental Science and Pollution Research, 29(44): 66874−66887. doi: 10.1007/s11356-022-20383-y
[21] Huang L Y, Wang J, Fang Y, Zhai T L, Cheng H. 2021. An integrated approach towards spatial identification of restored and conserved priority areas of ecological network for implementation planning in metropolitan region[J]. Sustainable Cities and Society, 69: 102865. doi: 10.1016/j.scs.2021.102865
[22] Kang J M, Zhang X, Zhu X W, Zhang B L. 2021. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China[J]. Global Ecology and Conservation, 26: e01472. doi: 10.1016/j.gecco.2021.e01472
[23] Ke X L, Wang X Y, Guo H X, Yang C, Zhou Q, Mougharbel A. 2021. Urban ecological security evaluation and spatial correlation researchbased on data analysis of 16 cities in Hubei Province of China[J]. Journal of Cleaner Production, 311: 127613. doi: 10.1016/j.jclepro.2021.127613
[24] Li M Y, Liang D, Xia J, Song J X, Cheng D D, Wu J T, Cao Y L, Sun H T, Li Q. 2021. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model[J]. Journal of Environmental Management, 286: 112212. doi: 10.1016/j.jenvman.2021.112212
[25] Li Q, Zhou Y, Yi S Q. 2022. An integrated approach to constructing ecological security patterns and identifying ecological restoration and protection areas: A case study of Jingmen, China[J]. Ecological Indicators, 137: 108723. doi: 10.1016/j.ecolind.2022.108723
[26] Li Y G, Liu W, Feng Q, Zhu M, Yang L S, Zhang J T, Yin X W. 2023. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China[J]. Science of the Total Environment, 855: 158940. doi: 10.1016/j.scitotenv.2022.158940
[27] Li Z T, Li M, Xia B C. 2020. Spatio–temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation[J]. Ecological Indicators, 114: 106319. doi: 10.1016/j.ecolind.2020.106319
[28] Liang X, Guan Q F, Clarke K C, Liu S S, Wang B Y, Yao Y. 2021. Understanding the drivers of sustainable land expansion using a patch–generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers Environment and Urban Systems, 85: 101569. doi: 10.1016/j.compenvurbsys.2020.101569
[29] Liu Z H, Huang Q D, Tang G P. 2021. Identification of urban flight corridors for migratory birds in the coastal regions of Shenzhen City based on three–dimensional landscapes[J]. Landscape Ecology, 36(7): 2043−2057. doi: 10.1007/s10980-020-01032-6
[30] Lu F, Hu H F, Sun W J, Zhu J J, Liu G B, Zhou W M, Zhang Q F, Shi P L, Liu X P, Wu X, Zhang L, Wei X H, Dai L M, Zhang K R, Sun Y R, Xue S, Zhang W J, Xiong D P, Deng L, Liu B J, Zhou L, Zhang C, Zheng X, Cao J S, Huang Y, He N P, Zhou G Y, Bai Y F, Xie Z Q, Tang Z Y, Wu B F, Fang J Y, Liu G H, Yu G R. 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4039−4044.
[31] Lu Y, Xiaoliang X, Jicai L, Xiaohua F, Luyuan L. 2022. Research on the spatio–temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model[J]. Arid Zone Research, 39(6): 1896−1906.
[32] McRae B H, Dickson B G, Keitt T H, Shah V B. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation[J]. Ecology, 89(10): 2712−2724. doi: 10.1890/07-1861.1
[33] Pan Jinghu, Li Lei. 2021. Optimization of ecological security pattern in Gansu section of the Yellow River Basin using OWA and circuit model[J]. Transactions of the Chinese Society of Agricultural Engineering, 37(3): 259−268 (in Chinese with English abstract).
[34] Peng J, Yang Y, Liu Y X, Hu Y N, Du Y Y, Meersmans J, Qiu S J. 2018. Linking ecosystem services and circuit theory to identify ecological security patterns[J]. Science of the Total Environment, 644: 781−790. doi: 10.1016/j.scitotenv.2018.06.292
[35] Peng Jian, Li Huilei, Liu Yanxu, Hu Yina, Yang Yang. 2018. Identification and optimization of ecological security pattern in Xiong'an New Area[J]. Acta Geographica Sinica, 73(4): 701−710 (in Chinese with English abstract).
[36] Peng Jian, Zhao Huijuan, Liu Yanxu, Wu Jiansheng. 2017. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 36(3): 407−419 (in Chinese with English abstract).
[37] Peng S. 2024a. 1–km Monthly Mean Temperature Dataset for China (1901–2023) [M]. National Tibetan Plateau Data Center.
[38] Peng S. 2024b. 1–km Monthly Precipitation Dataset for China (1901–2023) [M]. National Tibetan Plateau Data Center.
[39] Proctor M F, Nielsen S E, Kasworm W F, Servheen C, Radandt T G, Machutchon A G, Boyce M S. 2015. Grizzly bear connectivity map in the Canada–United States trans−border region[J]. Journal of Wildlife Management, 79(4): 544−558.
[40] Reheman·Rukeya, Kasim·Alim, Ablat·Halmu–rat, Duolat·Xilinayi, Xu Jinhua. 2022. Research on the temporal and spatial evolution of habitat quality in urban agglomeration on the northern slope of Tianshan Mountains based on InVEST Model[J]. Journal of Ecology and Rural Environment, 38(9): 1112−1121 (in Chinese with English abstract).
[41] Sharp R, Tallis H, Ricketts T, Guerry A D, Wood S A, Chaplin–Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N 2016. InVEST+ VERSION+ User’s Guide. The Natural Capital Project [M]. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
[42] Spear S F, Balkenhol N, Fortin M J, Mcrae B H, Scribner K. 2010. Use of resistance surfaces for landscape genetic studies: Considerations for parameterization and analysis[J]. Molecular Ecology, 19(17): 3576−3591. doi: 10.1111/j.1365-294X.2010.04657.x
[43] Sun Zhangtao, Yu Zhengwei, Shu Siqi, Xu Chuangsheng, Shuyang. 2023. Evaluation of ecosystem services of Chinese provincial land and suggestions for ecological geological survey[J]. Geology in China, 50(2): 479−494 (in Chinese with English abstract).
[44] Wang J, Chen Y Q, Shao X M, Zhang Y Y, Cao Y G. 2012. Land–use changes and policy dimension driving forces in China: Present, trend and future[J]. Land Use Policy, 29(4): 737−749. doi: 10.1016/j.landusepol.2011.11.010
[45] Wen J F, Hou K. 2021. Research on the progress of regional ecological security evaluation and optimization of its common limitations[J]. Ecological Indicators, 127: 107797. doi: 10.1016/j.ecolind.2021.107797
[46] Wang Luchen, Han Haihui, Zhang Jun, Huang Jiao, Gu Xiaofan, Chang Liang, Dong Jiaqiu, Long Rui, Wang Qian, Yang Bingchao. 2024. Spatio–temporal evolution of land use and human activity intensity in the Tarim River Basin, Xinjiang [J]. Geology in China, 51(1): 203–220(in Chinese with English abstract).
[47] Wang Xiaoyu, Chen Tianqian, Feng Zhe, Wu Kening, Lin Qian. 2020. Construction of ecological security pattern based on boundary analysis: A case study on Jiangsu Province[J]. Acta Ecologica Sinica, 40(10): 3375−3384 (in Chinese with English abstract).
[48] Wei Baojing, Su Jie, Hu Xijun, Xu Kaiheng, Zhu Manle, Liu Luyun. 2022. Comprehensive identification of eco–corridors and eco–nodes based onprinciple of hydrological analysis and Linkage Mapper[J]. Acta Ecologica Sinica, 42(7): 2995−3009 (in Chinese with English abstract).
[49] Xia C H, Hu Z C, Xi C, Ming C W. 2008. The new methodology of geomorphologic zonalization in Xinjiang based on geographical grid [J]. Geographical Research, (3): 481–492, 725–726.
[50] Xiao Duning, Chen Wenbo, Guo Fuliang. 2002. On the basic concepts and contents of ecological security[J]. Chinese Journal of Applied Ecology, 13(3): 354−358 (in Chinese with English abstract).
[51] Xu Wenqiang, Yang Liao, Chen Xi, Gao Yaqi, Wang Lei. 2016. Carbon storage, spatial distribution and the influence factors in Tianshan forests[J]. Chinese Journal of Plant Ecology, 40(4): 364−373 (in Chinese with English abstract). doi: 10.17521/cjpe.2015.0235
[52] Youcun L, Keqin J, Kui Z, Yan L, Tianding H, Yu Z. 2017. The response of precipitation to global climate change in the Tianshan Mountains, China[J]. Journal of Glaciology and Geocryology, 39(4): 748−759.
[53] Yu Menglin, Liu Pinghui, Zhu Chuanmin. 2022. Construction of ecological security network based on minimum cumulative resistance model at Ningbo City[J]. Bulletin of Soil and Water Conservation, 42(1): 217−224 (in Chinese with English abstract).
[54] Yu Zhilin, Zhao Mingsong, Gao Yingfeng, Wang Tao, Zhao Zhidong, Wang Shihang. 2024. Spatio–temporal evolution and prediction of carbon storage in Huaibei City based on InVEST–PLUS Model[J]. Environmental Science, 45(6): 1−21 (in Chinese with English abstract).
[55] Yuan J L, Liu X H, Li H Y, Wang R, Luo X P, Xing L Y, Wang C, Zhao H H. 2023. Assessment of spatial–temporal variations of soil erosion in Hulunbuir Plateau from 2000 to 2050[J]. Land, 12(6): 1214. doi: 10.3390/land12061214
[56] Zhang D, Wang X, Qu L, Li S, Lin Y, Yao R, Zhou X, Li J. 2020. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China[J]. Ecological Indicators, 119: 106841. doi: 10.1016/j.ecolind.2020.106841
[57] Zhang Mingdan, Li Yungang. 2023. Study on ecosystem service trade–off / synergy relationship in Ruili–Daying River Basin[J]. Study on Soil and Water Conservation, 30(6): 415−422 (in Chinese with English abstract).
[58] Zhang S H, Zhong Q L, Cheng D L, Xu C B, Chang Y N, Lin Y Y, Li B Y. 2022. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region[J]. Ecological Indicators, 136: 108642. doi: 10.1016/j.ecolind.2022.108642
[59] 曹加杰, 傅剑玮. 2023. 基于InVEST模型和最小成本路径的城市绿色空间生境网络构建方法研究—以南京为例[J]. 中国园林, 39(1): 53−58. [60] 戴璐, 刘耀彬, 黄开忠. 2020. 基于MCR模型和DO指数的九江滨水城市生态安全网络构建[J]. 地理学报, 75(11): 2459−2474. doi: 10.11821/dlxb202011014 [61] 付宇佳, 谭昌海, 刘晓煌, 孙兴丽, 袁泽民, 郑艺文. 2022. 自然资源定义、分类, 观测监测及其在国土规划治理中的应用[J]. 中国地质, 49(4): 1048−1063. doi: 10.12029/gc20220402 [62] 韩王亚, 夏双双, 周维, 申宇, 苏旭坤, 刘国华. 2023. 基于生态廊道识别的拉萨河流域生态安全格局构建[J]. 生态学报, 43(21): 8948−8957. [63] 韩宗伟, 焦胜, 胡亮, 杨宇民, 蔡青, 黎贝, 周敏. 2019. 廊道与源地协调的国土空间生态安全格局构建[J]. 自然资源学报, 34(10): 2244−2256. [64] 胡汝骥. 2004. 中国天山自然地理[M]. 北京: 中国环境科学出版社. [65] 潘竟虎, 李磊. 2021. 利用OWA和电路模型优化黄河流域甘肃段生态安全格局[J]. 农业工程学报, 37(3): 259−268. doi: 10.11975/j.issn.1002-6819.2021.03.031 [66] 彭建, 李慧蕾, 刘焱序, 胡熠娜, 杨旸. 2018. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 73(4): 701−710. doi: 10.11821/dlxb201804009 [67] 彭建, 赵会娟, 刘焱序, 吴健生. 2017. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 36(3): 407−419. [68] 如克亚·热合曼, 阿里木江·卡斯木, 哈力木拉提·阿布来提, 希丽娜依·多来提, 许金花. 2022. 基于InVEST模型的天山北坡城市群生境质量时空演化研究[J]. 生态与农村环境学报, 38(9): 1112−1121. [69] 孙张涛, 余正伟, 舒思齐, 许闯胜, 舒阳. 2023. 中国省域生态系统服务价值评价与生态地质调查工作建议[J]. 中国地质, 50(2): 479−494. [70] 王璐晨, 韩海辉, 张俊, 黄姣, 顾小凡, 常亮, 董佳秋, 龙睿, 王倩, 杨炳超. 2024. 塔里木河流域土地利用及人类活动强度的时空演化特征研究[J]. 中国地质, 51(1): 203–220. [71] 王晓玉, 陈甜倩, 冯喆, 吴克宁, 林倩. 2020. 基于地类边界分析的江苏省生态安全格局构建[J]. 生态学报, 40(10): 3375−3384. [72] 韦宝婧, 苏杰, 胡希军, 徐凯恒, 朱满乐, 刘路云. 2022. 基于“HY–LM”的生态廊道与生态节点综合识别研究[J]. 生态学报, 42(7): 2995−3009. [73] 肖笃宁, 陈文波, 郭福良. 2002. 论生态安全的基本概念和研究内容[J]. 应用生态学报, 13(3): 354−358. doi: 10.3321/j.issn:1001-9332.2002.03.024 [74] 许文强, 杨辽, 陈曦, 高亚琪, 王蕾. 2016. 天山森林生态系统碳储量格局及其影响因素[J]. 植物生态学报, 40(4): 364−373. doi: 10.17521/cjpe.2015.0235 [75] 于梦林, 刘平辉, 朱传民. 2022. 基于MCR模型的宁波市生态安全网络构建[J]. 水土保持通报, 42(1): 217−224. doi: 10.3969/j.issn.1000-288X.2022.1.stbctb202201029 [76] 于芝琳, 赵明松, 高迎凤, 王涛, 赵治东, 王世航. 2024. 基于InVEST–PLUS模型的淮北市碳储量时空演变及预测[J]. 环境科学, 45(6): 1−21. [77] 张铭丹, 李运刚. 2023. 瑞丽江–大盈江流域生态系统服务权衡与协同关系研究[J]. 水土保持研究, 30(6): 415−422.