高级检索

    青海共和盆地干热岩人工储层示踪试验研究

    朱贵麟, 刘东林, 周殷竹, 边超, 曹月婷, 冯庆达, 张林友, 许文豪, 牛兆轩, 邓志辉

    朱贵麟,刘东林,周殷竹,边超,曹月婷,冯庆达,张林友,许文豪,牛兆轩,邓志辉. 2025. 青海共和盆地干热岩人工储层示踪试验研究[J]. 中国地质, 52(2): 1−9. DOI: 10.12029/gc20231121002
    引用本文: 朱贵麟,刘东林,周殷竹,边超,曹月婷,冯庆达,张林友,许文豪,牛兆轩,邓志辉. 2025. 青海共和盆地干热岩人工储层示踪试验研究[J]. 中国地质, 52(2): 1−9. DOI: 10.12029/gc20231121002
    Zhu Guilin, Liu Donglin, Zhou Yinzhu, Bian Chao, Cao Yueting, Feng Qingda, Zhang Linyou, Xu Wenhao, Niu Zhaoxuan, Deng Zhihui. 2025. Tracer test study on artificial reservoirs in hot dry rock geothermal systems in the Gonghe Basin, Qinghai[J]. Geology in China, 52(2): 1−9. DOI: 10.12029/gc20231121002
    Citation: Zhu Guilin, Liu Donglin, Zhou Yinzhu, Bian Chao, Cao Yueting, Feng Qingda, Zhang Linyou, Xu Wenhao, Niu Zhaoxuan, Deng Zhihui. 2025. Tracer test study on artificial reservoirs in hot dry rock geothermal systems in the Gonghe Basin, Qinghai[J]. Geology in China, 52(2): 1−9. DOI: 10.12029/gc20231121002

    青海共和盆地干热岩人工储层示踪试验研究

    基金项目: 中国地质调查局项目(DD20230018)资助。
    详细信息
      作者简介:

      朱贵麟,男,1993年生,工程师,主要从事地热地质工作;E-mail: zguilin@mail.cgs.gov.cn

      通讯作者:

      刘东林,男,1985年生,高级工程师,主要从事地热地质工作;E-mail: ldonglin@mail.cgs.gov.cn

    • 中图分类号: P314

    Tracer test study on artificial reservoirs in hot dry rock geothermal systems in the Gonghe Basin, Qinghai

    Funds: Supported by the project of China Geological Survey (No.DD20230018).
    More Information
      Author Bio:

      ZHU Guilin, male, born in 1993, engineer, engaged in geothermal reservoir engineering; E-mail: zguilin@mail.cgs.gov.cn

      Corresponding author:

      LIU Donglin, male, born in 1985, senior engineer, engaged in geothermal reservoir engineering; E-mail: ldonglin@mail.cgs.gov.cn.

    • 摘要:
      研究目的 

      干热岩是一种清洁、储量巨大的地热资源,从2019年开始,中国地质调查局在青海共和持续实施中国首例干热岩发电并网工程。干热岩储层致密,需压裂形成一定渗透性的连通缝网,形成容纳一定规模换热、导水储层,但高温硬岩人工储层研究还相对较少。

      研究方法 

      人工储层的成功建造和井间有效连通是干热岩成功开发的核心,示踪试验是研究上述问题、刻画储层水文地质条件的有效手段,本文以青海共和盆地干热岩试采场地为研究对象,选取荧光素钠、溴化钠作为示踪剂,分别在规模压裂改造前后开展示踪试验。

      研究结果 

      规模压裂改造前示踪剂回收率、换热体积等均较低,改造后储层裂缝更复杂,储层连通性更好,示踪剂回收率达到14.14%,裂缝换热体积增大至27倍,裂隙相对均质,有效减少了热突破风险。

      结论 

      示踪实验可以定量化评价干热岩人工储层压裂改造效果,研究成果对于干热岩示踪试验的开展和高温硬岩热储的科学开发具有指导意义。

      创新点:

      采用示踪试验评价中国首例发电并网干热岩场地人工储层水文地质参数。

      Abstract:

      This paper is the result of geothermal survey engineering.

      Objective 

      Hot dry rock is a clean and vast geothermal resource. China Geological Survey has been continuously implementing China's first hot dry rock geothermal power generation and grid connection project in Gonghe, Qinghai since 2019. Hot dry rock reservoirs are dense and require fracturing to form a permeable interconnected fracture network, creating a reservoir capable of accommodating a certain scale of heat exchange and water conduction. However, research on artificial reservoirs in high−temperature hard rock is relatively limited.

      Methods 

      The successful construction of artificial reservoirs and effective inter−well communication are the core of successful hot dry rock development. Tracer tests are an effective means to study the above issues and characterize reservoir hydrogeological conditions. This study focuses on the hot dry rock test site in the Gonghe Basin of Qinghai, selecting sodium fluorescein and sodium bromide as tracers, and conducting tracer tests before and after large−scale fracturing.

      Results 

      Before large−scale fracturing, tracer recovery rate and heat exchange volume were relatively low. After the transformation, reservoir fractures became more complex, reservoir connectivity improved, and the tracer recovery rate reached 14.14%. The heat exchange volume of fractures increased to 27 times, and the fractures became relatively homogeneous, effectively reducing the risk of heat breakthrough.

      Conclusions 

      Tracer experiments can quantitatively evaluate the effectiveness of hot dry rock artificial reservoir fracturing. The research results have guiding significance for the conduct of hot dry rock tracer tests and the scientific development of high−temperature hard rock thermal storage.

      Highlights:

      Tracer test was used to assess hydrogeological parameters of the artificial reservoir at the first grid−connected geothermal site for electricity generation in China.

    • 图  1   干热岩工程场地分布位置图

      Figure  1.   Location map of hot dry rock engineering site

      图  2   干热岩试采场地平面图及剖面图

      Figure  2.   Horizontal and sectional view of hot dry rock site

      图  3   溴化钠和荧光素钠突破曲线

      Figure  3.   Breakthrough curves of sodium bromide and sodium fluorescein

      图  4   不同开采流量下青海共和人工储层30年温度变化图

      Figure  4.   Temperature change chart of Qinghai Gonghe artificial reservoir in 30 years under different exploitation flow

      表  1   人工储层示踪试验解释成果

      Table  1   Interpretation results of artificial reservoir tracing test

      参数荧光素钠示踪试验溴化钠示踪试验
      回收率/%2.814.14
      渗流速度/(m/d)76.3391.29
      裂缝换热体积/m36.4174
      弥散度/m22.588.59
      下载: 导出CSV
    • [1]

      Axelsson G, Flovenz O G, Hauksdottir S, Hjartarson A, Liu J. 2001. Analysis of tracer test data, and injection–induced cooling, in the Laugaland geothermal field, N–Iceland[J]. Geothermics, 30: 697−725. doi: 10.1016/S0375-6505(01)00026-8

      [2]

      Ayling B F, Hogarth R A, Rose P E. 2016. Tracer testing at the Habanero EGS site, central Australia[J]. Geothermics, 63: 15−26. doi: 10.1016/j.geothermics.2015.03.008

      [3]

      Cartwright I, Cendon D, Currell M, Meredith K. 2017. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations[J]. Journal of Hydrology, 555: 797−811. doi: 10.1016/j.jhydrol.2017.10.053

      [4]

      Chen Yazhou, Dong Weihong. 2022. Analysis of karst pipeline structure characteristics using tracer test time–concentration curves[J]. Hydrogeology and Engineering Geology, 49(1): 41−47 (in Chinese with English abstract).

      [5]

      Crooijmans R A, Willems C J L, Nick H M, Bruhn D. 2016. The influence of facies heterogeneity on the doublet performance in low–enthalpy geothermal sedimentary reservoirs[J]. Geothermics, 64: 209−219. doi: 10.1016/j.geothermics.2016.06.004

      [6]

      Erol S, Bayer P, Akin T, Karydakis D. 2022. Advanced workflow for multi–well tracer test analysis in a geothermal reservoir[J]. Geothermics, 101: 102375. doi: 10.1016/j.geothermics.2022.102375

      [7]

      Gu Ruiting, Shi Xiaoqing, Guo Qiongze, Song Meiyu, Xu Hongxia, Wu Jichun. 2023. Numerical analysis of DNAPL residuals in aquifers based on single–well injection–extraction tracer tests[J]. Hydrogeology and Engineering Geology, 50(4): 204−212 (in Chinese with English abstract).

      [8]

      Kuo C H, Song S R, Rose P, Li P Y, Lin J Y, Chen Y L. 2018. Reactive tracer experiments in a low temperature geothermal field, Yilan, Taiwan[J]. Geothermics, 74: 298−304. doi: 10.1016/j.geothermics.2017.11.017

      [9]

      Li Dewei, Wang Yanxin. 2015. Major issues in the research and development of hot dry rock geothermal energy[J]. Earth Science (Journal of China University of Geosciences), 40(11): 1858−1869 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.166

      [10]

      Li Huayang, Deng Jingen, Feng Yongcun, Dong Baohong, Ding Jianqi, Cao Zhipeng. 2023. Research status and development trends of tracer technology in oilfields[J]. Applied Chemistry, 52(11): 3163−3168, 3174 (in Chinese with English abstract).

      [11]

      Liang Juan, Pang Jufeng, Li Qiang, Wang Lei, Li Zhen. 2008. Tracer test technology and its applications between wells[J]. Petroleum Instruments, 22(6): 41−43, 101 (in Chinese).

      [12]

      Liang X, Xu T, Chen J, Jiang Z. 2023. A deep–learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system[J]. Renewable Energy, 216: 119046. doi: 10.1016/j.renene.2023.119046

      [13]

      Liao R K, Yang P L, Wu W Y, Luo D, Yang D Y. 2018. A DNA tracer system for hydrological environment investigations[J]. Environmental Science & Technology, 52: 1695−1703.

      [14]

      Lin Wenjing, Liu Zhiming, Ma Feng, Liu Chunlei, Wang Guiling. 2012. Estimation of hot dry rock resource potential in China's continental area[J]. Acta Geologica Sinica, 33(5): 807−811 (in Chinese with English abstract).

      [15]

      Liu Y G, Liu G H, Zhao Z H, Zhang H L. 2019. Theoretical model of geothermal tail water reinjection based on an equivalent flow channel model: A case study in Xianxian, North China Plain[J]. Energy Exploration & Exploitation, 37: 849−864.

      [16]

      Liu Y G, Long X T, Liu F. 2022. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs[J]. Geothermics, 105: 102533. doi: 10.1016/j.geothermics.2022.102533

      [17]

      Lorenzi V, Banzato F, Barberio M D, Milani P, Fantoni R. 2024. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy)[J]. Heliyon, 10: e24663. doi: 10.1016/j.heliyon.2024.e24663

      [18]

      Martín–Rodríguez J F, Mudarra M, De La Torre B, González A, Delgado J. 2023. Towards a better understanding of time–lags in karst aquifers by combining hydrological analysis tools and dye tracer tests. Application to a binary karst aquifer in southern Spain[J]. Journal of Hydrology, 621: 129643. doi: 10.1016/j.jhydrol.2023.129643

      [19]

      Moreno L, Tsang C F. 1994. Flow channeling in strongly heterogeneous porous media: A numerical study[J]. Water Resources Research, 30: 1439−1450. doi: 10.1029/94WR00220

      [20]

      Ren K, Pan X D, Peng C, Chen J Y, Li J, Zeng J. 2023a. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests[J]. Journal of Environmental Management, 342: 118099. doi: 10.1016/j.jenvman.2023.118099

      [21]

      Ren Y Q, Kong Y L, Pang Z H, Wang J Y. 2023b. A comprehensive review of tracer tests in enhanced geothermal systems[J]. Renewable and Sustainable Energy Reviews, 182: 113393. doi: 10.1016/j.rser.2023.113393

      [22]

      Robertsontait D, Drakos D, Leecaster M, Holdaway L, Hall R. 2009. Tracer testing at the desert peak EGS project[J]. Transactions–Geothermal Resources Council, 33: 217−220.

      [23]

      Robinson B A, Tester J W, Brown L F. 1988. Reservoir sizing using inert and chemically reacting tracers[J]. SPE Formation Evaluation, 3: 227−234. doi: 10.2118/13147-PA

      [24]

      Sanjuan B, Millot R, Dezayes R, Dumas P, Soulas J. 2010. Main characteristics of the deep geothermal brine (5 km) at Soultz–sous–Forêts (France) determined using geochemical and tracer test data[J]. Comptes Rendus Geoscience, 342: 546−559.

      [25]

      Stefansson V. 1997. Geothermal reinjection experience[J]. Geothermics, 26: 99−139. doi: 10.1016/S0375-6505(96)00035-1

      [26]

      Wang G L, Liu G H, Zhao Z H, Liu Y G, Pu H. 2019. A robust numerical method for modeling multiple wells in city–scale geothermal field based on simplified one–dimensional well model[J]. Renewable Energy, 139: 873−894. doi: 10.1016/j.renene.2019.02.131

      [27]

      Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Assessment of geothermal resource potential of hot dry rock in mainland China[J]. Science and Technology Review, 30(32): 25−31 (in Chinese with English abstract).

      [28]

      Wang Weihao, Liu Jinhui, Yang Yihan, Wang Ruyi, Liang Daye, Yan Xuerui, He Ting. 2024. Tracer tests on the permeability evolution of ore–bearing layers during uranium leaching in–situ[J]. Nonferrous Metals (Smelting Part), (2): 72−82 (in Chinese with English abstract).

      [29]

      Xu Yong. 2018. Simulation and Prospects of Geothermal Tailwater Reinjection in the Pore–type Geothermal Reservoir in the Sanqiao Area of Xi'an[D]. Xi’an: Chang’an University, 1–116 (in Chinese with English abstract).

      [30]

      Xue Yuze, Zhang Yugui, Ma Yinjuan, Xue Chao. 2023. Tracer test on well reinjection in karst thermal reservoirs on the southeastern edge of the Ordos Basin[J]. Oil and Gas Reservoir Evaluation and Development, 13(6): 757−764, 780 (in Chinese with English abstract).

      [31]

      Yanagisawa N. 2009. First tracer test at Cooper–basin, Australia HDR reservoir[J]. Geothermal Resources Council Transactions, 33: 281−284.

      [32]

      Yang H R, Guo K L, Zhu G W, Gao X C. 2022. Application of trace substance tracer test method in low permeability reservoir–CQ oilfield. Energy Reports [J]. 8: 11309–11319.

      [33]

      Yin Xiaoxiao, Shen Jian, Zhao Yanting, Liu Donglin, Zhao Sumin, Zong Zhenhai. 2021. Tracer tests on group wells in carbonate thermal reservoirs under centralized production and reinjection conditions[J]. Acta Geologica Sinica, 95(6): 1984−1994 (in Chinese with English abstract). doi: 10.1111/1755-6724.14721

      [34]

      Yun Zhihan. 2014. Study on the Mechanism of Geothermal Tailwater Reinjection Plugging and Tracer Technology in Deep Pore–type Thermal Reservoirs[D]. Xi’an: Chang’an University, 1–85 (in Chinese with English abstract).

      [35]

      Zhang E Y, Wen D G, Wang G L, Yan W D, Wang W S, Ye C M, Li X F, Wang H, Tang X C, Weng W, Li K, Zhang C Y, Liang M X, Luo H B, Hu H Y, Zhang W, Zhang S Q, Jin X P, Wu H D, Zhang L Y, Yang L. 2022. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 5(3): 372−382. doi: 10.31035/cg2022038

      [36]

      Zhao Z H, Chen S C, Zhang J T, Chen J Y, Wu Y. 2024. In–situ tracer test in fractured rocks for nuclear waste repository[J]. Earth–Science Reviews, 250: 104683.

      [37] 陈亚洲, 董维红. 2022. 利用示踪试验时间–浓度曲线分析岩溶管道结构特征[J]. 水文地质工程地质, 49(1): 41−47.
      [38] 顾瑞婷, 施小清, 郭琼泽, 宋美钰, 徐红霞, 吴吉春. 2023. 单井注抽示踪试验推估含水层中DNAPL残留量的数值分析[J]. 水文地质工程地质, 50(4): 204−212.
      [39] 李德威, 王焰新. 2015. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学(中国地质大学学报), 40(11): 1858−1869.
      [40] 李华洋, 邓金根, 冯永存, 董保宏, 丁建琦, 曹志鹏. 2023. 油田示踪剂技术的研究现状及发展趋势[J]. 应用化工, 52(11): 3163−3168,3174. doi: 10.3969/j.issn.1671-3206.2023.11.038
      [41] 梁娟, 庞巨丰, 李强, 王磊, 李震. 2008. 井间示踪测试技术及其应用[J]. 石油仪器, 22(6): 41−43,101.
      [42] 蔺文静, 刘志明, 马峰, 刘春雷, 王贵玲. 2012. 我国陆区干热岩资源潜力估算[J]. 地球学报, 33(5): 807−811. doi: 10.3975/cagsb.2012.05.12
      [43] 汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估J]. 科技导报, 30(32): 25–31.
      [44] 王伟豪, 刘金辉, 阳奕汉, 王如意, 梁大业, 闫学锐, 何挺. 2024. 地浸采铀过程中含矿层渗透性演化的示踪试验[J]. 有色金属(冶炼部分), (2): 72−82.
      [45] 许勇. 2018. 西安三桥地区孔隙型地热尾水回灌模拟及前景展望—以惠森公司地热回灌井为例[D]. 西安: 长安大学, 1–116.
      [46] 薛宇泽, 张玉贵, 麻银娟, 薛超. 2023. 鄂尔多斯盆地东南缘岩溶热储对井回灌示踪试验[J]. 油气藏评价与开发, 13(6): 757−764,780.
      [47] 殷肖肖, 沈健, 赵艳婷, 刘东林, 赵苏民, 宗振海. 2021. 集中采灌条件下碳酸盐岩热储群井示踪试验[J]. 地质学报, 95(6): 1984−1994. doi: 10.3969/j.issn.0001-5717.2021.06.022
      [48] 云智汉. 2014. 深层孔隙型热储地热尾水回灌堵塞机理及示踪技术研究—以咸阳回灌二号井为例[D]. 西安: 长安大学, 1–85.
    图(4)  /  表(1)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-20
    • 修回日期:  2024-01-23
    • 网络出版日期:  2025-03-04

    目录

      /

      返回文章
      返回
      x 关闭 永久关闭