Characteristics of fracture system disturbance on present-day geostress: An example of deep shale gas in the North Luzhou district, Sichuan Basin
-
摘要:研究目的
随着中国页岩气勘探开发进入快速规模上产阶段,埋深3500~4500 m的深层领域成为下一步页岩气勘探的重要接替区块。但深层页岩气地质条件复杂,断裂系统对地应力的扰动严重影响了气田开发效果。
研究方法为进一步明确断裂扰动特征,以四川盆地南部泸州北区深层五峰组—龙马溪组页岩气为例,通过对断裂分布范围、开展单井地应力分析基础上,总结了泸州北区地应力场分布特征,明确了断裂对应力扰动规律,建立了断裂对应力扰动要素表及扰动范围分布图。
研究结果(1)泸州区块北区断裂发育特征表现为类型多、期次多,形成了以“向斜、斜坡、背斜”为主的构造样式,断裂组合以“对冲向斜式、叠瓦式、背冲背斜式”为主。(2)研究区地应力状态复杂,三向应力值均值为SH(112.7 MPa)>Sv(106.6 MPa)>Sh(98.8 MPa),断裂区应力值相比非断裂区降低5~35 MPa;水平最大主应力方向介于75°~120°,不同井区间的地应力方向存在较大差异。(3)断裂对地应力扰动分析显示,相同走向断裂随着断裂级次的增加,应力扰动范围逐渐增大,II级断裂扰动范围介于1.43~1.85 km;不同走向断裂中NEE—EW走向断裂对应力扰动范围最大,介于0.94~1.85 km。
结论基于断裂对应力扰动规律分析,刻画出泸州北区断裂扰动分布图,将研究区划分为断裂区和非断裂区2类,实现开发单元分级评价,并完善了断裂区与非断裂区水平井段布井模式,以期为后续建产区井位部署优化提供指导意见。
创新点:总结了泸州北区构造与断裂分布特征;刻画出泸州北区断裂对应力扰动图,完善了断裂非断裂区内水平井段布井模式。
Abstract:This paper is the result of oil and gas exploration engineering.
ObjectiveWith the rapid expansion of shale gas production in China, deep shale gas reservoirs at burial depths of 3500–4500 m have become critical targets for exploration. However, complex geological conditions and stress disturbances from fracture systems significantly hinder development.
MethodsThis study focuses on the Wufeng−Longmaxi Formation in the North Luzhou district of the southern Sichuan Basin. By analyzing the spatial distribution of fractures and conducting single−well geostress evaluations, the characteristics of stress disturbance caused by fractures were clarified. A comprehensive table and distribution map of stress disturbance elements were created.
Results(1) Fractures in the study area exhibit diverse types and phases, with a tectonic style dominated by "syncline, slope, and anticline slope." The fracture combinations primarily follow a pattern of "syncline, superposition, and anticline backslope". (2) The regional geostress state is complex, with average stress values of SH(112.7 MPa) >Sv(106.6 MPa) >Sh(98.8 MPa). Fractured zones exhibit stress values 5−35 MPa lower than non−fractured zones. The maximum horizontal stress orientation ranges from 75° to 120°, showing significant variability across wells. (3) Fractures influence stress distribution, with stress disturbance increasing alongside fracture levels. The disturbance range of Class II fractures spans 1.43−1.85 km. NEE—EW fractures exhibit the largest disturbance ranges 0.94−1.85 km.
ConclusionsA fracture disturbance distribution map was developed for the North Luzhou district, dividing the area into fracture and non−fracture zones to enable hierarchical evaluation of development units. Optimized layouts for horizontal well sections in fractured and non−fractured zones were proposed, offering guidance for future production.
Highlights:This study delineates fracture and stress distribution characteristics in the North Luzhou district, provides a stress perturbation template, and refines the horizontal well section layout for improved production planning.
-
1. 研究目的(Objective)
近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。
2. 研究方法(Methods)
在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。
3. 研究结果(Results)
研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。
在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。
4. 结论(Conclusions)
(1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。
(2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。
5. 基金项目(Fund support)
本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。
-
图 1 泸州北区构造与断裂分布图
a—川南构造分布图(据郭卫星等, 2021修改); b—泸州北区构造断裂分布图; c—研究区构造断裂分布图; d—AA’地震剖面断裂纵向分布图
Figure 1. Tectonic and fracture distribution of the North Luzhou district
a−Tectonic distribution map of South Sichuan (modified from Guo Weixing et al., 2021); b−Tectonic fracture distribution map of the North Luzhou district; c−Tectonic fracture distribution map of the study area; d−Vertical distribution map of fracture in AA' seismic section
图 3 研究区不同地应力方向解释方法结果对比图
a—不同地应力方向解释方法的结果对比; b—古地磁定向实验解释图; c—波速各向异性实验解释图; d—偶极阵列声波测井解释图; e—井壁崩落测井解释图; f—多臂井径测井解释图; g—微地震监测解释图
Figure 3. Comparison of the results of different geostress direction interpretation methods in the study area
a−Comparison of results of different geostress direction interpretation methods; b−Paleomagnetic orientation experimental interpretation map; c−Wave velocity anisotropy experimental interpretation map; d−Dipole array acoustic wave logging interpretation map; e−Wall collapse logging interpretation map; f−Multiple−arm well logging interpretation map; g−Microseismic monitoring interpretation map
图 4 研究区应力场模拟模型属性图
a—研究区断裂模型; b—研究区静态杨氏模量分布图; c—研究区静态泊松比分布图; d—研究区岩石力学参数区块
Figure 4. Properties of the stress field simulation model in the study area
a−Fracture model of the study area; b−Distribution of static Young's modulus of the study area; c−Distribution of static Poisson's ratio of the study area; d−Block of rock mechanical parameters of the study area
图 5 研究区应力场模拟结果平面分布图
a—水平最大主应力模拟平面分布图; b—水平最小主应力模拟平面分布图; c—垂向主应力模拟平面分布图; d—水平最大主应力方向模拟平面分布图
Figure 5. Plane distribution of simulated stress field results in the study area
a−Horizontal maximum principal stress simulation plan; b−Horizontal minimum principal stress simulation plan; c−Pendant principal stress simulation plan; d−Horizontal maximum principal stress direction simulation plan
图 7 研究区相同走向不同级次断裂应力扰动统计图
a、d—NEE—EW走向断裂应力大小、方向扰动统计图;b、e—NE走向断裂应力大小、方向扰动统计图; c、f—NNE—NS走向断裂应力大小、方向扰动统计图
Figure 7. Statistical map of stress disturbances of different levels of fracture on the same strike in the study area
a, d—Statistical map of fracture stress magnitude and direction perturbation towards NEE—EW; b, e—Statistical map of fracture stress magnitude and direction perturbation towards NE; c, f—Statistical map of fracture stress magnitude and direction perturbation towards NNE—NS
图 8 研究区相同级次不同走向断裂应力扰动统计图
a、d—II级断裂的应力大小、方向扰动统计图; b、e—III级断裂的应力大小、方向扰动统计图; c、f—IV级断裂断裂的应力大小、方向扰动统计图
Figure 8. Statistical map of stress disturbances of different strike fractures of the same magnitude in the study area
a, d—statistical map of stress magnitude and direction perturbation for class II fracture; b, e—statistical map of stress magnitude and direction perturbation for class IIIfracture; c, f—statistical map of stress magnitude and direction perturbation for class IV fracture
图 9 研究区Ⅱ~Ⅳ级断裂对地应力扰动范围图
(断裂周围填充的颜色范围为实际扰动范围的等比例缩小范围距离,断裂实际扰动范围以白色区域边缘黑色散点线为准)
Figure 9. Extent map of geostress disturbance by class Ⅱ−Ⅳ fracture in the study area
(The range of colours filled around the fracture is an equal reduction in range distance from the actual range of disturbance, the actual range of disturbance of the fracture is based on the black scatter line at the edge of the white area)
表 1 研究区断裂组合样式特征要素
Table 1 Characteristic elements of the fracture assemblage style in the study area
断裂组合样式组合样式 示意图 典型地震剖面 分布范围 对冲向斜式 福集向斜南部及宝藏向斜西部 叠瓦式 福集向斜北部、得胜向斜及宝藏向斜东部 背冲背斜式 云顶山、龙洞坪等背斜带高部位 注:断裂组合样式示意图中不同颜色仅表示地层,不具体指某一地层。 表 2 研究区Ⅰ~Ⅳ级断裂特征要素
Table 2 Characteristic elements of class Ⅰ−Ⅳ fractures in the study area
断裂级别 Ⅰ级 Ⅱ级 Ⅲ级 Ⅳ级 分类
原则断距/m — 42.4~712.6
(均值177.7)31.3~128.0
(均值73.9)17.7~66.8
(均值33.8)延伸长度/km — L>5 1<L<5 0.4<L<1 断开层位 顶部断开至地面,对构造具有控制作用 向上延伸至志留系或三叠系,向下延伸至寒武系盐层 向上延伸至志留系,向下延伸至寒武系盐层或基底 通常断开龙马溪组地层 识别方法 常规地震剖面解释方法可准确识别 常规地震剖面解释方法可准确识别 通常以方差体为主,曲率体和蚂蚁体可作为验证方法进行识别 以方差体和曲率体为主,蚂蚁体作为验证方法进行识别 地震响应特征 同相轴明显
错断剖面五峰组错断明显,断面形态以板式冲断为主 剖面五峰组错断明显,方差体切片平面连续性较强,断面形态以板式冲断为主 三维曲率体切片平面延续较弱,剖面以低角度铲式逆冲为主,普遍表现为同相轴绕曲错断及次级褶皱形态 表 3 研究区单井三向应力表征值
Table 3 Characteristics values of three−way stress in a single well in the study area
研究区块 井位 层位 三向应力值/MPa 应力结构 SH Sh SV L03
井区L03 五峰组 109.64 93.57 101.34 走滑态 L04 龙一12小层 101.73 88.72 95.42 走滑态 L11 龙一11小层 103.61 89.20 98.23 走滑态 L12 龙一11小层 103.52 88.02 98.21 走滑态 L02 龙一11小层 105.45 92.33 99.42 走滑态 L01 龙一12小层 88.37 77.32 86.65 走滑态 L13
井区L14 龙一11小层 113.11 97.92 106.91 走滑态 L15 龙一11小层 114.32 99.11 108.23 走滑态 L13 龙一11小层 103.58 90.65 101.12 走滑态 L06
井区L06 龙一11小层 104.82 92.21 97.96 走滑态 L07 龙一11小层 100.53 84.44 93.86 走滑态 L08 龙一11小层 96.92 86.52 93.33 走滑态 Y井区 Y03 龙一11小层 115.26 99.09 105.31 走滑态 Y06 五峰组 98.41 86.13 90.74 走滑态 Y02 龙一11小层 113.51 97.94 103.68 走滑态 Y01 龙一11小层 101.33 88.51 99.12 走滑态 Y04 龙一11小层 109.23 96.04 105.11 走滑态 Y07 龙一11小层 111.82 95.53 106.52 走滑态 Y09 五峰组 115.84 100.01 106.73 走滑态 Y10 龙一11小层 106.81 94.62 102.14 走滑态 Y08 龙一11小层 114.31 99.32 108.94 走滑态 Y05 龙一11小层 105.45 92.33 99.44 走滑态 注:龙一11为龙马溪组龙一段1亚段中的1小层,龙一12为龙马溪组龙一段1亚段中的2小层;SH为水平最大主应力,Sh为水平最小主应力,Sv为垂向主应力;走滑应力状态结构为:SH>Sv>Sh(据鞠玮等, 2020)。 表 4 研究区单井地应力方向解释结果数据
Table 4 Results of the geostress direction of a single well in the study area
研究
区块井位 不同方法解释单井应力方向结果/° 最终应力解释方向/° 波速各向
异性偶极阵列
声波井壁
崩落钻井诱
导缝微地震
监测L03井区 L03 102.8 70~75 73 — 70 75 L04 107.5 75~83 — 80~90 — 80 L11 103.6 75~85 — — 64~68 75 L12 90 70 75 70 75 75 L01 108.2 90~100 110 — 105~110 110 L13
井区L14 105.7 113 105 — — 105 L14 106.4 110~115 120 — 116~120 120 L13 112.9 120~125 — — 120 120 L06
井区L06 104.9 70~80 100~105 — — 100 L07 104.1 — 103 — — 105 L08 94 — 90 93.4 — 94 Y
井区Y03 108.6 110 100 — 115 110 Y06 120.5 — 110 — — 120 Y02 108.6 105~110 — — 120 110 Y01 108.3 — 110 — 110 110 Y04 117.2 110~115 105~110 — — 110 Y07 124.9 115 — — 120 120 Y09 113.8 113 105 — 115 115 Y10 100.9 — 110~115 110 110 115 Y08 116 — 113.9 — 110~116 116 Y05 111.1 — 110 — 113 111.1 注:表中“—”符号表示缺失此类解释数据。 表 5 泸州北区岩石力学参数单元要素
Table 5 Unit elements of rock mechanical parameters in the North Luzhou district
岩石力学参数 力学单元 A B C D E 杨氏模量/GPa 45.575 42.600 40.975 39.575 36.411 泊松比 0.324 0.295 0.274 0.260 0.224 内摩擦力/MPa 29.560 27.638 26.588 25.684 24.639 内摩擦角/° 46.738 43.283 41.398 39.771 36.096 抗拉强度/MPa 12.230 11.041 10.391 9.834 8.564 表 6 研究区Ⅱ~Ⅳ级断裂对应力扰动特征要素
Table 6 Elements characteristics stress perturbation by class Ⅱ−Ⅳ fracture in the study area
断裂级别 断裂走向 应力扰动范围/km 断裂内应力梯度/(100×MPa/m) 水平最大主应力方向偏转角度/° Ⅱ级 NE 1.56 2.11 32.08 NNE−NS 1.43 2.17 27.52 NEE−EW 1.85 1.96 36.42 Ⅲ级 NE 1.24 2.16 24.81 NNE−NS 1.11 2.21 19.24 NEE−EW 1.52 2.06 28.42 Ⅳ级 NE 0.79 2.27 17.52 NNE−NS 0.71 2.31 13.12 NEE−EW 0.94 2.22 20.06 -
[1] Allawi R H, Al−Jawad M S. 2021. Wellbore instability management using geomechanical modeling and wellbore stability analysis for Zubair shale formation in Southern Iraq[J]. Journal of Petroleum Exploration and Production Technology, 11(11): 4047–4062.
[2] Bao Shujing, Ge Mingna, Xu Xingyou, Guo Tianxu, Lin Yanhua, Mou Degang, Liang Hongbo. 2023. Progress and development proposals in the exploration and development of continental shale oil in China[J]. Geology in China, 50(5): 1344–1354(in Chinese with English abstract).
[3] Bilardello D. 2021. Late Paleozoic depositional environments and sediment transport directions of the itararé group rocks from the state of São Paulo, Brazil, determined from rock magnetism and magnetic anisotropy[J]. Earth and Space Science, 8(7): 1201–1216.
[4] Bröker K, Ma X D. 2022. Estimating the least principal stress in a granitic rock mass: Systematic mini–frac tests and elaborated pressure transient analysis[J]. Rock Mechanics and Rock Engineering, 55(4): 1931–1954.
[5] Cheng Gengsheng, Xie Qinghui, Wu Jianfa, Zhao Chunduan, Xu Ersi, Pan Yuanwei. 2022. Comprehensive application of the seismic multi–attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 46(6): 1349–1358(in Chinese with English abstract).
[6] Dong Min, Guo Wei, Zhang Linyan, Wu Zhonghai, Ma Licheng, Dong Hui, Feng Xingqiang, Yang Yuehui. 2022. Characteristics of paleotectonic stress field and fractures of Wufeng–Longmaxi Formation in Luzhou area, Southern Sichuan Basin[J]. Lithologic Reservoirs, 34(1): 43–51(in Chinese with English abstract).
[7] Guo Tonglou, Xiong Liang, Lei Wei, Zhao Yong, Pang Heqing. 2022. Deep shale gas exploration and development in the Weirong and Yongchuan areas, South Sichuan Basin: Progress, challenges and prospect[J]. Natural Gas Industry, 42(8): 45–59(in Chinese with English abstract).
[8] Guo Weixing, Tang Jjianming, Ouyang Jiasui, Wang Tong, Wang Xin, Wang Yan. 2021. Characteristics of structural deformation in the southern Sichuan Basin and its relationship with the storage condition of shale gas[J]. Natural Gas Industry, 41(5): 11–19(in Chinese with English abstract).
[9] Han Lingling, Li Xizhe, Liu Zhaoyi, Duan Guifu, Wan Yujin, Guo Xiaolong, Guo Wei, Cui Yue. 2023. Influencing factors and prevention measures of casing deformation in deep shale gas wells in Luzhou block, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 50(4): 853–861(in Chinese with English abstract).
[10] He Jianhua, Cao Feng, Deng Hucheng, Wang Yuanyuan, Li Yong, Xu Qinglong. 2023. Evaluation of in–situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 50(4): 1107–1121(in Chinese with English abstract).
[11] He Xiaodong, Ma Junxiu, Shi Shanzhi, Liu Gang, Tan Qiang. 2020. Core differential strain test of tight glutinite reservoir in Mahu oilfield[J]. China Offshore Oil and Gas, 32(3): 86–93(in Chinese with English abstract).
[12] Huang Hanyu. 2018. Formation and Evolution of Paleo–uplift in Southeastern Sichuan Basin and its Control on Hydrocarbon accumulation[D]. Beijing: China University of Geosciences (Beijing), 1−164 (in Chinese with English abstract).
[13] Huang Tao, Liu Yan, He Jianhua, Ye Tairan, Deng Hucheng, Li Ruixue, Li Kesai, Zhang Jiawei. 2024. Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan[J]. Geology in China, 51(1): 90–104(in Chinese with English abstract).
[14] Jia Chengzao. 2020. Development challenges and future scientific and technological researches in China's petroleum industry upstream[J]. Acta Petrolei Sinica, 41(12): 1445–1464(in Chinese with English abstract).
[15] Jiang Zhenxue, Liang Zhikai, Shen Yinghao, Tang Xianglu, Wu Wei, Li, Zhuo, Xue Zixin, Shi Xuewen, Guo Jie. 2023. Coupling key factors of shale sas sweet spot and research direction of geology–engineering integration in southern Sichuan[J]. Earth Science, 48(1): 110–129(in Chinese with English abstract).
[16] Ju Wei, Niu Xiaobing, Feng Shengbin, You Yuan, Xu Haoran, Wang Shengyu. 2020. The present day insitu stress state and fracture effectiveness evaluation in shale oil reservoir: A case study of the Yanchang Formation Chang7 oil bearing layer in the Ordos Basin[J]. Journal of China University of Mining & Technology, 49(5): 931–940(in Chinese with English abstract).
[17] Li Yuegang, Zhou Anfu, Xie Wei, Qiu Xunxi, Dai Yun, Hu Xi, Cheng Xiaoyan, Jiang, Yuqiang, Fu Yonghong, Wang Zimeng. 2022. Lithofacies division and main controlling factors of reservoir development in Wufeng Formation–Long11 sub–member shale in the Luzhou region, south Sichuan Basin[J]. Natural Gas Industry, 42(8): 112–123(in Chinese with English abstract).
[18] Lin Changcheng, Ding Wenlong, Wang Xinhua, Gu Yang, Yin Shuai, Liu Jingshou. 2018. Research progress of geostress in shale reservoir[J]. Bulletin of Science and Technology, 34(7): 1–8, 20(in Chinese with English abstract).
[19] Liu Libin, Duan Dong, Zheng Chaoyang. 2020. Study on insitu stress testing based on Kaiser effect of rock acoustic emission[J]. Coal Science and Technology, 48(12): 45–50(in Chinese with English abstract).
[20] Liu Zhonghe, Lyu Xinrui, Li Yukun, Zhang Hui. 2016. Mechanism of faults acting on in–situ stress field direction[J]. Oil & Gas Geology, 37(3): 387–393(in Chinese with English abstract).
[21] Luo Chao, Li Jinxi, Li Zhiwu, Zhang Dongjun, Tong Kailin, Dai Yun, Hu Xi, Liu Aodong, Ye Yuehao, Zhong Kesu, Yang Yuran, He Yifan, Li Yi, Huang Ruiguang, Gong Zilong. 2022. Structural deformation characteristica and formation process of Luzhou Block in Sichua Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 49(6): 665–673(in Chinese with English abstract).
[22] Mehrvash N, Kouros Y, Bahman S, Abdolmajid A. 2021. Analysis of fractures in the Dalan and Kangan carbonate reservoirs using FMI logs: Sefid–Zakhur gas field in the Fars Province, Iran[J]. Carbonates and Evaporites, 36(2): 1103–1116.
[23] Min Jian, Ma Huiyun, Pen Juanliang, Han Huifen, Wang Du. 2020. Study on determination of insitu stress direction using wave velocity anisotropy method combined with paleomagnetism method[J]. Drilling & Production Technology, 43(z1): 17–19(in Chinese with English abstract).
[24] Nazir M B, Lin Weiren, Murata S, Yousefi F, Radwan A E. 2022. Magnitudes and orientations of present–day in–situ stresses in the Kurdistan region of Iraq: Insights into combined strike–slip and reverse faulting stress regimes[J]. Journal of Asian Earth Sciences, 239: 105398–105416.
[25] Qi Dunke, Liu Jianzhong. 2017. Determination of maximum horizontal principal stress orientation by monitoring the extending direction of micro–seismic multiple staged fractures in horizontal wells[J]. Acta Seismologica Sinica, 39(5): 814–817(in Chinese with English abstract).
[26] Shi Zhensheng, Zhou Tianqi, Guo Wei, Liang Pingping, Cheng Feng. 2022. Quantitative paleogeographic mapping and sedimentary microfacie division in a deep–water marine shale shelf: Case study of Wufeng Formation–Longmaxi Formation shale, southern Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 40(6): 1728–1744(in Chinese with English abstract).
[27] Shi Xuewen, Wu Wei, Hu Haiyan, Liu Lihang, Zhu Yiqing, Pan Renfang, Meng Jianghui, Wang Tao. 2023. The whole apertures of deeply buried Wufeng–Longmaxi Formation shale and their controlling factors in Luzhou district, Sichuan Basin[J]. Earth Science, 48(1): 158–172(in Chinese with English abstract).
[28] Tong Kailin, Cai Hongyan, Li Jinxi, He Jianhua, Luo Chao, Liu Aodong, Tang Rong, Dai Yun, Hu Xi. 2023. Present stress orientations and controlling factors of shale reservoirs in LZ region, Sichuan Basin: Example of the first member of Longmaxi Formation[J]. Science Technology and Engineering, 23(8): 3224–3236(in Chinese with English abstract).
[29] Wang Ruyue, Hu Zongquan, Dong Li, Gao Bo, Sun Chuanxiang, Yang Tao, Wang Guanping, Yin Shuai. 2021. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 42(1): 54–65(in Chinese with English abstract).
[30] Weng Jianqiao, Zeng Lianbo, Lyu Wenya, Liu Qi, Zu Kewei. 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39–47(in Chinese with English abstract).
[31] Wu Jianfa, Zhang Chenglin, Zhao Shengxian, Zhang Jian, Feng Jiangrong, Xia Ziqiang, Fang Yuan, Li Bo, Yin Meixuan, Zhang Dekuan. 2023. Typical types of shale gas reservoirs in southern Sichuan Basin and enlightenment of exploration and development[J]. Natural Gas Geoscience, 34(8): 1385–1400(in Chinese with English abstract).
[32] Wu Xiaoguang, Ji Fengling, Li Decai. 2016. Application status and research progress of dipole acoustic well logging[J]. Progress in Geophysics, 31(1): 380–389(in Chinese with English abstract).
[33] Xie Jun. 2017. Rapid shale gas development accelerated by the progress in key technologies: A case study of the Changning – Weiyuan national shale gas demonstration zone[J]. Natural Gas Industry, 37(12): 1–10(in Chinese with English abstract).
[34] Xie Lingfeng, Chen Wei, Yu Yangli. 2023. Identification of secondary faults and hydrocarbon significance in Luzhou area, southern Sichuan[J]. Petrochemical Industry Technology, 30(2): 152–154(in Chinese with English abstract).
[35] Yan Jianping, Luo Jingchao, Shi Xuewen, Zhong Guanghai, Zheng Majia, Huangn Yi, Tang Hongming, Hu Qinghong. 2022. Fracture development models and significance of Ordovician WuFeng–Silurian Longmaxi shale in Luzhou area, Southern Sichuan Basin[J]. Lithologic Reservoirs, 34(6): 60–71(in Chinese with English abstract).
[36] Yang Hongzhi, Zhao Shengxian, Liu Yong, Wu Wei, Xia Ziqiang, Wu Tianpeng, Luo Chao, Fan Tianyou, Yu Linyao. 2019. Main controlling factors of enrichment and high–yield of deep shale gas in the Luzhou block, Southern Sichuan Basin[J]. Natural Gas Industry, 39(11): 55–63(in Chinese with English abstract).
[37] Yang Hongzhi, Zhao Shengxian, Xia Ziqiang, Yang Xuefeng, Zhang Chenglin, Zhang Deliang, Zhang Jian, Yuan Shusheng, Feng Jiangrong, Xie Wei, He Yuanhan, Hu Haoran, Li Bo, Wang Gaoxiang. 2022. Target selection of tridimensional development of deep shale gas in the Luzhou region, South Sichuan Basin[J]. Natural Gas Industry, 42(8): 162–174(in Chinese with English abstract).
[38] Yang Xue, Shi Xuewen, Zhu Yiqing, Liu Jia, Li Yi, He Liang, Xu Liang, Li Yanyou, Chen Yao, Jiang Jiayu. 2022. Sedimentary evolution and organic matter enrichment of Katian–Aeronian deep–water shale in Luzhou area, southern Sichuan Basin[J]. Acta Petrolei Sinica, 43(4): 469–482(in Chinese with English abstract).
[39] Yin Shuai, Liu Hanlin, He Jianhua, Wang Ruifei, Li Xiangxue, Huang Zheng, Zhou Yongqiang, He Zixiao. 2023. Comprehensive evaluation of geo–stress sandstone under constraint of dynam geomechanical methods[J]. Advance in Earth Science, 38(12): 1285–1296(in Chinese with English abstract).
[40] Zhang Jinchuan, Shi Miao, Wang Dongsheng, Tong Zhongzheng, Hou Xudong, Niu Jialiang, Li Xingqi, Li Zhongming, Zhang Peng, Huang Yuqi. 2021. Fields and directions for shale gas exploretion in China[J]. Natural Gas Industry, 41(8): 69–80(in Chinese with English abstract).
[41] Zhao Shengxian, Xu Wenqiao, Yang Xuefeng, Yin Hongwei, Li Bo, Wang Wei, Zhang Chenglin, Jia Dong, Liu Yongyang, Xie Wei, Zhang Dongjun, Li Changsheng. 2023. The structural characteristics and deformation mechanisms of multiple detachments in Luzhou Area, Southeastern Sichuan basin[J]. Geological Journal of China Universities, 29(5): 726–735(in Chinese with English abstract).
[42] Zou Caineng, Zhu Rukai, Dong Dazhong, Wu Songtao. 2022. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica, 43(12): 1675–1686(in Chinese with English abstract).
[43] 包书景, 葛明娜, 徐兴友, 郭天旭, 林燕华, 牟德刚, 梁宏波. 2023. 我国陆相页岩油勘探开发进展与发展建议[J]. 中国地质, 50(5): 1344–1354. [44] 陈更生, 谢清惠, 吴建发, 赵春段, 徐尔斯, 潘元炜. 2022. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 46(6): 1349–1358. [45] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯立强, 杨跃辉. 2022. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 34(1): 43–51. [46] 郭彤楼, 熊亮, 雷炜, 赵勇, 庞河清. 2022. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 42(8): 45–59. [47] 郭卫星, 唐建明, 欧阳嘉穗, 王同, 王信, 王岩. 2021. 四川盆地南部构造变形特征及其与页岩气保存条件的关系[J]. 天然气工业, 41(5): 11–19. [48] 韩玲玲, 李熙喆, 刘照义, 段贵府, 万玉金, 郭晓龙, 郭伟, 崔悦. 2023. 川南泸州深层页岩气井套变主控因素与防控对策[J]. 石油勘探与开发, 50(4): 853–861. [49] 何建华, 曹峰, 邓虎成, 王园园, 李勇, 徐庆龙. 2023. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 50(4): 1107–1121. [50] 何小东, 马俊修, 石善志, 刘刚, 谭强. 2020. 玛湖油田致密砂砾岩储层岩心差应变实验[J]. 中国海上油气, 32(3): 86–93. [51] 黄涵宇. 2018. 川东南地区古隆起形成演化及其控油气作用[D]. 北京: 中国地质大学(北京), 1−164. [52] 黄滔, 刘岩, 何建华, 叶泰然, 邓虎成, 李瑞雪, 李可赛, 张家维. 2024. 川西孝泉—丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 51(1): 90–104. [53] 贾承造. 2020. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 41(12): 1445–1464. [54] 姜振学, 梁志凯, 申颍浩, 唐相路, 吴伟, 李卓, 薛子鑫, 石学文, 郭婕. 2023. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学, 48(1): 110–129. [55] 鞠玮, 牛小兵, 冯胜斌, 尤源, 徐浩然, 王胜宇. 2020. 页岩油储层现今地应力场与裂缝有效性评价—以鄂尔多斯盆地延长组长7油层组为例[J]. 中国矿业大学学报, 49(5): 931–940. [56] 李跃纲, 周安富, 谢伟, 邱峋晰, 戴赟, 胡曦, 程晓艳, 蒋裕强, 付永红, 王子萌. 2022. 四川盆地南部泸州地区五峰组—龙一1亚段页岩岩相划分及储层发育主控因素[J]. 天然气工业, 42(8): 112–123. [57] 林长城, 丁文龙, 王兴华, 谷阳, 尹帅, 刘敬寿. 2018. 页岩储层地应力研究进展[J]. 科技通报, 34(7): 1–8, 20. [58] 刘利斌, 段东, 郑朝阳. 2020. 基于岩石声发射Kaiser效应的地应力测试研究[J]. 煤炭科学技术, 48(12): 45–50. [59] 刘中春, 吕心瑞, 李玉坤, 张辉. 2016. 断层对地应力场方向的影响机理[J]. 石油与天然气地质, 37(3): 387–393. [60] 罗超, 李金玺, 李智武, 张洞君, 佟恺林, 戴赟, 胡曦, 刘傲东, 叶玥豪, 钟可塑, 杨雨然, 何一凡, 李怡, 黄瑞广, 公子龙. 2022. 四川盆地泸州区块构造变形特征及形成过程[J]. 成都理工大学学报(自然科学版), 49(6): 665–673. [61] 闵建, 马辉运, 彭钧亮, 韩慧芬, 王都. 2020. 波速各向异性结合古地磁测试地应力方向研究[J]. 钻采工艺, 43(z1): 17–19. [62] 綦敦科, 刘建中. 2017. 利用水平井分段压裂微地震裂缝方位监测确定最大水平主应力方位[J]. 地震学报, 39(5): 814–817. [63] 施振生, 周天琪, 郭伟, 梁萍萍, 程峰. 2022. 海相页岩定量古地理编图及深水陆棚沉积微相划分—以川南泸州地区五峰组—龙马溪组龙一11–4小层为例[J]. 沉积学报, 40(6): 1728–1744. [64] 石学文, 吴伟, 胡海燕, 刘立航, 朱逸青, 潘仁芳, 孟江辉, 王涛. 2023. 泸州地区深层五峰–龙马溪组页岩气储层全孔径表征及其主控因素[J]. 地球科学, 48(1): 158–172. [65] 佟恺林, 蔡鸿燕, 李金玺, 何建华, 罗超, 刘傲东, 唐荣, 戴赟, 胡曦. 2023. 四川LZ页岩储层现今地应力方向及主控因素—以龙一段为例[J]. 科学技术与工程, 23(8): 3224–3236. [66] 王濡岳, 胡宗全, 董立, 高波, 孙川翔, 杨滔, 王冠平, 尹帅. 2021. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 42(1): 54–65. [67] 翁剑桥, 曾联波, 吕文雅, 刘奇, 祖克威. 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39–47. [68] 吴建发, 张成林, 赵圣贤, 张鉴, 冯江荣, 夏自强, 方圆, 李博, 尹美璇, 张德宽. 2023. 川南地区典型页岩气藏类型及勘探开发启示[J]. 天然气地球科学, 34(8): 1385–1400. [69] 吴晓光, 季凤玲, 李德才. 2016. 偶极声波测井技术应用现状及研究进展[J]. 地球物理学进展, 31(1): 380–389. [70] 谢军. 2017. 关键技术进步促进页岩气产业快速发展—以长宁—威远国家级页岩气示范区为例[J]. 天然气工业, 37(12): 1–10. [71] 谢凌峰, 陈伟, 余养里. 2023. 川南泸州地区次级断裂识别及其油气意义[J]. 石化技术, 30(2): 152–154. [72] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 2022. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 34(6): 60–71. [73] 杨洪志, 赵圣贤, 刘勇, 吴伟, 夏自强, 吴天鹏, 罗超, 凡田友, 余林瑶. 2019. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 39(11): 55–63. [74] 杨洪志, 赵圣贤, 夏自强, 杨学锋, 张成林, 张德良, 张鉴, 苑术生, 冯江荣, 谢伟, 何沅翰, 胡浩然, 李博, 王高翔. 2022. 四川盆地南部泸州区块深层页岩气立体开发目标优选[J]. 天然气工业, 42(8): 162–174. [75] 杨雪, 石学文, 朱逸青, 刘佳, 李怡, 何亮, 徐亮, 李彦佑, 陈瑶, 蒋佳玉. 2022. 四川盆地南部泸州地区凯迪阶—埃隆阶深水页岩沉积演化与有机质富集[J]. 石油学报, 43(4): 469–482. [76] 尹帅, 刘翰林, 何建华, 王瑞飞, 李香雪, 黄郑, 周永强, 贺子潇. 2023. 动静态地质力学方法约束的致密油砂岩地应力综合评估[J]. 地球科学进展, 38(12): 1285–1296. [77] 张金川, 史淼, 王东升, 仝忠正, 侯旭东, 牛嘉亮, 李兴起, 李中明, 张鹏, 黄宇琪. 2021. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 41(8): 69–80. [78] 赵圣贤, 徐雯峤, 杨学锋, 尹宏伟, 李博, 汪伟, 张成林, 贾东, 刘永旸, 谢伟, 张洞君, 李长圣. 2023. 川东南泸州地区多滑脱层构造特征及变形机制[J]. 高校地质学报, 29(5): 726–735. [79] 邹才能, 朱如凯, 董大忠, 吴松涛. 2022. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 43(12): 1675–1686.